Tranformacion variables a dicotomicas
library(readxl)
GAT <- read_excel("GAT.xlsx") # cargue base de datos
library(dplyr)
GAT <- GAT %>% filter(EstadoCancer != "No sabe") #se excluyen los registros que no saben su estadio de cancer
GAT$Nestadocancer <- ifelse(GAT$EstadoCancer %in% c("Con metástasis a otros órganos"), "Metastasico",
ifelse(GAT$EstadoCancer %in% c("Localizado", "Con ganglios comprometidos, pero sin metástasis a otros órganos"), "No metastasico", GAT$EstadoCancer)) # categoriza metastasico y no metastasico
GAT <- GAT %>%
mutate(SQUIM = ifelse(AQuimioTerSiste == "Checked" | BQuimioTerSiste == "Checked" & ARadio != "Checked" & BRadio != "Checked", "Si", "No")) %>%
mutate(SRAD = ifelse(ARadio == "Checked" | BRadio == "Checked" & AQuimioTerSiste != "Checked" & BQuimioTerSiste != "Checked", "Si", "No")) #solo quimio, #solo radio
GAT <- GAT %>% mutate(Edadcat = cut(Edad, breaks = c(-Inf, 66, Inf), right = F, labels = c("< 65", ">=65"))) #edad
GAT$Nocup <- ifelse(GAT$Ocupacion %in% c("Cesante", "Hogar", "Pensionado"), "-Ocup",
ifelse(GAT$Ocupacion %in% c("Empleado", "Independiente", "Estudiante"), "+Ocup", GAT$Ocupacion)) #ocupacion
GAT$Nrel <- ifelse(GAT$Religion %in% c("Católica"), "Católica",
ifelse(GAT$Religion %in% c("Cristiana", "Judía", "No profesa religión", "Otra"), "Otra", GAT$Religion)) #religion
GAT$CIE <- ifelse(substr(GAT$TipoCancer, 1, 1) == "D", "D", substr(GAT$TipoCancer, 1, 3))
GAT$Tipotumor <- ifelse(GAT$CIE == "D", "hematologico", "tumor solido") #tipo de tumor
#IDENTIFICANDO EL TIPO DE MAC
GAT <- GAT %>%
mutate(cuerpo = ifelse(Masaje == "Si" | Reflexología == "Si" | Quiropraxia == "Si", 1, 0)) %>%
mutate(cuerpo = tidyr::replace_na(cuerpo, 0)) #Cuerpo
GAT <- GAT %>%
mutate(energetica = ifelse(Bioenergética == "Si" | `Terapia electromagnética` == "Si" | Acupuntura == "Si" | TerapiaNeural == "Si", 1, 0)) %>%
mutate(energetica = tidyr::replace_na(energetica, 0)) #energetica
GAT <- GAT %>%
mutate(mente = ifelse(Meditacion == "Checked" | Yoga == "Checked" | Taichi == "Checked" | Yorae == "Checked" |OtroMente == "Checked", 1, 0)) %>%
mutate(mente = tidyr::replace_na(mente, 0)) #mente
GAT <- GAT %>%
mutate(Hierbas = tidyr::replace_na(Hierbas, "No")) %>%
mutate(MAC_Animal = tidyr::replace_na(OrigenAnimal, "No")) %>%
mutate(Nutricionales = ifelse(Dieta_def == "Si" | Alimentos == "Si", "Si", "No")) %>%
mutate(Nutricionales = tidyr::replace_na(Nutricionales, "No")) %>%
mutate(whole = ifelse(Homeopatia == "Si" | Tradicionales == "Si" | cuerpo == 1 | energetica == 1 | mente == 1, "Si", "No")) %>%
mutate(whole = tidyr::replace_na(whole, "No")) %>%
mutate(Vitaminas = tidyr::replace_na(Vitaminas, "No"))
## Intencion de uso
GAT <- GAT %>%
mutate(OTRA = ifelse(Recomendamedico == "Checked" | Recomendaotro == "Checked" | todaslasOpciones == "Checked" | Masnatural == "Checked" | NingunaRazon == "Checked" | OtraSiUsa == "Checked", 2, 1)) %>%
mutate(CURATIVA = ifelse(Curar == "Checked" | futurascompli == "Checked", 2, 1)) %>%
mutate(PALIATIVA = ifelse(ContrarestEfectos == "Checked" | Animo == "Checked",2, 1)) %>%
mutate(AMBAS = ifelse(CURATIVA == 2 & PALIATIVA == 2 & OTRA == 1, 2, 1))
## Fuete de informacion
GAT <- GAT %>%
mutate(INFOnm = ifelse(FamiliaAmigos == "Checked" | Pacientes == "Checked" | Medios == "Checked" | RedesSociales== "Checked" | Mercados == "Checked" | Farmaceuta == "Checked" | OtroEntero == "Checked", 2, 1))
GAT <- GAT %>%
mutate(INFOm = ifelse(Medico == "Checked" | MedicoAlterna == "Checked", 2,1))
#EFECTOS
GAT<- GAT %>%
mutate(EFECTS = ifelse(vomito == "Checked" | diarrea == "Checked" | Estrenimiento == "Checked" | Dolor == "Checked" | PerdidaApetito == "Checked" | Adormecimiento == "Checked" | OtroEfectoSec == "Checked", 2,1))
#afiliacion
GAT$Nafiliacion <- ifelse(GAT$Afiliacion %in% c("Subsidiado", "No asegurado"), "Subsidiado-No asegurado",
ifelse(GAT$Afiliacion %in% c("Contributivo", "Plan complementario", "Otro"), "Otro",GAT$Afiliacion))
GAT <- GAT %>%
mutate(nestadocivil= recode(EstadoCivil,
"Soltero" = "Sin conyuge",
"Divorciado" = "Sin conyuge",
"Viudo" = "Sin conyuge",
"Casado" = "Con conyuge",
"Unión libre" = "Con conyuge"))
GAT$Estrato <- as.character(GAT$Estrato)#socioeconomic status
GAT$Estrato[GAT$Estrato== 0] <- "Bajo"
GAT$Estrato[GAT$Estrato== 1] <- "Bajo"
GAT$Estrato[GAT$Estrato== 2] <- "Bajo"
GAT$Estrato[GAT$Estrato== 3] <- "Alto"
GAT$Estrato[GAT$Estrato== 4] <- "Alto"
GAT$Estrato[GAT$Estrato== 5] <- "Alto"
GAT$Estrato[GAT$Estrato== 6] <- "Alto"
GAT$Estrato <- as.factor(GAT$Estrato)
GAT <- GAT %>%
mutate(nestadocivil= recode(EstadoCivil,
"Soltero" = "Sin conyuge",
"Divorciado" = "Sin conyuge",
"Viudo" = "Sin conyuge",
"Casado" = "Con conyuge",
"Unión libre" = "Con conyuge"))
GAT$ResidenciaTipo <- as.factor(GAT$ResidenciaTipo)
level | Overall | No | Si | p | test | |
---|---|---|---|---|---|---|
n | 2830 | 1365 | 1465 | |||
Sexo…. | Femenino | 1786 (63.1) | 758 (55.5) | 1028 (70.2) | <0.001 | |
X | Masculino | 1044 (36.9) | 607 (44.5) | 437 (29.8) | ||
Nestadocancer…. | Metastasico | 826 (29.2) | 401 (29.4) | 425 (29.0) | 0.862 | |
X.1 | No metastasico | 2004 (70.8) | 964 (70.6) | 1040 (71.0) | ||
SQUIM…. | No | 192 ( 6.8) | 101 ( 7.4) | 91 ( 6.2) | 0.238 | |
X.2 | Si | 2638 (93.2) | 1264 (92.6) | 1374 (93.8) | ||
SRAD…. | No | 1846 (65.2) | 897 (65.7) | 949 (64.8) | 0.629 | |
X.3 | Si | 984 (34.8) | 468 (34.3) | 516 (35.2) | ||
Edadcat…. | < 65 | 1844 (65.2) | 796 (58.3) | 1048 (71.5) | <0.001 | |
X.4 | >=65 | 986 (34.8) | 569 (41.7) | 417 (28.5) | ||
Nocup…. | -Ocup | 1945 (68.7) | 974 (71.4) | 971 (66.3) | 0.004 | |
X.5 | +Ocup | 885 (31.3) | 391 (28.6) | 494 (33.7) | ||
Nrel…. | Católica | 2214 (78.2) | 1104 (80.9) | 1110 (75.8) | 0.001 | |
X.6 | Otra | 616 (21.8) | 261 (19.1) | 355 (24.2) | ||
Tipotumor…. | hematologico | 80 ( 2.8) | 36 ( 2.6) | 44 ( 3.0) | 0.636 | |
X.7 | tumor solido | 2750 (97.2) | 1329 (97.4) | 1421 (97.0) | ||
Nafiliacion…. | Otro | 1700 (60.1) | 841 (61.6) | 859 (58.6) | 0.115 | |
X.8 | Subsidiado-No asegurado | 1130 (39.9) | 524 (38.4) | 606 (41.4) | ||
ResidenciaTipo…. | Rural | 642 (22.7) | 303 (22.2) | 339 (23.1) | 0.580 | |
X.9 | Urbano | 2188 (77.3) | 1062 (77.8) | 1126 (76.9) | ||
Estrato…. | Alto | 981 (34.7) | 459 (33.6) | 522 (35.6) | 0.280 | |
X.10 | Bajo | 1849 (65.3) | 906 (66.4) | 943 (64.4) |
Se incluyen variables con valores p menos o iguales a 0.2
#modelo completo
GAT$Sexo <- relevel(factor(GAT$Sexo), ref = "Masculino")
GAT$Edadcat <- relevel(factor(GAT$Edadcat), ref = ">=65")
library(dplyr)
GAT<- GAT %>%
mutate(MAC = factor(ifelse(AlternativaActual == "Si", 1, 0)))
m1 <- glm (MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion
,family = "binomial", data= GAT) #construido en orden de la significancia
summary(m1)
##
## Call:
## glm(formula = MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion,
## family = "binomial", data = GAT)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.68533 0.08615 -7.955 1.80e-15 ***
## SexoFemenino 0.57627 0.08367 6.888 5.68e-12 ***
## Edadcat< 65 0.37718 0.08731 4.320 1.56e-05 ***
## NrelOtra 0.19404 0.09428 2.058 0.03957 *
## Nocup+Ocup 0.23321 0.08968 2.600 0.00931 **
## NafiliacionSubsidiado-No asegurado 0.08037 0.07965 1.009 0.31297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3919.7 on 2829 degrees of freedom
## Residual deviance: 3809.3 on 2824 degrees of freedom
## AIC: 3821.3
##
## Number of Fisher Scoring iterations: 4
m2 <- glm (MAC ~ Sexo + Edadcat + Nrel + Nocup
,family = "binomial", data= GAT) #construido en orden de la significancia
summary(m2)
##
## Call:
## glm(formula = MAC ~ Sexo + Edadcat + Nrel + Nocup, family = "binomial",
## data = GAT)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.65637 0.08111 -8.092 5.87e-16 ***
## SexoFemenino 0.57703 0.08365 6.898 5.26e-12 ***
## Edadcat< 65 0.38600 0.08686 4.444 8.84e-06 ***
## NrelOtra 0.20014 0.09408 2.127 0.0334 *
## Nocup+Ocup 0.21942 0.08865 2.475 0.0133 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3919.7 on 2829 degrees of freedom
## Residual deviance: 3810.3 on 2825 degrees of freedom
## AIC: 3820.3
##
## Number of Fisher Scoring iterations: 4
library(gtsummary)
tbl_regression(m2, exponentiate = TRUE, add_estimate_to_reference_rows=TRUE) %>% add_global_p()
Characteristic | OR1 | 95% CI1 | p-value |
---|---|---|---|
Sexo | <0.001 | ||
Masculino | 1.00 | — | |
Femenino | 1.78 | 1.51, 2.10 | |
Edadcat | <0.001 | ||
>=65 | 1.00 | — | |
< 65 | 1.47 | 1.24, 1.74 | |
Nrel | 0.033 | ||
Católica | 1.00 | — | |
Otra | 1.22 | 1.02, 1.47 | |
Nocup | 0.013 | ||
-Ocup | 1.00 | — | |
+Ocup | 1.25 | 1.05, 1.48 | |
1 OR = Odds Ratio, CI = Confidence Interval |
library(lmtest)
lrtest(m1, m2)
## Likelihood ratio test
##
## Model 1: MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion
## Model 2: MAC ~ Sexo + Edadcat + Nrel + Nocup
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 6 -1904.6
## 2 5 -1905.1 -1 1.0182 0.3129
El modelo más simple es suficiente para explicar la variabilidad de los datos
library(performance)
model_performance(m2)
## # Indices of model performance
##
## AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | PCP
## -----------------------------------------------------------------------------------------
## 3820.274 | 3820.295 | 3850.014 | 0.038 | 0.490 | 1.000 | 0.673 | -Inf | 0.520
library(ResourceSelection)
hoslem.test(m2$y, fitted(m2), g=10)
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: m2$y, fitted(m2)
## X-squared = 1.5952, df = 6, p-value = 0.9529
Buen ajuste a los datos
# filtrar uso MAC y seleccion variables analisis
library(LCAvarsel)
LCA_data <- GAT %>%
filter(AlternativaActual == "Si") %>%
dplyr::select(ID,CURATIVA,PALIATIVA,OTRA)
#Se revisa que variables pueden ser las mas informativas
#library(poLCA)
#LCA_data2 <- LCA_data[,-1]
#LCA_data2 <- as.data.frame(LCA_data2)
#LCAvarsel(LCA_data2, verbose = FALSE)
set.seed(2025)
f <- cbind(PALIATIVA, CURATIVA, OTRA)~ 1
lCA4 <- poLCA(f, data = LCA_data, nclass=3,nrep= 15, graphs = F)
## Model 1: llik = -2655.705 ... best llik = -2655.705
## Model 2: llik = -2655.705 ... best llik = -2655.705
## Model 3: llik = -2655.705 ... best llik = -2655.705
## Model 4: llik = -2655.705 ... best llik = -2655.705
## Model 5: llik = -2655.705 ... best llik = -2655.705
## Model 6: llik = -2655.705 ... best llik = -2655.705
## Model 7: llik = -2655.705 ... best llik = -2655.705
## Model 8: llik = -2655.705 ... best llik = -2655.705
## Model 9: llik = -2655.705 ... best llik = -2655.705
## Model 10: llik = -2655.705 ... best llik = -2655.705
## Model 11: llik = -2655.705 ... best llik = -2655.705
## Model 12: llik = -2655.705 ... best llik = -2655.705
## Model 13: llik = -2655.705 ... best llik = -2655.705
## Model 14: llik = -2655.705 ... best llik = -2655.705
## Model 15: llik = -2655.705 ... best llik = -2655.705
## Conditional item response (column) probabilities,
## by outcome variable, for each class (row)
##
## $PALIATIVA
## Pr(1) Pr(2)
## class 1: 0.0000 1.0000
## class 2: 0.4618 0.5382
## class 3: 0.7924 0.2076
##
## $CURATIVA
## Pr(1) Pr(2)
## class 1: 0.9348 0.0652
## class 2: 0.0072 0.9928
## class 3: 0.8525 0.1475
##
## $OTRA
## Pr(1) Pr(2)
## class 1: 0.8530 0.1470
## class 2: 0.6876 0.3124
## class 3: 0.0000 1.0000
##
## Estimated class population shares
## 0.3602 0.2967 0.3431
##
## Predicted class memberships (by modal posterior prob.)
## 0.2881 0.3693 0.3427
##
## =========================================================
## Fit for 3 latent classes:
## =========================================================
## number of observations: 1465
## number of estimated parameters: 11
## residual degrees of freedom: -4
## maximum log-likelihood: -2655.705
##
## AIC(3): 5333.41
## BIC(3): 5391.596
## G^2(3): 9.405014e-10 (Likelihood ratio/deviance statistic)
## X^2(3): 9.399236e-10 (Chi-square goodness of fit)
##
## ALERT: negative degrees of freedom; respecify model
##
prop.table(table(lCA4$predclass))*100
##
## 1 2 3
## 28.80546 36.92833 34.26621
Se unen los data frame.
LCA_data$class <- lCA4$predclass
GAT_MAC <- GAT %>%
filter(AlternativaActual == "Si")
GAT_MAC <- merge(GAT_MAC, LCA_data[, c("ID", "class")], by = "ID", all.x = TRUE)
GAT_MAC$class <- factor(GAT_MAC$class,
levels = c(1, 2, 3),
labels = c("R.Paliativa", "R.Curativa", "R.Otra"))
GAT_MAC$INFOm <- factor(GAT_MAC$INFOm,
levels = c(1, 2),
labels = c("No", "Si"))
GAT_MAC$INFOnm <- factor(GAT_MAC$INFOnm,
levels = c(1, 2),
labels = c("No", "Si"))
catVars2 <- c("Sexo","Nestadocancer", "SQUIM", "SRAD", "Edadcat", "Nocup", "Nrel", "Tipotumor", "Nafiliacion", "ResidenciaTipo", "Estrato", "INFOnm", "INFOm", "EFECTS", "MAC_Animal", "whole", "Hierbas", "Nutricionales", "Vitaminas")
tab2 <- CreateCatTable(vars = catVars2, strata = "class", data = GAT_MAC, includeNA = F, test = T, addOverall = T )
table2 <- as.data.frame(print(tab2, showAllLevels= TRUE, printToggle = FALSE))
library(openxlsx)
write.xlsx(table2, "tablaclase.xlsx", rowNames = TRUE)
kable(table2, format = "html", caption = "MAC") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#D7261E") %>%
column_spec(2, border_left = T, background = "#F3E6E3")
level | Overall | R.Paliativa | R.Curativa | R.Otra | p | test | |
---|---|---|---|---|---|---|---|
n | 1465 | 422 | 541 | 502 | |||
Sexo…. | Masculino | 437 (29.8) | 134 (31.8) | 153 (28.3) | 150 (29.9) | 0.505 | |
X | Femenino | 1028 (70.2) | 288 (68.2) | 388 (71.7) | 352 (70.1) | ||
Nestadocancer…. | Metastasico | 425 (29.0) | 120 (28.4) | 163 (30.1) | 142 (28.3) | 0.769 | |
X.1 | No metastasico | 1040 (71.0) | 302 (71.6) | 378 (69.9) | 360 (71.7) | ||
SQUIM…. | No | 91 ( 6.2) | 12 ( 2.8) | 25 ( 4.6) | 54 (10.8) | <0.001 | |
X.2 | Si | 1374 (93.8) | 410 (97.2) | 516 (95.4) | 448 (89.2) | ||
SRAD…. | No | 949 (64.8) | 285 (67.5) | 355 (65.6) | 309 (61.6) | 0.145 | |
X.3 | Si | 516 (35.2) | 137 (32.5) | 186 (34.4) | 193 (38.4) | ||
Edadcat…. | >=65 | 417 (28.5) | 128 (30.3) | 132 (24.4) | 157 (31.3) | 0.029 | |
X.4 | < 65 | 1048 (71.5) | 294 (69.7) | 409 (75.6) | 345 (68.7) | ||
Nocup…. | -Ocup | 971 (66.3) | 299 (70.9) | 349 (64.5) | 323 (64.3) | 0.062 | |
X.5 | +Ocup | 494 (33.7) | 123 (29.1) | 192 (35.5) | 179 (35.7) | ||
Nrel…. | Católica | 1110 (75.8) | 309 (73.2) | 404 (74.7) | 397 (79.1) | 0.089 | |
X.6 | Otra | 355 (24.2) | 113 (26.8) | 137 (25.3) | 105 (20.9) | ||
Tipotumor…. | hematologico | 44 ( 3.0) | 15 ( 3.6) | 16 ( 3.0) | 13 ( 2.6) | 0.691 | |
X.7 | tumor solido | 1421 (97.0) | 407 (96.4) | 525 (97.0) | 489 (97.4) | ||
Nafiliacion…. | Otro | 859 (58.6) | 266 (63.0) | 289 (53.4) | 304 (60.6) | 0.006 | |
X.8 | Subsidiado-No asegurado | 606 (41.4) | 156 (37.0) | 252 (46.6) | 198 (39.4) | ||
ResidenciaTipo…. | Rural | 339 (23.1) | 78 (18.5) | 158 (29.2) | 103 (20.5) | <0.001 | |
X.9 | Urbano | 1126 (76.9) | 344 (81.5) | 383 (70.8) | 399 (79.5) | ||
Estrato…. | Alto | 522 (35.6) | 163 (38.6) | 143 (26.4) | 216 (43.0) | <0.001 | |
X.10 | Bajo | 943 (64.4) | 259 (61.4) | 398 (73.6) | 286 (57.0) | ||
INFOnm…. | No | 91 ( 6.2) | 23 ( 5.5) | 20 ( 3.7) | 48 ( 9.6) | <0.001 | |
X.11 | Si | 1374 (93.8) | 399 (94.5) | 521 (96.3) | 454 (90.4) | ||
INFOm…. | No | 1254 (85.6) | 373 (88.4) | 467 (86.3) | 414 (82.5) | 0.032 | |
X.12 | Si | 211 (14.4) | 49 (11.6) | 74 (13.7) | 88 (17.5) | ||
EFECTS…. | 1 | 343 (23.4) | 95 (22.5) | 127 (23.5) | 121 (24.1) | 0.850 | |
X.13 | 2 | 1122 (76.6) | 327 (77.5) | 414 (76.5) | 381 (75.9) | ||
MAC_Animal…. | No | 1144 (78.1) | 363 (86.0) | 378 (69.9) | 403 (80.3) | <0.001 | |
X.14 | Si | 321 (21.9) | 59 (14.0) | 163 (30.1) | 99 (19.7) | ||
whole…. | No | 1070 (73.0) | 319 (75.6) | 392 (72.5) | 359 (71.5) | 0.353 | |
X.15 | Si | 395 (27.0) | 103 (24.4) | 149 (27.5) | 143 (28.5) | ||
Hierbas…. | No | 635 (43.3) | 177 (41.9) | 205 (37.9) | 253 (50.4) | <0.001 | |
X.16 | Si | 830 (56.7) | 245 (58.1) | 336 (62.1) | 249 (49.6) | ||
Nutricionales…. | No | 615 (42.0) | 206 (48.8) | 211 (39.0) | 198 (39.4) | 0.003 | |
X.17 | Si | 850 (58.0) | 216 (51.2) | 330 (61.0) | 304 (60.6) | ||
Vitaminas…. | No | 686 (46.8) | 223 (52.8) | 245 (45.3) | 218 (43.4) | 0.011 | |
X.18 | Si | 779 (53.2) | 199 (47.2) | 296 (54.7) | 284 (56.6) |
#instalar paquetes
#install.packages("sjmisc")
#install.packages("sjPlot")
#install.packages("nnet")
#install.packages("wakefield")
library(sjmisc)
library(sjPlot)
library(nnet)
library(wakefield)
frq(GAT_MAC, class)
## class <categorical>
## # total N=1465 valid N=1465 mean=2.05 sd=0.79
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------------
## R.Paliativa | 422 | 28.81 | 28.81 | 28.81
## R.Curativa | 541 | 36.93 | 36.93 | 65.73
## R.Otra | 502 | 34.27 | 34.27 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
Se cruzan algunas variables
sjt.xtab(GAT_MAC$class, GAT_MAC$Edadcat, show.col.prc = TRUE)
class | Edadcat | Total | |
---|---|---|---|
=65 |
< 65 | ||
R.Paliativa |
128 30.7 % |
294 28.1 % |
422 28.8 % |
R.Curativa |
132 31.7 % |
409 39 % |
541 36.9 % |
R.Otra |
157 37.6 % |
345 32.9 % |
502 34.3 % |
Total |
417 100 % |
1048 100 % |
1465 100 % |
χ2=7.061 · df=2 · Cramer’s V=0.069 · p=0.029 |
GAT_MAC$class.f <- GAT_MAC$class
modelo <- multinom(GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup+
Nrel + Nafiliacion + ResidenciaTipo + Estrato + INFOnm +
INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas,
data = GAT_MAC)
## # weights: 48 (30 variable)
## initial value 1609.467003
## iter 10 value 1539.372774
## iter 20 value 1519.427932
## iter 30 value 1518.535064
## final value 1518.513933
## converged
Se estiman los valores p
z_values <- summary(modelo)$coefficients / summary(modelo)$standard.errors
p_values <- 2 * (1 - pnorm(abs(z_values))) # Prueba z para cada coeficiente
p_values
## (Intercept) SQUIMSi SRADSi Edadcat< 65 Nocup+Ocup NrelOtra
## R.Curativa 0.220977970 7.938691e-02 0.5055719 0.2783110 0.01725939 0.55638199
## R.Otra 0.001622557 3.001007e-05 0.2642931 0.5926915 0.02812648 0.03068386
## NafiliacionSubsidiado-No asegurado ResidenciaTipoUrbano EstratoBajo
## R.Curativa 0.29911634 0.005414589 0.01440886
## R.Otra 0.06212114 0.267311294 0.15009476
## INFOnmSi INFOmSi MAC_AnimalSi HierbasSi NutricionalesSi
## R.Curativa 0.06654108 0.03049394 2.241753e-06 0.24531901 0.057403838
## R.Otra 0.22941719 0.45120512 2.959605e-02 0.03701061 0.008841626
## VitaminasSi
## R.Curativa 0.01123795
## R.Otra 0.01201105
Se excluyen la variable SRAD + Edadcat + Nafiliacion
modelo2 <- multinom(GAT_MAC$class.f ~ SQUIM + Nocup+
ResidenciaTipo + Estrato + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + INFOnm + Nrel,data = GAT_MAC)
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1542.881392
## iter 20 value 1523.383037
## final value 1522.331586
## converged
Valores p
z_values2 <- summary(modelo2)$coefficients / summary(modelo2)$standard.errors
p_values2 <- 2 * (1 - pnorm(abs(z_values2))) # Prueba z para cada coeficiente
p_values2
## (Intercept) SQUIMSi Nocup+Ocup ResidenciaTipoUrbano
## R.Curativa 0.3450121693 6.959754e-02 0.008575184 0.003512065
## R.Otra 0.0003476365 8.810118e-06 0.058523754 0.182801258
## EstratoBajo INFOmSi MAC_AnimalSi HierbasSi NutricionalesSi
## R.Curativa 0.002055084 0.03439783 1.207936e-06 0.22235853 0.047449810
## R.Otra 0.387282854 0.51659812 1.803399e-02 0.05415065 0.009693912
## VitaminasSi INFOnmSi NrelOtra
## R.Curativa 0.01415932 0.06213981 0.6330594
## R.Otra 0.01378125 0.21814267 0.0284339
library(lmtest)
lrtest(modelo, modelo2)
## Likelihood ratio test
##
## Model 1: GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup + Nrel + Nafiliacion +
## ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal +
## Hierbas + Nutricionales + Vitaminas
## Model 2: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato +
## INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas +
## INFOnm + Nrel
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 30 -1518.5
## 2 24 -1522.3 -6 7.6353 0.2661
Se ejecuta un 3 modelo
modelo3 <- multinom(GAT_MAC$class.f ~ SQUIM + Nocup+
ResidenciaTipo + Estrato + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + Nrel,data = GAT_MAC)
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1541.891150
## iter 20 value 1528.894735
## final value 1528.504841
## converged
z_values3 <- summary(modelo3)$coefficients / summary(modelo3)$standard.errors
p_values3 <- 2 * (1 - pnorm(abs(z_values3))) # Prueba z para cada coeficiente
p_values3
## (Intercept) SQUIMSi Nocup+Ocup ResidenciaTipoUrbano
## R.Curativa 0.6407256039 6.496077e-02 0.01063005 0.003396393
## R.Otra 0.0001677208 8.799787e-06 0.05015167 0.181745990
## EstratoBajo INFOmSi MAC_AnimalSi HierbasSi NutricionalesSi
## R.Curativa 0.002255399 0.16815946 1.101865e-06 0.19276121 0.03553969
## R.Otra 0.399057258 0.04635155 1.995607e-02 0.04651231 0.01190475
## VitaminasSi NrelOtra
## R.Curativa 0.008464415 0.5604208
## R.Otra 0.018996664 0.0332499
library(lmtest)
lrtest(modelo2, modelo3)
## Likelihood ratio test
##
## Model 1: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato +
## INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas +
## INFOnm + Nrel
## Model 2: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato +
## INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas +
## Nrel
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 24 -1522.3
## 2 22 -1528.5 -2 12.347 0.002084 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelo3$AIC
## [1] 3101.01
modelo2$AIC
## [1] 3092.663
Optar por stepwise
library(MASS)
modelo_stepwise <- stepAIC(modelo, direction = "backward", trace = TRUE)
## Start: AIC=3097.03
## GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup + Nrel + Nafiliacion +
## ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal +
## Hierbas + Nutricionales + Vitaminas
##
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1544.649536
## iter 20 value 1531.074440
## iter 30 value 1529.981843
## final value 1529.969372
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1538.420096
## iter 20 value 1519.690787
## iter 30 value 1519.151072
## final value 1519.140097
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1539.485537
## iter 20 value 1520.814312
## iter 30 value 1520.011100
## final value 1519.994459
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1539.935140
## iter 20 value 1522.554353
## iter 30 value 1521.937316
## final value 1521.925548
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1541.248268
## iter 20 value 1522.334361
## iter 30 value 1521.113285
## final value 1521.095738
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1545.833526
## iter 20 value 1522.304184
## iter 30 value 1520.272132
## final value 1520.261467
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1536.456611
## iter 20 value 1523.104072
## iter 30 value 1522.639016
## final value 1522.634624
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1541.658738
## iter 20 value 1527.228352
## iter 30 value 1526.716231
## final value 1526.711280
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1540.457358
## iter 20 value 1525.183444
## iter 30 value 1524.482687
## final value 1524.459087
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1543.556086
## iter 20 value 1522.761941
## iter 30 value 1521.172940
## final value 1521.159242
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1547.413235
## iter 20 value 1531.932476
## iter 30 value 1530.745368
## final value 1530.718617
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1544.138500
## iter 20 value 1525.316449
## iter 30 value 1524.630639
## final value 1524.627719
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1542.070486
## iter 20 value 1522.954221
## iter 30 value 1522.124956
## final value 1522.118789
## converged
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1545.556992
## iter 20 value 1523.528639
## iter 30 value 1522.638854
## final value 1522.635532
## converged
## Df AIC
## - SRAD 2 3094.3
## - Edadcat 2 3096.0
## - Nafiliacion 2 3096.5
## <none> 3097.0
## - Nrel 2 3098.2
## - INFOm 2 3098.3
## - Nocup 2 3099.8
## - Nutricionales 2 3100.2
## - ResidenciaTipo 2 3101.3
## - Vitaminas 2 3101.3
## - INFOnm 2 3104.9
## - Hierbas 2 3105.3
## - Estrato 2 3109.4
## - SQUIM 2 3115.9
## - MAC_Animal 2 3117.4
## # weights: 45 (28 variable)
## initial value 1609.467003
## iter 10 value 1538.420096
## iter 20 value 1519.690787
## iter 30 value 1519.151072
## final value 1519.140097
## converged
##
## Step: AIC=3094.28
## GAT_MAC$class.f ~ SQUIM + Edadcat + Nocup + Nrel + Nafiliacion +
## ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal +
## Hierbas + Nutricionales + Vitaminas
##
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1549.078634
## iter 20 value 1532.461601
## iter 30 value 1531.627386
## final value 1531.626730
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1538.078918
## iter 20 value 1521.057332
## iter 30 value 1520.648161
## final value 1520.645832
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1539.488944
## iter 20 value 1523.433861
## iter 30 value 1522.557718
## final value 1522.541605
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1540.598582
## iter 20 value 1522.540459
## iter 30 value 1521.902261
## final value 1521.898822
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1544.015754
## iter 20 value 1521.879792
## iter 30 value 1520.879055
## final value 1520.876026
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1534.279879
## iter 20 value 1524.066732
## iter 30 value 1523.258641
## final value 1523.258592
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1543.174608
## iter 20 value 1528.093237
## iter 30 value 1527.348950
## final value 1527.342068
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1544.085953
## iter 20 value 1525.922518
## iter 30 value 1525.114599
## final value 1525.112146
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1542.680386
## iter 20 value 1522.631135
## iter 30 value 1521.771375
## final value 1521.766656
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1550.201300
## iter 20 value 1532.652568
## iter 30 value 1531.402986
## final value 1531.401486
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1543.935051
## iter 20 value 1526.594539
## iter 30 value 1525.220014
## final value 1525.214201
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1540.726397
## iter 20 value 1523.160770
## iter 30 value 1522.602693
## final value 1522.599954
## converged
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1541.137472
## iter 20 value 1524.038770
## iter 30 value 1523.327745
## final value 1523.325329
## converged
## Df AIC
## - Edadcat 2 3093.3
## - Nafiliacion 2 3093.8
## <none> 3094.3
## - INFOm 2 3095.5
## - Nrel 2 3095.8
## - Nocup 2 3097.1
## - Nutricionales 2 3097.2
## - ResidenciaTipo 2 3098.5
## - Vitaminas 2 3098.7
## - INFOnm 2 3102.2
## - Hierbas 2 3102.4
## - Estrato 2 3106.7
## - MAC_Animal 2 3114.8
## - SQUIM 2 3115.2
## # weights: 42 (26 variable)
## initial value 1609.467003
## iter 10 value 1538.078918
## iter 20 value 1521.057332
## iter 30 value 1520.648161
## final value 1520.645832
## converged
##
## Step: AIC=3093.29
## GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + Nafiliacion + ResidenciaTipo +
## Estrato + INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales +
## Vitaminas
##
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1545.549057
## iter 20 value 1533.997145
## iter 30 value 1533.547054
## iter 30 value 1533.547043
## iter 30 value 1533.547043
## final value 1533.547043
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1541.426032
## iter 20 value 1525.117706
## final value 1524.690261
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1541.772188
## iter 20 value 1524.870079
## final value 1523.644605
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1542.881392
## iter 20 value 1523.383037
## final value 1522.331586
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1535.869439
## iter 20 value 1525.323795
## iter 30 value 1524.695573
## iter 30 value 1524.695572
## iter 30 value 1524.695572
## final value 1524.695572
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1542.596091
## iter 20 value 1529.836582
## final value 1529.431710
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1540.775566
## iter 20 value 1527.274828
## iter 30 value 1526.794328
## iter 30 value 1526.794328
## iter 30 value 1526.794328
## final value 1526.794328
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1542.574476
## iter 20 value 1524.157403
## iter 30 value 1523.305699
## iter 30 value 1523.305697
## iter 30 value 1523.305697
## final value 1523.305697
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1549.429541
## iter 20 value 1533.813443
## final value 1532.886805
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1539.035797
## iter 20 value 1527.582605
## final value 1526.506266
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1541.400450
## iter 20 value 1524.743727
## final value 1524.105597
## converged
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1541.376182
## iter 20 value 1525.552266
## final value 1524.816913
## converged
## Df AIC
## - Nafiliacion 2 3092.7
## <none> 3093.3
## - INFOm 2 3094.6
## - Nrel 2 3095.3
## - Nutricionales 2 3096.2
## - Nocup 2 3097.4
## - ResidenciaTipo 2 3097.4
## - Vitaminas 2 3097.6
## - Hierbas 2 3101.0
## - INFOnm 2 3101.6
## - Estrato 2 3106.9
## - MAC_Animal 2 3113.8
## - SQUIM 2 3115.1
## # weights: 39 (24 variable)
## initial value 1609.467003
## iter 10 value 1542.881392
## iter 20 value 1523.383037
## final value 1522.331586
## converged
##
## Step: AIC=3092.66
## GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + ResidenciaTipo + Estrato +
## INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas
##
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1548.134924
## iter 20 value 1535.886722
## final value 1535.626568
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1547.040504
## iter 20 value 1526.488754
## final value 1525.957189
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1548.649163
## iter 20 value 1526.421085
## final value 1525.088754
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1541.258321
## iter 20 value 1527.363418
## final value 1526.766362
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1541.820244
## iter 20 value 1532.476720
## final value 1531.612031
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1541.891150
## iter 20 value 1528.894735
## final value 1528.504841
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1549.987974
## iter 20 value 1526.222150
## final value 1524.940633
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1558.168422
## iter 20 value 1535.730526
## final value 1535.079202
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1546.452652
## iter 20 value 1528.972255
## final value 1528.013219
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1547.396007
## iter 20 value 1526.947712
## final value 1525.929650
## converged
## # weights: 36 (22 variable)
## initial value 1609.467003
## iter 10 value 1545.285525
## iter 20 value 1526.734759
## final value 1526.241908
## converged
## Df AIC
## <none> 3092.7
## - INFOm 2 3093.9
## - Nrel 2 3094.2
## - Nutricionales 2 3095.9
## - Nocup 2 3095.9
## - Vitaminas 2 3096.5
## - ResidenciaTipo 2 3097.5
## - Hierbas 2 3100.0
## - INFOnm 2 3101.0
## - Estrato 2 3107.2
## - MAC_Animal 2 3114.2
## - SQUIM 2 3115.2
summary(modelo_stepwise)
## Call:
## multinom(formula = GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + ResidenciaTipo +
## Estrato + INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales +
## Vitaminas, data = GAT_MAC)
##
## Coefficients:
## (Intercept) SQUIMSi Nocup+Ocup NrelOtra ResidenciaTipoUrbano
## R.Curativa -0.5438082 -0.6630189 0.3824717 -0.07322162 -0.4893526
## R.Otra 1.9054560 -1.4749685 0.2775858 -0.35000488 -0.2372652
## EstratoBajo INFOnmSi INFOmSi MAC_AnimalSi HierbasSi
## R.Curativa 0.4642266 0.7453211 0.5453104 0.8465776 0.1697246
## R.Otra -0.1259393 -0.4553146 0.1752311 0.4397541 -0.2676301
## NutricionalesSi VitaminasSi
## R.Curativa 0.2731687 0.3381169
## R.Otra 0.3606175 0.3436759
##
## Std. Errors:
## (Intercept) SQUIMSi Nocup+Ocup NrelOtra ResidenciaTipoUrbano
## R.Curativa 0.5758800 0.3653961 0.1455072 0.1533677 0.1676465
## R.Otra 0.5327052 0.3318646 0.1467346 0.1597286 0.1781030
## EstratoBajo INFOnmSi INFOmSi MAC_AnimalSi HierbasSi
## R.Curativa 0.1506176 0.3995724 0.2577840 0.1743963 0.1390865
## R.Otra 0.1456694 0.3697290 0.2701689 0.1859489 0.1389832
## NutricionalesSi VitaminasSi
## R.Curativa 0.1378065 0.1378271
## R.Otra 0.1394197 0.1395403
##
## Residual Deviance: 3044.663
## AIC: 3092.663
OR
exp(coef(modelo2))
## (Intercept) SQUIMSi Nocup+Ocup ResidenciaTipoUrbano EstratoBajo
## R.Curativa 0.5805332 0.5152933 1.465903 0.6130232 1.5907834
## R.Otra 6.7224722 0.2287859 1.319939 0.7887821 0.8816684
## INFOmSi MAC_AnimalSi HierbasSi NutricionalesSi VitaminasSi
## R.Curativa 1.725144 2.331653 1.1849785 1.314122 1.402304
## R.Otra 1.191521 1.552325 0.7651908 1.434215 1.410122
## INFOnmSi NrelOtra
## R.Curativa 2.1071178 0.9293948
## R.Otra 0.6342484 0.7046847
tab_model(modelo2)
Dependent variable | ||||
---|---|---|---|---|
Predictors | Odds Ratios | CI | p | Response |
(Intercept) | 0.58 | 0.19 – 1.80 | 0.345 | R.Curativa |
SQUIM [Si] | 0.52 | 0.25 – 1.06 | 0.070 | R.Curativa |
Nocup [+Ocup] | 1.47 | 1.10 – 1.95 | 0.009 | R.Curativa |
ResidenciaTipo [Urbano] | 0.61 | 0.44 – 0.85 | 0.004 | R.Curativa |
Estrato [Bajo] | 1.59 | 1.18 – 2.14 | 0.002 | R.Curativa |
INFOm [Si] | 1.73 | 1.04 – 2.86 | 0.035 | R.Curativa |
MAC Animal [Si] | 2.33 | 1.66 – 3.28 | <0.001 | R.Curativa |
Hierbas [Si] | 1.18 | 0.90 – 1.56 | 0.223 | R.Curativa |
Nutricionales [Si] | 1.31 | 1.00 – 1.72 | 0.048 | R.Curativa |
Vitaminas [Si] | 1.40 | 1.07 – 1.84 | 0.014 | R.Curativa |
INFOnm [Si] | 2.11 | 0.96 – 4.61 | 0.062 | R.Curativa |
Nrel [Otra] | 0.93 | 0.69 – 1.26 | 0.633 | R.Curativa |
(Intercept) | 6.72 | 0.19 – 1.80 | 0.345 | R.Curativa |
SQUIM [Si] | 0.23 | 0.25 – 1.06 | 0.070 | R.Curativa |
Nocup [+Ocup] | 1.32 | 1.10 – 1.95 | 0.009 | R.Curativa |
ResidenciaTipo [Urbano] | 0.79 | 0.44 – 0.85 | 0.004 | R.Curativa |
Estrato [Bajo] | 0.88 | 1.18 – 2.14 | 0.002 | R.Curativa |
INFOm [Si] | 1.19 | 1.04 – 2.86 | 0.035 | R.Curativa |
MAC Animal [Si] | 1.55 | 1.66 – 3.28 | <0.001 | R.Curativa |
Hierbas [Si] | 0.77 | 0.90 – 1.56 | 0.223 | R.Curativa |
Nutricionales [Si] | 1.43 | 1.00 – 1.72 | 0.048 | R.Curativa |
Vitaminas [Si] | 1.41 | 1.07 – 1.84 | 0.014 | R.Curativa |
INFOnm [Si] | 0.63 | 0.96 – 4.61 | 0.062 | R.Curativa |
Nrel [Otra] | 0.70 | 0.69 – 1.26 | 0.633 | R.Curativa |
Observations | 1465 | |||
R2 / R2 adjusted | 0.050 / 0.049 |
library(gtsummary)
tbl_regression(modelo2, exponentiate = TRUE, add_estimate_to_reference_rows=TRUE) %>% add_global_p()
Characteristic | OR1 | 95% CI1 | p-value |
---|---|---|---|
R.Curativa | |||
SQUIM | <0.001 | ||
No | 1.00 | — | |
Si | 0.52 | 0.25, 1.05 | |
Nocup | 0.027 | ||
-Ocup | 1.00 | — | |
+Ocup | 1.47 | 1.10, 1.95 | |
ResidenciaTipo | 0.012 | ||
Rural | 1.00 | — | |
Urbano | 0.61 | 0.44, 0.85 | |
Estrato | <0.001 | ||
Alto | 1.00 | — | |
Bajo | 1.59 | 1.18, 2.14 | |
INFOm | 0.074 | ||
No | 1.00 | — | |
Si | 1.73 | 1.04, 2.86 | |
MAC_Animal | <0.001 | ||
No | 1.00 | — | |
Si | 2.33 | 1.66, 3.28 | |
Hierbas | 0.003 | ||
No | 1.00 | — | |
Si | 1.18 | 0.90, 1.56 | |
Nutricionales | 0.027 | ||
No | 1.00 | — | |
Si | 1.31 | 1.00, 1.72 | |
Vitaminas | 0.020 | ||
No | 1.00 | — | |
Si | 1.40 | 1.07, 1.84 | |
INFOnm | 0.002 | ||
No | 1.00 | — | |
Si | 2.11 | 0.96, 4.61 | |
Nrel | 0.063 | ||
Católica | 1.00 | — | |
Otra | 0.93 | 0.69, 1.26 | |
R.Otra | |||
SQUIM | <0.001 | ||
No | 1.00 | — | |
Si | 0.23 | 0.12, 0.44 | |
Nocup | 0.027 | ||
-Ocup | 1.00 | — | |
+Ocup | 1.32 | 0.99, 1.76 | |
ResidenciaTipo | 0.012 | ||
Rural | 1.00 | — | |
Urbano | 0.79 | 0.56, 1.12 | |
Estrato | <0.001 | ||
Alto | 1.00 | — | |
Bajo | 0.88 | 0.66, 1.17 | |
INFOm | 0.074 | ||
No | 1.00 | — | |
Si | 1.19 | 0.70, 2.02 | |
MAC_Animal | <0.001 | ||
No | 1.00 | — | |
Si | 1.55 | 1.08, 2.23 | |
Hierbas | 0.003 | ||
No | 1.00 | — | |
Si | 0.77 | 0.58, 1.00 | |
Nutricionales | 0.027 | ||
No | 1.00 | — | |
Si | 1.43 | 1.09, 1.88 | |
Vitaminas | 0.020 | ||
No | 1.00 | — | |
Si | 1.41 | 1.07, 1.85 | |
INFOnm | 0.002 | ||
No | 1.00 | — | |
Si | 0.63 | 0.31, 1.31 | |
Nrel | 0.063 | ||
Católica | 1.00 | — | |
Otra | 0.70 | 0.52, 0.96 | |
1 OR = Odds Ratio, CI = Confidence Interval |