Punkt 3 - rożnicowanie WIG w celu weliminowania
niestacjonarności
#rożnice
d_wig = diff(wig)
d_dax = diff(dax)
d_bux = diff(bux)
d_sp = diff(sp)
t=1:239
summary(lm(d_wig~t)) # trend nieistotny
##
## Call:
## lm(formula = d_wig ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -564.19 -84.69 5.07 96.74 320.82
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.53039 18.15346 0.470 0.639
## t -0.06047 0.13115 -0.461 0.645
##
## Residual standard error: 139.9 on 237 degrees of freedom
## Multiple R-squared: 0.0008961, Adjusted R-squared: -0.00332
## F-statistic: 0.2126 on 1 and 237 DF, p-value: 0.6452
summary(lm(d_dax~t)) # trend nieistotny
##
## Call:
## lm(formula = d_dax ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2046.75 -276.14 61.96 283.53 1638.99
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.7395 64.9626 0.211 0.833
## t 0.4313 0.4693 0.919 0.359
##
## Residual standard error: 500.6 on 237 degrees of freedom
## Multiple R-squared: 0.003551, Adjusted R-squared: -0.0006531
## F-statistic: 0.8447 on 1 and 237 DF, p-value: 0.359
summary(lm(d_bux~t)) # trend nieistotny
##
## Call:
## lm(formula = d_bux ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10276.5 -808.9 51.0 1079.0 5990.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -154.838 234.662 -0.660 0.5100
## t 3.514 1.695 2.073 0.0393 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1808 on 237 degrees of freedom
## Multiple R-squared: 0.01781, Adjusted R-squared: 0.01366
## F-statistic: 4.296 on 1 and 237 DF, p-value: 0.03927
summary(lm(d_sp~t)) # trend nieistotny
##
## Call:
## lm(formula = d_sp ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -439.63 -38.48 14.75 52.83 328.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.9667 15.0378 -0.663 0.5081
## t 0.2469 0.1086 2.273 0.0239 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 115.9 on 237 degrees of freedom
## Multiple R-squared: 0.02134, Adjusted R-squared: 0.01721
## F-statistic: 5.167 on 1 and 237 DF, p-value: 0.02392
# tym razem bez trendu
summary(ur.df(d_wig, type = c("none"), lags = 12, selectlags ="BIC" ))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -568.74 -86.07 -5.33 89.95 330.09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -1.05547 0.09565 -11.034 <2e-16 ***
## z.diff.lag 0.02524 0.06661 0.379 0.705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 139.3 on 224 degrees of freedom
## Multiple R-squared: 0.5151, Adjusted R-squared: 0.5108
## F-statistic: 119 on 2 and 224 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.0342
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
summary(ur.df(d_dax, type = c("none"), lags = 12, selectlags ="BIC" ))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1968.1 -223.5 120.1 375.6 1726.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -1.05799 0.09445 -11.202 <2e-16 ***
## z.diff.lag 0.06034 0.06686 0.902 0.368
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 517.2 on 224 degrees of freedom
## Multiple R-squared: 0.5004, Adjusted R-squared: 0.4959
## F-statistic: 112.2 on 2 and 224 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.2018
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
summary(ur.df(d_bux, type = c("none"), lags = 12, selectlags ="BIC" ))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9917.4 -648.5 173.4 1332.0 6636.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.87302 0.09073 -9.622 <2e-16 ***
## z.diff.lag -0.04017 0.06741 -0.596 0.552
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1852 on 224 degrees of freedom
## Multiple R-squared: 0.4555, Adjusted R-squared: 0.4506
## F-statistic: 93.68 on 2 and 224 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -9.6219
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
summary(ur.df(d_sp, type = c("none"), lags = 12, selectlags ="BIC" ))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -394.48 -25.31 27.48 71.91 358.67
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -1.12176 0.09896 -11.335 <2e-16 ***
## z.diff.lag 0.03076 0.06804 0.452 0.652
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 121.5 on 224 degrees of freedom
## Multiple R-squared: 0.5431, Adjusted R-squared: 0.539
## F-statistic: 133.1 on 2 and 224 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.3353
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
# ZMIENNA UZNAna ZA STACJONARNÄ„!
# Potwierdzenie testem ACF
par(mfrow = c(2,2))
acf(d_wig)
acf(d_dax)
acf(d_bux)
acf(d_sp)

# Subset zmiennych do modelu
dane <- data.frame(d_dax,d_wig,d_bux,d_sp)
badanie autokorelacji składnika losowego
var_BG <- serial.test(var, lags.pt = 4, type = "BG")
var_BG
##
## Breusch-Godfrey LM test
##
## data: Residuals of VAR object var
## Chi-squared = 80.36, df = 80, p-value = 0.4677
# Reszty wykazujÄ… na brak autokorelacji
# Koło jednostkowe
roots(var)
## [1] 0.18257939 0.18257939 0.06410090 0.02938729
par(mfrow = c(1, 1))
root.comp = Im(roots(var, modulus=FALSE ))
root.real = Re(roots(var, modulus=FALSE ))
x = seq(-1, 1, length=1000)
y1 = sqrt(1-x^2)
y2 = -sqrt(1-x^2)
plot(c(x, x), c(y1, y2), xlab='Real part', ylab='Imaginary part', type='l', main='Unit Circle', ylim=c(-1.2, 1.2), xlim=c (-1, 1))
abline(h=0)
abline(v=0)
points(root.comp, root.real, pch=19)
legend(-1, -1, legend= "Eigenvalues", pch=19)

# testy przyczynowości Grangera
causality(var, cause = c("d_wig"))
## $Granger
##
## Granger causality H0: d_wig do not Granger-cause d_dax d_bux d_sp
##
## data: VAR object var
## F-Test = 0.97745, df1 = 3, df2 = 932, p-value = 0.4027
##
##
## $Instant
##
## H0: No instantaneous causality between: d_wig and d_dax d_bux d_sp
##
## data: VAR object var
## Chi-squared = 76.347, df = 3, p-value = 2.22e-16
causality(var, cause = c("d_sp"))
## $Granger
##
## Granger causality H0: d_sp do not Granger-cause d_dax d_wig d_bux
##
## data: VAR object var
## F-Test = 6.4034, df1 = 3, df2 = 932, p-value = 0.0002702
##
##
## $Instant
##
## H0: No instantaneous causality between: d_sp and d_dax d_wig d_bux
##
## data: VAR object var
## Chi-squared = 91.062, df = 3, p-value < 2.2e-16
causality(var, cause = c("d_dax"))
## $Granger
##
## Granger causality H0: d_dax do not Granger-cause d_wig d_bux d_sp
##
## data: VAR object var
## F-Test = 1.7627, df1 = 3, df2 = 932, p-value = 0.1527
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax and d_wig d_bux d_sp
##
## data: VAR object var
## Chi-squared = 93.048, df = 3, p-value < 2.2e-16
causality(var, cause = c("d_bux"))
## $Granger
##
## Granger causality H0: d_bux do not Granger-cause d_dax d_wig d_sp
##
## data: VAR object var
## F-Test = 0.012545, df1 = 3, df2 = 932, p-value = 0.9981
##
##
## $Instant
##
## H0: No instantaneous causality between: d_bux and d_dax d_wig d_sp
##
## data: VAR object var
## Chi-squared = 76.414, df = 3, p-value = 2.22e-16
causality(var, cause = c("d_bux","d_dax","d_sp"))
## $Granger
##
## Granger causality H0: d_dax d_bux d_sp do not Granger-cause d_wig
##
## data: VAR object var
## F-Test = 0.21433, df1 = 3, df2 = 932, p-value = 0.8865
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax d_bux d_sp and d_wig
##
## data: VAR object var
## Chi-squared = 76.347, df = 3, p-value = 2.22e-16
causality(var, cause = c("d_wig","d_dax","d_sp"))
## $Granger
##
## Granger causality H0: d_dax d_wig d_sp do not Granger-cause d_bux
##
## data: VAR object var
## F-Test = 4.249, df1 = 3, df2 = 932, p-value = 0.005414
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax d_wig d_sp and d_bux
##
## data: VAR object var
## Chi-squared = 76.414, df = 3, p-value = 2.22e-16
causality(var, cause = c("d_bux","d_wig","d_sp"))
## $Granger
##
## Granger causality H0: d_wig d_bux d_sp do not Granger-cause d_dax
##
## data: VAR object var
## F-Test = 0.92641, df1 = 3, df2 = 932, p-value = 0.4274
##
##
## $Instant
##
## H0: No instantaneous causality between: d_wig d_bux d_sp and d_dax
##
## data: VAR object var
## Chi-squared = 93.048, df = 3, p-value < 2.2e-16
causality(var, cause = c("d_bux","d_dax","d_wig"))
## $Granger
##
## Granger causality H0: d_dax d_wig d_bux do not Granger-cause d_sp
##
## data: VAR object var
## F-Test = 1.0376, df1 = 3, df2 = 932, p-value = 0.3751
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax d_wig d_bux and d_sp
##
## data: VAR object var
## Chi-squared = 91.062, df = 3, p-value < 2.2e-16
# SP vs WIG
subset_for_VAR2<-data.frame(d_wig,d_sp)
VARselect(subset_for_VAR2, lag.max = 12, type = "const")
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 1 1 1 1
##
## $criteria
## 1 2 3 4 5
## AIC(n) 1.914139e+01 1.915390e+01 1.916009e+01 1.917791e+01 1.920170e+01
## HQ(n) 1.917791e+01 1.921478e+01 1.924532e+01 1.928749e+01 1.933564e+01
## SC(n) 1.923191e+01 1.930477e+01 1.937132e+01 1.944949e+01 1.953364e+01
## FPE(n) 2.055888e+08 2.081793e+08 2.094776e+08 2.132532e+08 2.184034e+08
## 6 7 8 9 10
## AIC(n) 1.922621e+01 1.921433e+01 1.916181e+01 1.918011e+01 1.918760e+01
## HQ(n) 1.938451e+01 1.939697e+01 1.936880e+01 1.941146e+01 1.944331e+01
## SC(n) 1.961850e+01 1.966696e+01 1.967479e+01 1.975345e+01 1.982129e+01
## FPE(n) 2.238449e+08 2.212300e+08 2.099474e+08 2.138738e+08 2.155414e+08
## 11 12
## AIC(n) 1.920182e+01 1.923008e+01
## HQ(n) 1.948187e+01 1.953449e+01
## SC(n) 1.989586e+01 1.998447e+01
## FPE(n) 2.187004e+08 2.250587e+08
var2 <- VAR(subset_for_VAR2, p = 1, type = "const")
causality(var2, cause = c("d_wig"))
## $Granger
##
## Granger causality H0: d_wig do not Granger-cause d_sp
##
## data: VAR object var2
## F-Test = 2.6534, df1 = 1, df2 = 470, p-value = 0.104
##
##
## $Instant
##
## H0: No instantaneous causality between: d_wig and d_sp
##
## data: VAR object var2
## Chi-squared = 48.291, df = 1, p-value = 3.675e-12
causality(var2, cause = c("d_sp"))
## $Granger
##
## Granger causality H0: d_sp do not Granger-cause d_wig
##
## data: VAR object var2
## F-Test = 0.010962, df1 = 1, df2 = 470, p-value = 0.9167
##
##
## $Instant
##
## H0: No instantaneous causality between: d_sp and d_wig
##
## data: VAR object var2
## Chi-squared = 48.291, df = 1, p-value = 3.675e-12
# SP vs BUX
subset_for_VAR3<-data.frame(d_bux,d_sp)
VARselect(subset_for_VAR3, lag.max = 12, type = "const")
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 8 1 1 8
##
## $criteria
## 1 2 3 4 5
## AIC(n) 2.420646e+01 2.420755e+01 2.422571e+01 2.423808e+01 2.425788e+01
## HQ(n) 2.424299e+01 2.426843e+01 2.431095e+01 2.434767e+01 2.439182e+01
## SC(n) 2.429699e+01 2.435843e+01 2.443694e+01 2.450967e+01 2.458981e+01
## FPE(n) 3.256373e+10 3.259949e+10 3.319789e+10 3.361260e+10 3.428702e+10
## 6 7 8 9 10
## AIC(n) 2.426325e+01 2.421314e+01 2.415852e+01 2.418034e+01 2.419883e+01
## HQ(n) 2.442154e+01 2.439579e+01 2.436552e+01 2.441169e+01 2.445453e+01
## SC(n) 2.465553e+01 2.466578e+01 2.467151e+01 2.475368e+01 2.483252e+01
## FPE(n) 3.447498e+10 3.279446e+10 3.105679e+10 3.174891e+10 3.235029e+10
## 11 12
## AIC(n) 2.421147e+01 2.423576e+01
## HQ(n) 2.449152e+01 2.454017e+01
## SC(n) 2.490551e+01 2.499015e+01
## FPE(n) 3.277274e+10 3.359200e+10
var3 <- VAR(subset_for_VAR3, p = 1, type = "const")
causality(var3, cause = c("d_bux"))
## $Granger
##
## Granger causality H0: d_bux do not Granger-cause d_sp
##
## data: VAR object var3
## F-Test = 0.31574, df1 = 1, df2 = 470, p-value = 0.5744
##
##
## $Instant
##
## H0: No instantaneous causality between: d_bux and d_sp
##
## data: VAR object var3
## Chi-squared = 55.982, df = 1, p-value = 7.316e-14
causality(var3, cause = c("d_sp"))
## $Granger
##
## Granger causality H0: d_sp do not Granger-cause d_bux
##
## data: VAR object var3
## F-Test = 10.76, df1 = 1, df2 = 470, p-value = 0.001114
##
##
## $Instant
##
## H0: No instantaneous causality between: d_sp and d_bux
##
## data: VAR object var3
## Chi-squared = 55.982, df = 1, p-value = 7.316e-14
# SP VS DAX
subset_for_VAR4<-data.frame(d_dax,d_sp)
VARselect(subset_for_VAR4, lag.max = 12, type = "const")
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 1 1 1 1
##
## $criteria
## 1 2 3 4 5
## AIC(n) 2.115738e+01 2.117127e+01 2.118987e+01 2.121322e+01 2.121231e+01
## HQ(n) 2.119390e+01 2.123215e+01 2.127511e+01 2.132281e+01 2.134625e+01
## SC(n) 2.124790e+01 2.132215e+01 2.140110e+01 2.148480e+01 2.154424e+01
## FPE(n) 1.543593e+09 1.565207e+09 1.594635e+09 1.632375e+09 1.630997e+09
## 6 7 8 9 10
## AIC(n) 2.123542e+01 2.124466e+01 2.119989e+01 2.120761e+01 2.122945e+01
## HQ(n) 2.139371e+01 2.142731e+01 2.140689e+01 2.143896e+01 2.148516e+01
## SC(n) 2.162770e+01 2.169730e+01 2.171288e+01 2.178095e+01 2.186314e+01
## FPE(n) 1.669300e+09 1.685025e+09 1.611537e+09 1.624384e+09 1.660714e+09
## 11 12
## AIC(n) 2.123314e+01 2.124641e+01
## HQ(n) 2.151319e+01 2.155082e+01
## SC(n) 2.192718e+01 2.200081e+01
## FPE(n) 1.667403e+09 1.690357e+09
var4 <- VAR(subset_for_VAR4, p = 1, type = "const")
causality(var4, cause = c("d_sp"))
## $Granger
##
## Granger causality H0: d_sp do not Granger-cause d_dax
##
## data: VAR object var4
## F-Test = 0.076202, df1 = 1, df2 = 470, p-value = 0.7826
##
##
## $Instant
##
## H0: No instantaneous causality between: d_sp and d_dax
##
## data: VAR object var4
## Chi-squared = 89.226, df = 1, p-value < 2.2e-16
causality(var4, cause = c("d_dax"))
## $Granger
##
## Granger causality H0: d_dax do not Granger-cause d_sp
##
## data: VAR object var4
## F-Test = 0.013361, df1 = 1, df2 = 470, p-value = 0.908
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax and d_sp
##
## data: VAR object var4
## Chi-squared = 89.226, df = 1, p-value < 2.2e-16
# DAX VS WIG i BUX
subset_for_VAR5<-data.frame(d_dax,d_bux,d_wig)
VARselect(subset_for_VAR5, lag.max = 12, type = "const")
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 1 1 1 1
##
## $criteria
## 1 2 3 4 5
## AIC(n) 3.647788e+01 3.649997e+01 3.653190e+01 3.657178e+01 3.661178e+01
## HQ(n) 3.655093e+01 3.662782e+01 3.671455e+01 3.680922e+01 3.690401e+01
## SC(n) 3.665893e+01 3.681682e+01 3.698454e+01 3.716020e+01 3.733600e+01
## FPE(n) 6.952565e+15 7.108239e+15 7.339710e+15 7.639843e+15 7.954222e+15
## 6 7 8 9 10
## AIC(n) 3.661404e+01 3.659351e+01 3.665053e+01 3.670052e+01 3.671509e+01
## HQ(n) 3.696107e+01 3.699533e+01 3.710715e+01 3.721193e+01 3.728129e+01
## SC(n) 3.747405e+01 3.758931e+01 3.778213e+01 3.796790e+01 3.811826e+01
## FPE(n) 7.976046e+15 7.819030e+15 8.285026e+15 8.719247e+15 8.859274e+15
## 11 12
## AIC(n) 3.667995e+01 3.672365e+01
## HQ(n) 3.730095e+01 3.739944e+01
## SC(n) 3.821892e+01 3.839841e+01
## FPE(n) 8.567608e+15 8.968124e+15
var5 <- VAR(subset_for_VAR5, p = 1, type = "const")
causality(var5, cause = c("d_dax"))
## $Granger
##
## Granger causality H0: d_dax do not Granger-cause d_bux d_wig
##
## data: VAR object var5
## F-Test = 0.58336, df1 = 2, df2 = 702, p-value = 0.5583
##
##
## $Instant
##
## H0: No instantaneous causality between: d_dax and d_bux d_wig
##
## data: VAR object var5
## Chi-squared = 65.996, df = 2, p-value = 4.663e-15
causality(var5, cause = c("d_bux","d_wig"))
## $Granger
##
## Granger causality H0: d_bux d_wig do not Granger-cause d_dax
##
## data: VAR object var5
## F-Test = 1.3901, df1 = 2, df2 = 702, p-value = 0.2497
##
##
## $Instant
##
## H0: No instantaneous causality between: d_bux d_wig and d_dax
##
## data: VAR object var5
## Chi-squared = 65.996, df = 2, p-value = 4.663e-15
# funkcja odpowiedzi na impuls
irf=irf(var)
irf
##
## Impulse response coefficients
## $d_dax
## d_dax d_wig d_bux d_sp
## [1,] 5.027148e+02 8.038640e+01 9.715227e+02 8.988757e+01
## [2,] -5.847287e+00 1.813618e+00 2.246503e+02 -1.130260e+01
## [3,] -3.806549e-02 6.054082e-01 -6.597262e+01 1.612084e+00
## [4,] 6.442798e-01 -1.345800e-01 1.350862e+01 -8.269942e-02
## [5,] -1.828437e-01 2.435711e-02 -1.894564e+00 -2.744204e-02
## [6,] 3.481902e-02 -2.871213e-03 1.293552e-01 1.117799e-02
## [7,] -4.542535e-03 6.935320e-05 2.365666e-02 -2.502965e-03
## [8,] 2.288961e-04 7.456452e-05 -1.154893e-02 3.929039e-04
## [9,] 8.143165e-05 -2.511280e-05 2.743686e-03 -3.672726e-05
## [10,] -3.253501e-05 5.194822e-06 -4.541478e-04 -1.864928e-06
## [11,] 7.235925e-06 -7.516276e-07 4.743512e-05 1.794680e-06
##
## $d_wig
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 1.149494e+02 6.900224e+02 9.350055e+00
## [2,] 5.367952e+01 -5.495926e+00 1.298236e+02 1.200814e+01
## [3,] -7.485041e+00 5.680458e-01 1.609604e+01 -3.240067e+00
## [4,] 7.336061e-01 4.166593e-02 -1.252610e+01 6.050239e-01
## [5,] 3.386026e-02 -2.767435e-02 3.556553e+00 -7.612858e-02
## [6,] -3.467260e-02 6.996556e-03 -6.854409e-01 3.110194e-03
## [7,] 9.487088e-03 -1.207020e-03 9.209960e-02 1.588395e-03
## [8,] -1.745840e-03 1.354175e-04 -5.382579e-03 -5.895435e-04
## [9,] 2.177177e-04 -1.142736e-06 -1.419801e-03 1.273615e-04
## [10,] -8.389638e-06 -4.166909e-06 6.133936e-04 -1.929983e-05
## [11,] -4.691703e-06 1.312641e-06 -1.402529e-04 1.657027e-06
##
## $d_bux
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 0.000000e+00 1.322284e+03 1.555949e+01
## [2,] -4.680443e+00 -1.496382e+00 -3.079561e+01 -3.174741e+00
## [3,] -3.310465e-01 1.981660e-01 -1.227488e+01 3.416691e-01
## [4,] 1.927349e-01 -3.954571e-02 2.954883e+00 -5.241492e-03
## [5,] -4.899010e-02 6.000370e-03 -3.889818e-01 -9.766629e-03
## [6,] 8.474111e-03 -5.889325e-04 1.336048e-02 3.148656e-03
## [7,] -9.577280e-04 -1.644039e-05 9.326065e-03 -6.369157e-04
## [8,] 1.023449e-05 2.440429e-05 -3.326487e-03 8.979042e-05
## [9,] 2.880422e-05 -6.900311e-06 7.083214e-04 -6.227256e-06
## [10,] -9.151249e-06 1.295840e-06 -1.058609e-04 -1.088811e-06
## [11,] 1.838646e-06 -1.662300e-07 8.771855e-06 5.405975e-07
##
## $d_sp
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 0.000000e+00 0.000000e+00 7.183239e+01
## [2,] 3.370072e+00 -5.533381e+00 3.373759e+02 -9.460232e+00
## [3,] -4.826734e+00 9.568666e-01 -7.914923e+01 2.374327e-01
## [4,] 1.236592e+00 -1.559421e-01 1.060372e+01 2.309616e-01
## [5,] -2.200300e-01 1.606794e-02 -4.774867e-01 -7.863510e-02
## [6,] 2.592668e-02 1.847684e-04 -2.162945e-01 1.633118e-02
## [7,] -5.947439e-04 -5.881743e-04 8.261494e-02 -2.372870e-03
## [8,] -6.826451e-04 1.734022e-04 -1.809225e-02 1.812571e-04
## [9,] 2.286142e-04 -3.340739e-05 2.781584e-03 2.366764e-05
## [10,] -4.716370e-05 4.435600e-06 -2.477520e-04 -1.328092e-05
## [11,] 6.803611e-06 -2.428548e-07 -1.694334e-05 3.272863e-06
##
##
## Lower Band, CI= 0.95
## $d_dax
## d_dax d_wig d_bux d_sp
## [1,] 458.857518309 6.103660e+01 658.67579751 7.655370e+01
## [2,] -69.959462084 -1.561640e+01 9.49853352 -2.793174e+01
## [3,] -18.268441895 -3.734535e+00 -166.82990469 -1.858694e+00
## [4,] -6.245334410 -1.735814e+00 -2.65876989 -2.295438e+00
## [5,] -1.668324347 -6.176101e-01 -12.11938024 -4.880527e-01
## [6,] -0.781528653 -2.260330e-01 -2.04501486 -2.483120e-01
## [7,] -0.132522995 -2.213773e-02 -1.12688617 -2.593681e-02
## [8,] -0.084243977 -2.552439e-02 -0.15415665 -2.807770e-02
## [9,] -0.011379311 -2.027751e-03 -0.13863205 -2.974360e-03
## [10,] -0.009891589 -2.285425e-03 -0.01022338 -3.228228e-03
## [11,] -0.001062041 -2.151419e-04 -0.01652121 -4.702485e-04
##
## $d_wig
## d_dax d_wig d_bux d_sp
## [1,] 0.00000000 1.043191e+02 520.48236996 1.343138116
## [2,] -8.33634088 -2.485265e+01 -79.20203783 -2.718422477
## [3,] -26.45474392 -2.557028e+00 -42.13165331 -8.509439474
## [4,] -2.54557263 -2.101578e+00 -41.49801391 -0.443924083
## [5,] -2.13383046 -3.189212e-01 -0.85375268 -0.749270197
## [6,] -0.43633413 -2.068991e-01 -3.26396498 -0.109621453
## [7,] -0.21778025 -3.374465e-02 -0.36359355 -0.065295032
## [8,] -0.03568056 -2.147004e-02 -0.27338772 -0.012255683
## [9,] -0.02019006 -2.587591e-03 -0.05186512 -0.007181781
## [10,] -0.00455383 -2.535341e-03 -0.02494316 -0.001404348
## [11,] -0.00235610 -2.356775e-04 -0.00476773 -0.000761178
##
## $d_bux
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 0.000000e+00 1.166580e+03 4.770139e+00
## [2,] -7.111034e+01 -1.842384e+01 -2.205320e+02 -1.704738e+01
## [3,] -1.211761e+01 -2.429532e+00 -7.213277e+01 -2.753023e+00
## [4,] -1.365601e+00 -3.556411e-01 -8.518799e+00 -7.891147e-01
## [5,] -9.240074e-01 -2.970059e-01 -7.407685e+00 -3.058073e-01
## [6,] -1.206416e-01 -3.870960e-02 -1.372364e+00 -4.319880e-02
## [7,] -1.096284e-01 -3.385730e-02 -3.052761e-01 -4.047704e-02
## [8,] -1.182778e-02 -4.005680e-03 -1.588238e-01 -3.428218e-03
## [9,] -1.216264e-02 -3.737311e-03 -3.360183e-02 -3.833082e-03
## [10,] -9.047185e-04 -3.409564e-04 -9.496231e-03 -2.135924e-04
## [11,] -1.497671e-03 -3.525320e-04 -1.519009e-03 -6.699290e-04
##
## $d_sp
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 0.000000e+00 0.00000000 6.253506e+01
## [2,] -3.878359e+01 -1.726672e+01 139.21855755 -1.923671e+01
## [3,] -2.874600e+01 -4.417030e+00 -182.06722250 -4.872700e+00
## [4,] -6.216897e+00 -2.146011e+00 -10.90529854 -1.868476e+00
## [5,] -2.334852e+00 -2.914124e-01 -12.44365637 -5.405827e-01
## [6,] -7.639790e-01 -2.102416e-01 -3.07248164 -2.225815e-01
## [7,] -2.493716e-01 -1.921979e-02 -1.11246493 -4.334117e-02
## [8,] -9.171190e-02 -1.634203e-02 -0.23836086 -2.708014e-02
## [9,] -1.559014e-02 -3.106407e-03 -0.13637512 -3.215627e-03
## [10,] -1.100223e-02 -2.741967e-03 -0.01446433 -3.771127e-03
## [11,] -9.804588e-04 -3.041889e-04 -0.01943954 -3.247379e-04
##
##
## Upper Band, CI= 0.95
## $d_dax
## d_dax d_wig d_bux d_sp
## [1,] 5.495225e+02 94.824693715 1.259714e+03 1.051161e+02
## [2,] 4.602786e+01 14.860309884 3.738647e+02 2.877378e+00
## [3,] 2.016330e+01 4.942920749 2.980942e+00 7.248690e+00
## [4,] 5.953383e+00 1.916046256 5.324749e+01 1.180280e+00
## [5,] 2.436564e+00 0.673012087 2.890540e+00 7.590955e-01
## [6,] 3.354158e-01 0.107166255 3.460931e+00 1.162524e-01
## [7,] 2.674521e-01 0.076649892 8.381738e-01 8.299462e-02
## [8,] 4.218173e-02 0.006167104 3.912997e-01 9.250010e-03
## [9,] 2.918965e-02 0.007523778 3.695942e-02 9.288975e-03
## [10,] 4.879407e-03 0.001040663 4.729387e-02 1.040038e-03
## [11,] 3.328748e-03 0.000770378 3.127256e-03 1.123139e-03
##
## $d_wig
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 1.241646e+02 8.027255e+02 1.944301e+01
## [2,] 1.186143e+02 9.398839e+00 3.417081e+02 2.692448e+01
## [3,] 5.920153e+00 6.471089e+00 6.641239e+01 8.374373e-01
## [4,] 7.052835e+00 7.515693e-01 5.000668e+00 2.448689e+00
## [5,] 1.402591e+00 6.476964e-01 1.286826e+01 2.619691e-01
## [6,] 6.741711e-01 1.088454e-01 5.835734e-01 2.187436e-01
## [7,] 1.415525e-01 6.923547e-02 9.103630e-01 4.069456e-02
## [8,] 6.024867e-02 9.021536e-03 1.020129e-01 2.277560e-02
## [9,] 1.284182e-02 7.365934e-03 8.064455e-02 3.725126e-03
## [10,] 6.896215e-03 7.875859e-04 1.514085e-02 2.901648e-03
## [11,] 2.071472e-03 8.746682e-04 7.964889e-03 4.428328e-04
##
## $d_bux
## d_dax d_wig d_bux d_sp
## [1,] 0.000000e+00 0.000000e+00 1.430346e+03 2.846751e+01
## [2,] 4.496843e+01 1.845816e+01 1.911389e+02 9.386748e+00
## [3,] 9.533396e+00 2.038687e+00 3.675236e+01 3.693377e+00
## [4,] 4.790988e+00 9.498824e-01 2.872836e+01 8.991459e-01
## [5,] 3.130938e-01 1.047824e-01 3.872012e+00 2.065857e-01
## [6,] 2.606236e-01 9.437198e-02 1.385189e+00 1.210910e-01
## [7,] 3.298371e-02 1.378948e-02 4.811754e-01 1.466751e-02
## [8,] 3.926063e-02 1.129542e-02 7.759632e-02 1.268519e-02
## [9,] 3.265359e-03 1.539743e-03 3.374615e-02 7.728786e-04
## [10,] 4.557453e-03 1.233098e-03 8.979823e-03 1.708177e-03
## [11,] 2.593232e-04 7.710177e-05 2.467822e-03 5.025085e-05
##
## $d_sp
## d_dax d_wig d_bux d_sp
## [1,] 0.000000000 0.0000000000 0.000000e+00 78.974881596
## [2,] 56.730205938 9.3543912803 5.199206e+02 3.270890285
## [3,] 19.270655915 6.4716799330 1.147422e+01 5.444753689
## [4,] 7.373628226 1.5568350860 4.723036e+01 1.946042280
## [5,] 2.119368193 0.6693923791 6.953211e+00 0.655896089
## [6,] 0.762341188 0.0910102826 3.717288e+00 0.187751318
## [7,] 0.259401854 0.0615987291 7.677082e-01 0.077535483
## [8,] 0.066649342 0.0092285525 3.878253e-01 0.012379947
## [9,] 0.032030312 0.0062676066 6.441198e-02 0.011699538
## [10,] 0.003822344 0.0012150643 5.414726e-02 0.001410589
## [11,] 0.003781513 0.0009369657 5.092262e-03 0.001202003
plot(irf)



