library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(sf)
## Linking to GEOS 3.12.2, GDAL 3.9.3, PROJ 9.4.1; sf_use_s2() is TRUE
peru1<-st_read("gadm41_PER_1.json")
## Reading layer `gadm41_PER_1' from data source
## `C:\Users\Pc1\Downloads\sesaion 3 graficos multivariados\gadm41_PER_1.json'
## using driver `GeoJSON'
## Simple feature collection with 26 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -81.3307 ymin: -18.3518 xmax: -68.6522 ymax: -0.039
## Geodetic CRS: WGS 84
a <- c(2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,4,5,6,7,2,3,4,5,6,7,8)
peru1 <- mutate(peru1,internet = a)
b <- c(1,3,3,4,6,3,7,1,1,4,5,4,5,2,7,8,5,9,7,9,1,1,5,2,7,8)
peru1 <- mutate(peru1,tasa_escolaridad = b)
peru1 <- st_as_sf(peru1,internet,tasa_escolaridad)
g1 <- ggplot() +
geom_sf(data = peru1, aes(fill = internet)) +
scale_fill_gradient(low = "yellow", high = "red") +
labs(title="Acceso a internet en el Perú",
fill="Internet")+
xlim(x=c(-85,-68))+
ylim(y=c(-20,5))+
theme_bw(base_size = 10)
g2 <- ggplot() +
geom_sf(data = peru1, aes(fill = tasa_escolaridad)) +
scale_fill_gradient(low = "black", high = "skyblue") +
labs(title="Tasa de escolaridad en el Perù",
fill="Cantidad")+
xlim(x=c(-85,-68))+
ylim(y=c(-20,5))+
theme_bw(base_size = 10)
library(patchwork)
g1+g2
