White Population:
Internet Users:
The temporal volatility of hate speech is not significantly associated with any of the mental health outcomes.
For non-internet users:
Increased variability in hate speech is associated with fewer bad mental health days (6-day decrease) and a lower likelihood of experiencing any or frequent bad mental health days.
Variability in VADER scores shows no significant association with mental health outcomes.
Latinx Population:
For internet users:
Higher variability in hate speech is associated with more bad mental health days (10.3-day increase) but not with “any” or “frequent” bad mental health days. Variability in VADER scores shows no significant association with mental health outcomes.
For non-internet users:
There is no significant relationship between variability in hate speech or VADER scores and any of the mental health outcomes.
Poisson Regression Results (Latinx Population):
For mental health days, a one-unit increase in the variability of hate speech over 90 days is associated with an 18.04-fold increase in expected poor mental health days. For “any” or “frequent” bad mental health days, significant results are suggested, but interpretation is hindered due to model convergence issues.
Race_Label | Mean_Poor_Menthlth_Days | Mean_Any_Bad_Menthlth_Days | Mean_Frequent_Bad_Menthlth_Days |
---|---|---|---|
Latino | 3.829876 | 0.3219597 | 0.1226691 |
White | 3.381298 | 0.3147087 | 0.1042163 |
Race_Label | Mean_Poor_Menthlth_Days | Mean_Any_Bad_Menthlth_Days | Mean_Frequent_Bad_Menthlth_Days |
---|---|---|---|
Latino | 3.694928 | 0.3301296 | 0.1166011 |
White | 3.931572 | 0.3586166 | 0.1221424 |
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 6.499 | 1.654 | 3.929 | 0.000 |
X_age_g | -0.388 | 0.005 | -75.743 | 0.000 |
X_educag | -0.889 | 0.008 | -109.259 | 0.000 |
female | 1.557 | 0.015 | 103.186 | 0.000 |
INCOME2 | -0.009 | 0.000 | -32.385 | 0.000 |
MARITAL | 0.354 | 0.005 | 75.808 | 0.000 |
rolling_sd_HS90 | -0.011 | 1.305 | -0.008 | 0.993 |
The recent temporal volatility of hate speech is not associated to white mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.468 | 0.100 | 4.686 | 0.000 |
X_age_g | -0.050 | 0.000 | -160.687 | 0.000 |
X_educag | -0.015 | 0.000 | -31.302 | 0.000 |
female | 0.130 | 0.001 | 142.477 | 0.000 |
INCOME2 | -0.001 | 0.000 | -46.808 | 0.000 |
MARITAL | 0.023 | 0.000 | 80.997 | 0.000 |
rolling_sd_HS90 | 0.002 | 0.079 | 0.022 | 0.983 |
The recent temporal volatility of hate speech is not associated to white mental health for any bad days mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.239 | 0.067 | 3.540 | 0.000 |
X_age_g | -0.011 | 0.000 | -51.945 | 0.000 |
X_educag | -0.035 | 0.000 | -106.625 | 0.000 |
female | 0.051 | 0.001 | 82.768 | 0.000 |
INCOME2 | 0.000 | 0.000 | -24.582 | 0.000 |
MARITAL | 0.012 | 0.000 | 63.192 | 0.000 |
rolling_sd_HS90 | -0.020 | 0.053 | -0.369 | 0.712 |
The recent temporal volatility of hate speech is not associated to white mental health for frequent bad days mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -9.650 | 5.934 | -1.626 | 0.104 |
X_age_g | -0.080 | 0.021 | -3.745 | 0.000 |
X_educag | -0.060 | 0.024 | -2.458 | 0.014 |
female | 1.033 | 0.052 | 19.786 | 0.000 |
INCOME2 | -0.008 | 0.001 | -7.882 | 0.000 |
MARITAL | 0.289 | 0.014 | 20.112 | 0.000 |
rolling_sd_HS90 | 10.271 | 4.417 | 2.325 | 0.020 |
The recent temporal volatility of hate speech is associated with a 10.3 day increase in bad mental health days for the Latinx population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.203 | 0.373 | 0.546 | 0.585 |
X_age_g | -0.028 | 0.001 | -21.033 | 0.000 |
X_educag | 0.013 | 0.002 | 8.423 | 0.000 |
female | 0.075 | 0.003 | 22.858 | 0.000 |
INCOME2 | -0.001 | 0.000 | -12.703 | 0.000 |
MARITAL | 0.021 | 0.001 | 23.488 | 0.000 |
rolling_sd_HS90 | 0.124 | 0.277 | 0.448 | 0.654 |
The recent temporal volatility of hate speech is not associated to any bad days mental health for the Latinx population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -0.354 | 0.245 | -1.443 | 0.149 |
X_age_g | -0.001 | 0.001 | -1.446 | 0.148 |
X_educag | -0.004 | 0.001 | -4.041 | 0.000 |
female | 0.035 | 0.002 | 16.129 | 0.000 |
INCOME2 | 0.000 | 0.000 | -5.978 | 0.000 |
MARITAL | 0.009 | 0.001 | 14.985 | 0.000 |
rolling_sd_HS90 | 0.341 | 0.183 | 1.867 | 0.062 |
The recent temporal volatility of hate speech is not associated to frequent bad days mental health for the Latinx population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 19.853 | 4.291 | 4.627 | 0.000 |
X_age_g | -1.102 | 0.017 | -65.592 | 0.000 |
X_educag | -0.618 | 0.020 | -30.992 | 0.000 |
female | 1.153 | 0.039 | 29.898 | 0.000 |
INCOME2 | -0.013 | 0.001 | -23.366 | 0.000 |
MARITAL | 0.212 | 0.013 | 15.775 | 0.000 |
rolling_sd_HS90 | -6.858 | 3.395 | -2.020 | 0.043 |
The recent temporal volatility of hate speech is associated to a 6 day decrease in bad days mental health for the white population who does not use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 1.064 | 0.216 | 4.932 | 0.000 |
X_age_g | -0.057 | 0.001 | -67.488 | 0.000 |
X_educag | -0.020 | 0.001 | -19.827 | 0.000 |
female | 0.087 | 0.002 | 44.646 | 0.000 |
INCOME2 | -0.001 | 0.000 | -30.887 | 0.000 |
MARITAL | 0.011 | 0.001 | 15.898 | 0.000 |
rolling_sd_HS90 | -0.361 | 0.171 | -2.115 | 0.034 |
The recent temporal volatility of hate speech is associated to a 36% day decrease in any bad days mental health for the white population who does not use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.738 | 0.166 | 4.450 | 0.000 |
X_age_g | -0.039 | 0.001 | -60.670 | 0.000 |
X_educag | -0.024 | 0.001 | -30.557 | 0.000 |
female | 0.038 | 0.001 | 25.687 | 0.000 |
INCOME2 | 0.000 | 0.000 | -20.613 | 0.000 |
MARITAL | 0.007 | 0.001 | 13.916 | 0.000 |
rolling_sd_HS90 | -0.267 | 0.131 | -2.033 | 0.042 |
The recent temporal volatility of hate speech is associated to a 27% day decrease in any bad days mental health for the white population who does not use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 5.349 | 10.716 | 0.499 | 0.618 |
X_age_g | 0.369 | 0.034 | 10.846 | 0.000 |
X_educag | -0.143 | 0.053 | -2.681 | 0.007 |
female | 0.414 | 0.095 | 4.367 | 0.000 |
INCOME2 | -0.002 | 0.002 | -0.967 | 0.333 |
MARITAL | 0.124 | 0.026 | 4.716 | 0.000 |
rolling_sd_HS90 | -0.964 | 8.172 | -0.118 | 0.906 |
No association between The recent temporal volatility of hate speech and number of days bad mental health for Latinos that don’t use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.053 | 0.585 | 0.091 | 0.928 |
X_age_g | 0.004 | 0.002 | 2.423 | 0.015 |
X_educag | -0.009 | 0.003 | -2.967 | 0.003 |
female | 0.033 | 0.005 | 6.338 | 0.000 |
INCOME2 | 0.000 | 0.000 | -5.253 | 0.000 |
MARITAL | 0.011 | 0.001 | 7.987 | 0.000 |
rolling_sd_HS90 | 0.121 | 0.446 | 0.272 | 0.786 |
No association between The recent temporal volatility of hate speech and any days bad mental health for Latinos that don’t use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.015 | 0.427 | 0.034 | 0.973 |
X_age_g | 0.014 | 0.001 | 9.993 | 0.000 |
X_educag | -0.004 | 0.002 | -1.862 | 0.063 |
female | 0.008 | 0.004 | 2.247 | 0.025 |
INCOME2 | 0.000 | 0.000 | -0.902 | 0.367 |
MARITAL | 0.004 | 0.001 | 3.641 | 0.000 |
rolling_sd_HS90 | 0.089 | 0.325 | 0.273 | 0.785 |
No association between The recent temporal volatility of hate speech and frequent days bad mental health for Latinos that don’t use the internet.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 6.059 | 2.490 | 2.434 | 0.015 |
X_age_g | -0.388 | 0.005 | -75.739 | 0.000 |
X_educag | -0.889 | 0.008 | -109.259 | 0.000 |
female | 1.557 | 0.015 | 103.186 | 0.000 |
INCOME2 | -0.009 | 0.000 | -32.385 | 0.000 |
MARITAL | 0.354 | 0.005 | 75.808 | 0.000 |
rolling_sd_VADER90 | 1.119 | 6.507 | 0.172 | 0.863 |
Higher variability in VADER is not associated to white mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.662 | 0.150 | 4.406 | 0.0 |
X_age_g | -0.050 | 0.000 | -160.694 | 0.0 |
X_educag | -0.015 | 0.000 | -31.304 | 0.0 |
female | 0.130 | 0.001 | 142.474 | 0.0 |
INCOME2 | -0.001 | 0.000 | -46.803 | 0.0 |
MARITAL | 0.023 | 0.000 | 80.995 | 0.0 |
rolling_sd_VADER90 | -0.504 | 0.393 | -1.283 | 0.2 |
Higher variability in VADER is not associated to white mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.206 | 0.102 | 2.026 | 0.043 |
X_age_g | -0.011 | 0.000 | -51.941 | 0.000 |
X_educag | -0.035 | 0.000 | -106.624 | 0.000 |
female | 0.051 | 0.001 | 82.768 | 0.000 |
INCOME2 | 0.000 | 0.000 | -24.582 | 0.000 |
MARITAL | 0.012 | 0.000 | 63.192 | 0.000 |
rolling_sd_VADER90 | 0.022 | 0.265 | 0.083 | 0.933 |
Higher variability in VADER is not associated to white mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -4.457 | 9.317 | -0.478 | 0.632 |
X_age_g | -0.080 | 0.021 | -3.742 | 0.000 |
X_educag | -0.060 | 0.024 | -2.464 | 0.014 |
female | 1.032 | 0.052 | 19.774 | 0.000 |
INCOME2 | -0.008 | 0.001 | -7.894 | 0.000 |
MARITAL | 0.289 | 0.014 | 20.110 | 0.000 |
rolling_sd_VADER90 | 20.231 | 23.867 | 0.848 | 0.397 |
Higher variability in VADER is not associated to Latinx mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.660 | 0.585 | 1.129 | 0.259 |
X_age_g | -0.028 | 0.001 | -21.038 | 0.000 |
X_educag | 0.013 | 0.002 | 8.424 | 0.000 |
female | 0.075 | 0.003 | 22.859 | 0.000 |
INCOME2 | -0.001 | 0.000 | -12.690 | 0.000 |
MARITAL | 0.021 | 0.001 | 23.483 | 0.000 |
rolling_sd_VADER90 | -0.792 | 1.498 | -0.529 | 0.597 |
Higher variability in VADER is not associated to Latinx mental health
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -0.687 | 0.385 | -1.784 | 0.074 |
X_age_g | -0.001 | 0.001 | -1.433 | 0.152 |
X_educag | -0.004 | 0.001 | -4.051 | 0.000 |
female | 0.035 | 0.002 | 16.114 | 0.000 |
INCOME2 | 0.000 | 0.000 | -6.013 | 0.000 |
MARITAL | 0.009 | 0.001 | 14.993 | 0.000 |
rolling_sd_VADER90 | 2.002 | 0.987 | 2.029 | 0.042 |
*Higher variability in VADER is associated with a significant increase in the people who report frequent bad mental health.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -2.507 | 0.012 | -213.641 | 0 |
X_age_g | -0.024 | 0.000 | -560.103 | 0 |
X_educag | -0.017 | 0.000 | -336.855 | 0 |
female | 0.293 | 0.000 | 2780.998 | 0 |
INCOME2 | -0.002 | 0.000 | -1084.817 | 0 |
MARITAL | 0.081 | 0.000 | 2817.332 | 0 |
rolling_sd_HS90 | 2.893 | 0.009 | 328.017 | 0 |
In a Poisson regression, the coefficients estimate the log change in the expected count of the dependent variable for a one-unit increase in the predictor. The exponential of the coefficient (exp(β)) gives the multiplicative effect on the count of the dependent variable per unit change in the predictor. The value 18.04 represents the factor by which the expected count of poor mental health days increases for a one-unit increase in the rolling standard deviation of the health score over 90 days. In simpler terms, as the variability of the health score over 90 days increases by one standard deviation unit, the number of poor mental health days is expected to multiply by approximately 18.04 times, holding all other variables constant.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 3.312569e+15 | 1502850.599 | 2204190609 | 0 |
X_age_g | 5.667256e+13 | 5401.856 | 10491312563 | 0 |
X_educag | -8.395426e+12 | 6203.680 | -1353297723 | 0 |
female | 1.434399e+12 | 13221.323 | 108491305 | 0 |
INCOME2 | 5.104520e+11 | 243.048 | 2100209146 | 0 |
MARITAL | -5.816593e+12 | 3634.940 | -1600189426 | 0 |
rolling_sd_HS90 | -3.668017e+15 | 1118600.891 | -3279111181 | 0 |
Significant decrease in people reporting any bad mental health days when there is more variability, which is counterintuitive. However, this model was not significant in original model.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -5.619084e+15 | 1502850.599 | -3738950693 | 0 |
X_age_g | -1.022039e+13 | 5401.856 | -1892014959 | 0 |
X_educag | -3.239831e+13 | 6203.680 | -5222435062 | 0 |
female | 2.207102e+14 | 13221.323 | 16693501612 | 0 |
INCOME2 | -2.365667e+12 | 243.048 | -9733326658 | 0 |
MARITAL | 5.587961e+13 | 3634.940 | 15372912133 | 0 |
rolling_sd_HS90 | 3.910447e+15 | 1118600.891 | 3495837986 | 0 |
Significant association suggested that higher variability is associated with more people reporting frequent bad mental health days.