Analisis asociaciones - perfiles GAT

Tranformacion variables a dicotomicas

library(readxl)
GAT <- read_excel("GAT.xlsx") # cargue base de datos

library(dplyr)
GAT <- GAT %>% filter(EstadoCancer != "No sabe") #se excluyen los registros que no saben su estadio de cancer

GAT$Nestadocancer <- ifelse(GAT$EstadoCancer %in% c("Con metástasis a otros órganos"), "Metastasico", 
                     ifelse(GAT$EstadoCancer %in% c("Localizado", "Con ganglios comprometidos, pero sin metástasis a otros órganos"), "No metastasico", GAT$EstadoCancer)) # categoriza metastasico y no metastasico

GAT <- GAT %>% 
  mutate(SQUIM = ifelse(AQuimioTerSiste == "Checked" | BQuimioTerSiste == "Checked" & ARadio != "Checked" & BRadio != "Checked", "Si", "No")) %>% 
  mutate(SRAD = ifelse(ARadio == "Checked" | BRadio == "Checked"  & AQuimioTerSiste != "Checked" & BQuimioTerSiste != "Checked", "Si", "No")) #solo quimio, #solo radio


GAT <- GAT %>% mutate(Edadcat = cut(Edad, breaks = c(-Inf, 66, Inf), right = F, labels = c("< 65", ">=65"))) #edad


GAT$Nocup <- ifelse(GAT$Ocupacion %in% c("Cesante", "Hogar", "Pensionado"), "-Ocup",
                    ifelse(GAT$Ocupacion %in% c("Empleado", "Independiente", "Estudiante"), "+Ocup", GAT$Ocupacion)) #ocupacion


GAT$Nrel <- ifelse(GAT$Religion %in% c("Católica"), "Católica",
            ifelse(GAT$Religion %in% c("Cristiana", "Judía", "No profesa religión", "Otra"), "Otra", GAT$Religion)) #religion


GAT$CIE <- ifelse(substr(GAT$TipoCancer, 1, 1) == "D", "D", substr(GAT$TipoCancer, 1, 3))
GAT$Tipotumor <- ifelse(GAT$CIE == "D", "hematologico", "tumor solido") #tipo de tumor


#IDENTIFICANDO EL TIPO DE MAC 

GAT <- GAT %>% 
  mutate(cuerpo = ifelse(Masaje == "Si" | Reflexología == "Si" | Quiropraxia == "Si", 1, 0)) %>%
  mutate(cuerpo = tidyr::replace_na(cuerpo, 0)) #Cuerpo


GAT <- GAT %>% 
  mutate(energetica = ifelse(Bioenergética == "Si" | `Terapia electromagnética` == "Si" | Acupuntura == "Si" | TerapiaNeural == "Si", 1, 0)) %>%
  mutate(energetica = tidyr::replace_na(energetica, 0)) #energetica


GAT <- GAT %>% 
  mutate(mente = ifelse(Meditacion == "Checked" | Yoga == "Checked" | Taichi == "Checked" | Yorae == "Checked" |OtroMente == "Checked", 1, 0)) %>%
  mutate(mente = tidyr::replace_na(mente, 0)) #mente


GAT <- GAT %>% 
  mutate(Hierbas = tidyr::replace_na(Hierbas, "No")) %>% 
  mutate(MAC_Animal = tidyr::replace_na(OrigenAnimal, "No")) %>% 
  mutate(Nutricionales = ifelse(Dieta_def == "Si" | Alimentos == "Si", "Si", "No")) %>% 
  mutate(Nutricionales = tidyr::replace_na(Nutricionales, "No")) %>% 
  mutate(whole = ifelse(Homeopatia == "Si" | Tradicionales == "Si" | cuerpo == 1 | energetica == 1 | mente == 1, "Si", "No")) %>% 
  mutate(whole = tidyr::replace_na(whole, "No")) %>% 
  mutate(Vitaminas = tidyr::replace_na(Vitaminas, "No"))

## Intencion de uso
GAT <- GAT %>% 
  mutate(OTRA = ifelse(Recomendamedico == "Checked" | Recomendaotro == "Checked" | todaslasOpciones == "Checked" | Masnatural == "Checked" | NingunaRazon == "Checked" | OtraSiUsa == "Checked", 2, 1)) %>% 
  mutate(CURATIVA = ifelse(Curar == "Checked" | futurascompli == "Checked", 2, 1)) %>% 
  mutate(PALIATIVA = ifelse(ContrarestEfectos == "Checked" | Animo == "Checked",2, 1)) %>% 
  mutate(AMBAS = ifelse(CURATIVA == 2 & PALIATIVA == 2 & OTRA == 1, 2, 1))


## Fuete de informacion
GAT <- GAT %>% 
  mutate(INFOnm = ifelse(FamiliaAmigos == "Checked" | Pacientes == "Checked" | Medios == "Checked" | RedesSociales== "Checked" | Mercados == "Checked" | Farmaceuta == "Checked" | OtroEntero == "Checked", 2, 1))

GAT <- GAT %>% 
  mutate(INFOm = ifelse(Medico == "Checked" | MedicoAlterna == "Checked", 2,1))

#EFECTOS
GAT<- GAT %>% 
  mutate(EFECTS = ifelse(vomito == "Checked" | diarrea == "Checked" | Estrenimiento == "Checked" | Dolor == "Checked" | PerdidaApetito == "Checked" | Adormecimiento == "Checked" | OtroEfectoSec == "Checked", 2,1))


#afiliacion
GAT$Nafiliacion <- ifelse(GAT$Afiliacion %in% c("Subsidiado", "No asegurado"), "Subsidiado-No asegurado",
              ifelse(GAT$Afiliacion %in% c("Contributivo", "Plan complementario", "Otro"), "Otro",GAT$Afiliacion))


GAT <- GAT %>%
  mutate(nestadocivil= recode(EstadoCivil,
                                 "Soltero" = "Sin conyuge",
                                 "Divorciado" = "Sin conyuge",
                                 "Viudo" = "Sin conyuge",
                                 "Casado" = "Con conyuge",
                                 "Unión libre" = "Con conyuge"))


GAT$Estrato <- as.character(GAT$Estrato)#socioeconomic status
GAT$Estrato[GAT$Estrato== 0] <- "Bajo"
GAT$Estrato[GAT$Estrato== 1] <- "Bajo"
GAT$Estrato[GAT$Estrato== 2] <- "Bajo"
GAT$Estrato[GAT$Estrato== 3] <- "Alto"
GAT$Estrato[GAT$Estrato== 4] <- "Alto"
GAT$Estrato[GAT$Estrato== 5] <- "Alto"
GAT$Estrato[GAT$Estrato== 6] <- "Alto"
GAT$Estrato <- as.factor(GAT$Estrato)

GAT <- GAT %>%
  mutate(nestadocivil= recode(EstadoCivil,
                              "Soltero" = "Sin conyuge",
                              "Divorciado" = "Sin conyuge",
                              "Viudo" = "Sin conyuge",
                              "Casado" = "Con conyuge",
                              "Unión libre" = "Con conyuge"))

GAT$ResidenciaTipo <- as.factor(GAT$ResidenciaTipo)

Analisis bivariado, variable respuesta: USO MAC

MAC
level Overall No Si p test
n 2830 1365 1465
Sexo…. Femenino 1786 (63.1) 758 (55.5) 1028 (70.2) <0.001
X Masculino 1044 (36.9) 607 (44.5) 437 (29.8)
Nestadocancer…. Metastasico 826 (29.2) 401 (29.4) 425 (29.0) 0.862
X.1 No metastasico 2004 (70.8) 964 (70.6) 1040 (71.0)
SQUIM…. No 192 ( 6.8) 101 ( 7.4) 91 ( 6.2) 0.238
X.2 Si 2638 (93.2) 1264 (92.6) 1374 (93.8)
SRAD…. No 1846 (65.2) 897 (65.7) 949 (64.8) 0.629
X.3 Si 984 (34.8) 468 (34.3) 516 (35.2)
Edadcat…. < 65 1844 (65.2) 796 (58.3) 1048 (71.5) <0.001
X.4 >=65 986 (34.8) 569 (41.7) 417 (28.5)
Nocup…. -Ocup 1945 (68.7) 974 (71.4) 971 (66.3) 0.004
X.5 +Ocup 885 (31.3) 391 (28.6) 494 (33.7)
Nrel…. Católica 2214 (78.2) 1104 (80.9) 1110 (75.8) 0.001
X.6 Otra 616 (21.8) 261 (19.1) 355 (24.2)
Tipotumor…. hematologico 80 ( 2.8) 36 ( 2.6) 44 ( 3.0) 0.636
X.7 tumor solido 2750 (97.2) 1329 (97.4) 1421 (97.0)
Nafiliacion…. Otro 1700 (60.1) 841 (61.6) 859 (58.6) 0.115
X.8 Subsidiado-No asegurado 1130 (39.9) 524 (38.4) 606 (41.4)
ResidenciaTipo…. Rural 642 (22.7) 303 (22.2) 339 (23.1) 0.580
X.9 Urbano 2188 (77.3) 1062 (77.8) 1126 (76.9)
Estrato…. Alto 981 (34.7) 459 (33.6) 522 (35.6) 0.280
X.10 Bajo 1849 (65.3) 906 (66.4) 943 (64.4)

Modelo multivariado

Se incluyen variables con valores p menos o iguales a 0.2

  1. Sexo
  2. Edad categorizada
  3. Ocupación
  4. Religión
  5. Afiliacion
#modelo completo 

GAT$Sexo <- relevel(factor(GAT$Sexo), ref = "Masculino")
GAT$Edadcat <- relevel(factor(GAT$Edadcat), ref = ">=65")

library(dplyr)
GAT<- GAT %>%
  mutate(MAC = factor(ifelse(AlternativaActual == "Si", 1, 0)))


m1 <- glm (MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion
             ,family = "binomial", data= GAT) #construido en orden de la significancia
summary(m1)
## 
## Call:
## glm(formula = MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion, 
##     family = "binomial", data = GAT)
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        -0.68533    0.08615  -7.955 1.80e-15 ***
## SexoFemenino                        0.57627    0.08367   6.888 5.68e-12 ***
## Edadcat< 65                         0.37718    0.08731   4.320 1.56e-05 ***
## NrelOtra                            0.19404    0.09428   2.058  0.03957 *  
## Nocup+Ocup                          0.23321    0.08968   2.600  0.00931 ** 
## NafiliacionSubsidiado-No asegurado  0.08037    0.07965   1.009  0.31297    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3919.7  on 2829  degrees of freedom
## Residual deviance: 3809.3  on 2824  degrees of freedom
## AIC: 3821.3
## 
## Number of Fisher Scoring iterations: 4

Modelo reducido

m2 <- glm (MAC ~ Sexo + Edadcat + Nrel + Nocup
             ,family = "binomial", data= GAT) #construido en orden de la significancia
summary(m2)
## 
## Call:
## glm(formula = MAC ~ Sexo + Edadcat + Nrel + Nocup, family = "binomial", 
##     data = GAT)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.65637    0.08111  -8.092 5.87e-16 ***
## SexoFemenino  0.57703    0.08365   6.898 5.26e-12 ***
## Edadcat< 65   0.38600    0.08686   4.444 8.84e-06 ***
## NrelOtra      0.20014    0.09408   2.127   0.0334 *  
## Nocup+Ocup    0.21942    0.08865   2.475   0.0133 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3919.7  on 2829  degrees of freedom
## Residual deviance: 3810.3  on 2825  degrees of freedom
## AIC: 3820.3
## 
## Number of Fisher Scoring iterations: 4

ORs

library(gtsummary)
tbl_regression(m2, exponentiate = TRUE, add_estimate_to_reference_rows=TRUE)  %>% add_global_p()
Characteristic OR1 95% CI1 p-value
Sexo

<0.001
    Masculino 1.00
    Femenino 1.78 1.51, 2.10
Edadcat

<0.001
    >=65 1.00
    < 65 1.47 1.24, 1.74
Nrel

0.033
    Católica 1.00
    Otra 1.22 1.02, 1.47
Nocup

0.013
    -Ocup 1.00
    +Ocup 1.25 1.05, 1.48
1 OR = Odds Ratio, CI = Confidence Interval

Comparando los dos modelos

library(lmtest)
lrtest(m1, m2)
## Likelihood ratio test
## 
## Model 1: MAC ~ Sexo + Edadcat + Nrel + Nocup + Nafiliacion
## Model 2: MAC ~ Sexo + Edadcat + Nrel + Nocup
##   #Df  LogLik Df  Chisq Pr(>Chisq)
## 1   6 -1904.6                     
## 2   5 -1905.1 -1 1.0182     0.3129

El modelo más simple es suficiente para explicar la variabilidad de los datos

library(performance)
model_performance(m2)
## # Indices of model performance
## 
## AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log |   PCP
## -----------------------------------------------------------------------------------------
## 3820.274 | 3820.295 | 3850.014 |     0.038 | 0.490 | 1.000 |    0.673 |      -Inf | 0.520

Prueba bondad de ajuste Hosmer Lemeshow

library(ResourceSelection)
hoslem.test(m2$y, fitted(m2), g=10)
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  m2$y, fitted(m2)
## X-squared = 1.5952, df = 6, p-value = 0.9529

Buen ajuste a los datos

Analisis de clase latente

# filtrar uso MAC  y seleccion variables analisis

library(LCAvarsel)

LCA_data <- GAT %>%
  filter(AlternativaActual == "Si") %>%
  dplyr::select(ID,CURATIVA,PALIATIVA,OTRA)

#Se revisa que variables pueden ser las mas informativas

#library(poLCA)
#LCA_data2 <- LCA_data[,-1]
#LCA_data2 <- as.data.frame(LCA_data2)
#LCAvarsel(LCA_data2, verbose = FALSE)
set.seed(2025)
f <- cbind(PALIATIVA, CURATIVA, OTRA)~ 1
lCA4 <- poLCA(f, data = LCA_data, nclass=3,nrep= 15, graphs = F)
## Model 1: llik = -2655.705 ... best llik = -2655.705
## Model 2: llik = -2655.705 ... best llik = -2655.705
## Model 3: llik = -2655.705 ... best llik = -2655.705
## Model 4: llik = -2655.705 ... best llik = -2655.705
## Model 5: llik = -2655.705 ... best llik = -2655.705
## Model 6: llik = -2655.705 ... best llik = -2655.705
## Model 7: llik = -2655.705 ... best llik = -2655.705
## Model 8: llik = -2655.705 ... best llik = -2655.705
## Model 9: llik = -2655.705 ... best llik = -2655.705
## Model 10: llik = -2655.705 ... best llik = -2655.705
## Model 11: llik = -2655.705 ... best llik = -2655.705
## Model 12: llik = -2655.705 ... best llik = -2655.705
## Model 13: llik = -2655.705 ... best llik = -2655.705
## Model 14: llik = -2655.705 ... best llik = -2655.705
## Model 15: llik = -2655.705 ... best llik = -2655.705
## Conditional item response (column) probabilities,
##  by outcome variable, for each class (row) 
##  
## $PALIATIVA
##            Pr(1)  Pr(2)
## class 1:  0.0000 1.0000
## class 2:  0.4618 0.5382
## class 3:  0.7924 0.2076
## 
## $CURATIVA
##            Pr(1)  Pr(2)
## class 1:  0.9348 0.0652
## class 2:  0.0072 0.9928
## class 3:  0.8525 0.1475
## 
## $OTRA
##            Pr(1)  Pr(2)
## class 1:  0.8530 0.1470
## class 2:  0.6876 0.3124
## class 3:  0.0000 1.0000
## 
## Estimated class population shares 
##  0.3602 0.2967 0.3431 
##  
## Predicted class memberships (by modal posterior prob.) 
##  0.2881 0.3693 0.3427 
##  
## ========================================================= 
## Fit for 3 latent classes: 
## ========================================================= 
## number of observations: 1465 
## number of estimated parameters: 11 
## residual degrees of freedom: -4 
## maximum log-likelihood: -2655.705 
##  
## AIC(3): 5333.41
## BIC(3): 5391.596
## G^2(3): 9.405014e-10 (Likelihood ratio/deviance statistic) 
## X^2(3): 9.399236e-10 (Chi-square goodness of fit) 
##  
## ALERT: negative degrees of freedom; respecify model 
## 
prop.table(table(lCA4$predclass))*100
## 
##        1        2        3 
## 28.80546 36.92833 34.26621

Se unen los data frame.

LCA_data$class <-  lCA4$predclass
GAT_MAC <- GAT %>%
  filter(AlternativaActual == "Si")
GAT_MAC <- merge(GAT_MAC, LCA_data[, c("ID", "class")], by = "ID", all.x = TRUE)

GAT_MAC$class <- factor(GAT_MAC$class, 
                     levels = c(1, 2, 3),
                     labels = c("R.Paliativa", "R.Curativa", "R.Otra"))
GAT_MAC$INFOm <- factor(GAT_MAC$INFOm, 
                     levels = c(1, 2),
                     labels = c("No", "Si"))

GAT_MAC$INFOnm <- factor(GAT_MAC$INFOnm, 
                     levels = c(1, 2),
                     labels = c("No", "Si"))
catVars2 <- c("Sexo","Nestadocancer", "SQUIM", "SRAD", "Edadcat", "Nocup", "Nrel", "Tipotumor", "Nafiliacion", "ResidenciaTipo", "Estrato", "INFOnm", "INFOm", "EFECTS", "MAC_Animal", "whole", "Hierbas", "Nutricionales", "Vitaminas")


tab2 <- CreateCatTable(vars = catVars2, strata = "class", data = GAT_MAC, includeNA = F, test = T, addOverall = T )

table2 <- as.data.frame(print(tab2, showAllLevels= TRUE, printToggle = FALSE))
library(openxlsx)
write.xlsx(table2, "tablaclase.xlsx", rowNames = TRUE)

kable(table2, format = "html", caption = "MAC") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, 
                position = "center") %>%
  column_spec(1, bold = T, color = "white", background = "#D7261E") %>%
  column_spec(2, border_left = T, background = "#F3E6E3")
MAC
level Overall R.Paliativa R.Curativa R.Otra p test
n 1465 422 541 502
Sexo…. Masculino 437 (29.8) 134 (31.8) 153 (28.3) 150 (29.9) 0.505
X Femenino 1028 (70.2) 288 (68.2) 388 (71.7) 352 (70.1)
Nestadocancer…. Metastasico 425 (29.0) 120 (28.4) 163 (30.1) 142 (28.3) 0.769
X.1 No metastasico 1040 (71.0) 302 (71.6) 378 (69.9) 360 (71.7)
SQUIM…. No 91 ( 6.2) 12 ( 2.8) 25 ( 4.6) 54 (10.8) <0.001
X.2 Si 1374 (93.8) 410 (97.2) 516 (95.4) 448 (89.2)
SRAD…. No 949 (64.8) 285 (67.5) 355 (65.6) 309 (61.6) 0.145
X.3 Si 516 (35.2) 137 (32.5) 186 (34.4) 193 (38.4)
Edadcat…. >=65 417 (28.5) 128 (30.3) 132 (24.4) 157 (31.3) 0.029
X.4 < 65 1048 (71.5) 294 (69.7) 409 (75.6) 345 (68.7)
Nocup…. -Ocup 971 (66.3) 299 (70.9) 349 (64.5) 323 (64.3) 0.062
X.5 +Ocup 494 (33.7) 123 (29.1) 192 (35.5) 179 (35.7)
Nrel…. Católica 1110 (75.8) 309 (73.2) 404 (74.7) 397 (79.1) 0.089
X.6 Otra 355 (24.2) 113 (26.8) 137 (25.3) 105 (20.9)
Tipotumor…. hematologico 44 ( 3.0) 15 ( 3.6) 16 ( 3.0) 13 ( 2.6) 0.691
X.7 tumor solido 1421 (97.0) 407 (96.4) 525 (97.0) 489 (97.4)
Nafiliacion…. Otro 859 (58.6) 266 (63.0) 289 (53.4) 304 (60.6) 0.006
X.8 Subsidiado-No asegurado 606 (41.4) 156 (37.0) 252 (46.6) 198 (39.4)
ResidenciaTipo…. Rural 339 (23.1) 78 (18.5) 158 (29.2) 103 (20.5) <0.001
X.9 Urbano 1126 (76.9) 344 (81.5) 383 (70.8) 399 (79.5)
Estrato…. Alto 522 (35.6) 163 (38.6) 143 (26.4) 216 (43.0) <0.001
X.10 Bajo 943 (64.4) 259 (61.4) 398 (73.6) 286 (57.0)
INFOnm…. No 91 ( 6.2) 23 ( 5.5) 20 ( 3.7) 48 ( 9.6) <0.001
X.11 Si 1374 (93.8) 399 (94.5) 521 (96.3) 454 (90.4)
INFOm…. No 1254 (85.6) 373 (88.4) 467 (86.3) 414 (82.5) 0.032
X.12 Si 211 (14.4) 49 (11.6) 74 (13.7) 88 (17.5)
EFECTS…. 1 343 (23.4) 95 (22.5) 127 (23.5) 121 (24.1) 0.850
X.13 2 1122 (76.6) 327 (77.5) 414 (76.5) 381 (75.9)
MAC_Animal…. No 1144 (78.1) 363 (86.0) 378 (69.9) 403 (80.3) <0.001
X.14 Si 321 (21.9) 59 (14.0) 163 (30.1) 99 (19.7)
whole…. No 1070 (73.0) 319 (75.6) 392 (72.5) 359 (71.5) 0.353
X.15 Si 395 (27.0) 103 (24.4) 149 (27.5) 143 (28.5)
Hierbas…. No 635 (43.3) 177 (41.9) 205 (37.9) 253 (50.4) <0.001
X.16 Si 830 (56.7) 245 (58.1) 336 (62.1) 249 (49.6)
Nutricionales…. No 615 (42.0) 206 (48.8) 211 (39.0) 198 (39.4) 0.003
X.17 Si 850 (58.0) 216 (51.2) 330 (61.0) 304 (60.6)
Vitaminas…. No 686 (46.8) 223 (52.8) 245 (45.3) 218 (43.4) 0.011
X.18 Si 779 (53.2) 199 (47.2) 296 (54.7) 284 (56.6)

Regresion multinominal clases

#instalar paquetes
#install.packages("sjmisc")
#install.packages("sjPlot")
#install.packages("nnet")
#install.packages("wakefield")

library(sjmisc)
library(sjPlot)
library(nnet)
library(wakefield)

frq(GAT_MAC, class)
## class <categorical> 
## # total N=1465 valid N=1465 mean=2.05 sd=0.79
## 
## Value       |   N | Raw % | Valid % | Cum. %
## --------------------------------------------
## R.Paliativa | 422 | 28.81 |   28.81 |  28.81
## R.Curativa  | 541 | 36.93 |   36.93 |  65.73
## R.Otra      | 502 | 34.27 |   34.27 | 100.00
## <NA>        |   0 |  0.00 |    <NA> |   <NA>

Se cruzan algunas variables

sjt.xtab(GAT_MAC$class, GAT_MAC$Edadcat, show.col.prc = TRUE)
class Edadcat Total
=65
< 65
R.Paliativa 128
30.7 %
294
28.1 %
422
28.8 %
R.Curativa 132
31.7 %
409
39 %
541
36.9 %
R.Otra 157
37.6 %
345
32.9 %
502
34.3 %
Total 417
100 %
1048
100 %
1465
100 %
χ2=7.061 · df=2 · Cramer’s V=0.069 · p=0.029
GAT_MAC$class.f <- GAT_MAC$class
modelo <- multinom(GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup+
                     Nrel + Nafiliacion + ResidenciaTipo + Estrato + INFOnm + 
                     INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas,
                   data = GAT_MAC)
## # weights:  48 (30 variable)
## initial  value 1609.467003 
## iter  10 value 1539.372774
## iter  20 value 1519.427932
## iter  30 value 1518.535064
## final  value 1518.513933 
## converged

Se estiman los valores p

z_values <- summary(modelo)$coefficients / summary(modelo)$standard.errors
p_values <- 2 * (1 - pnorm(abs(z_values)))  # Prueba z para cada coeficiente
p_values
##            (Intercept)      SQUIMSi    SRADSi Edadcat< 65 Nocup+Ocup   NrelOtra
## R.Curativa 0.220977970 7.938691e-02 0.5055719   0.2783110 0.01725939 0.55638199
## R.Otra     0.001622557 3.001007e-05 0.2642931   0.5926915 0.02812648 0.03068386
##            NafiliacionSubsidiado-No asegurado ResidenciaTipoUrbano EstratoBajo
## R.Curativa                         0.29911634          0.005414589  0.01440886
## R.Otra                             0.06212114          0.267311294  0.15009476
##              INFOnmSi    INFOmSi MAC_AnimalSi  HierbasSi NutricionalesSi
## R.Curativa 0.06654108 0.03049394 2.241753e-06 0.24531901     0.057403838
## R.Otra     0.22941719 0.45120512 2.959605e-02 0.03701061     0.008841626
##            VitaminasSi
## R.Curativa  0.01123795
## R.Otra      0.01201105

Se excluyen la variable SRAD + Edadcat + Nafiliacion

modelo2 <- multinom(GAT_MAC$class.f ~ SQUIM + Nocup+
                     ResidenciaTipo + Estrato + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + INFOnm + Nrel,data = GAT_MAC)
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1542.881392
## iter  20 value 1523.383037
## final  value 1522.331586 
## converged

Valores p

z_values2 <- summary(modelo2)$coefficients / summary(modelo2)$standard.errors
p_values2 <- 2 * (1 - pnorm(abs(z_values2)))  # Prueba z para cada coeficiente
p_values2
##             (Intercept)      SQUIMSi  Nocup+Ocup ResidenciaTipoUrbano
## R.Curativa 0.3450121693 6.959754e-02 0.008575184          0.003512065
## R.Otra     0.0003476365 8.810118e-06 0.058523754          0.182801258
##            EstratoBajo    INFOmSi MAC_AnimalSi  HierbasSi NutricionalesSi
## R.Curativa 0.002055084 0.03439783 1.207936e-06 0.22235853     0.047449810
## R.Otra     0.387282854 0.51659812 1.803399e-02 0.05415065     0.009693912
##            VitaminasSi   INFOnmSi  NrelOtra
## R.Curativa  0.01415932 0.06213981 0.6330594
## R.Otra      0.01378125 0.21814267 0.0284339
library(lmtest)
lrtest(modelo, modelo2)
## Likelihood ratio test
## 
## Model 1: GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup + Nrel + Nafiliacion + 
##     ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal + 
##     Hierbas + Nutricionales + Vitaminas
## Model 2: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato + 
##     INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + 
##     INFOnm + Nrel
##   #Df  LogLik Df  Chisq Pr(>Chisq)
## 1  30 -1518.5                     
## 2  24 -1522.3 -6 7.6353     0.2661

Se ejecuta un 3 modelo

modelo3 <- multinom(GAT_MAC$class.f ~ SQUIM + Nocup+
                     ResidenciaTipo + Estrato + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas  + Nrel,data = GAT_MAC)
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1541.891150
## iter  20 value 1528.894735
## final  value 1528.504841 
## converged
z_values3 <- summary(modelo3)$coefficients / summary(modelo3)$standard.errors
p_values3 <- 2 * (1 - pnorm(abs(z_values3)))  # Prueba z para cada coeficiente
p_values3
##             (Intercept)      SQUIMSi Nocup+Ocup ResidenciaTipoUrbano
## R.Curativa 0.6407256039 6.496077e-02 0.01063005          0.003396393
## R.Otra     0.0001677208 8.799787e-06 0.05015167          0.181745990
##            EstratoBajo    INFOmSi MAC_AnimalSi  HierbasSi NutricionalesSi
## R.Curativa 0.002255399 0.16815946 1.101865e-06 0.19276121      0.03553969
## R.Otra     0.399057258 0.04635155 1.995607e-02 0.04651231      0.01190475
##            VitaminasSi  NrelOtra
## R.Curativa 0.008464415 0.5604208
## R.Otra     0.018996664 0.0332499
library(lmtest)
lrtest(modelo2, modelo3)
## Likelihood ratio test
## 
## Model 1: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato + 
##     INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + 
##     INFOnm + Nrel
## Model 2: GAT_MAC$class.f ~ SQUIM + Nocup + ResidenciaTipo + Estrato + 
##     INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas + 
##     Nrel
##   #Df  LogLik Df  Chisq Pr(>Chisq)   
## 1  24 -1522.3                        
## 2  22 -1528.5 -2 12.347   0.002084 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelo3$AIC
## [1] 3101.01
modelo2$AIC
## [1] 3092.663

Optar por stepwise

library(MASS)
modelo_stepwise <- stepAIC(modelo, direction = "backward", trace = TRUE)
## Start:  AIC=3097.03
## GAT_MAC$class.f ~ SQUIM + SRAD + Edadcat + Nocup + Nrel + Nafiliacion + 
##     ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal + 
##     Hierbas + Nutricionales + Vitaminas
## 
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1544.649536
## iter  20 value 1531.074440
## iter  30 value 1529.981843
## final  value 1529.969372 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1538.420096
## iter  20 value 1519.690787
## iter  30 value 1519.151072
## final  value 1519.140097 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1539.485537
## iter  20 value 1520.814312
## iter  30 value 1520.011100
## final  value 1519.994459 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1539.935140
## iter  20 value 1522.554353
## iter  30 value 1521.937316
## final  value 1521.925548 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1541.248268
## iter  20 value 1522.334361
## iter  30 value 1521.113285
## final  value 1521.095738 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1545.833526
## iter  20 value 1522.304184
## iter  30 value 1520.272132
## final  value 1520.261467 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1536.456611
## iter  20 value 1523.104072
## iter  30 value 1522.639016
## final  value 1522.634624 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1541.658738
## iter  20 value 1527.228352
## iter  30 value 1526.716231
## final  value 1526.711280 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1540.457358
## iter  20 value 1525.183444
## iter  30 value 1524.482687
## final  value 1524.459087 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1543.556086
## iter  20 value 1522.761941
## iter  30 value 1521.172940
## final  value 1521.159242 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1547.413235
## iter  20 value 1531.932476
## iter  30 value 1530.745368
## final  value 1530.718617 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1544.138500
## iter  20 value 1525.316449
## iter  30 value 1524.630639
## final  value 1524.627719 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1542.070486
## iter  20 value 1522.954221
## iter  30 value 1522.124956
## final  value 1522.118789 
## converged
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1545.556992
## iter  20 value 1523.528639
## iter  30 value 1522.638854
## final  value 1522.635532 
## converged
##                  Df    AIC
## - SRAD            2 3094.3
## - Edadcat         2 3096.0
## - Nafiliacion     2 3096.5
## <none>              3097.0
## - Nrel            2 3098.2
## - INFOm           2 3098.3
## - Nocup           2 3099.8
## - Nutricionales   2 3100.2
## - ResidenciaTipo  2 3101.3
## - Vitaminas       2 3101.3
## - INFOnm          2 3104.9
## - Hierbas         2 3105.3
## - Estrato         2 3109.4
## - SQUIM           2 3115.9
## - MAC_Animal      2 3117.4
## # weights:  45 (28 variable)
## initial  value 1609.467003 
## iter  10 value 1538.420096
## iter  20 value 1519.690787
## iter  30 value 1519.151072
## final  value 1519.140097 
## converged
## 
## Step:  AIC=3094.28
## GAT_MAC$class.f ~ SQUIM + Edadcat + Nocup + Nrel + Nafiliacion + 
##     ResidenciaTipo + Estrato + INFOnm + INFOm + MAC_Animal + 
##     Hierbas + Nutricionales + Vitaminas
## 
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1549.078634
## iter  20 value 1532.461601
## iter  30 value 1531.627386
## final  value 1531.626730 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1538.078918
## iter  20 value 1521.057332
## iter  30 value 1520.648161
## final  value 1520.645832 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1539.488944
## iter  20 value 1523.433861
## iter  30 value 1522.557718
## final  value 1522.541605 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1540.598582
## iter  20 value 1522.540459
## iter  30 value 1521.902261
## final  value 1521.898822 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1544.015754
## iter  20 value 1521.879792
## iter  30 value 1520.879055
## final  value 1520.876026 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1534.279879
## iter  20 value 1524.066732
## iter  30 value 1523.258641
## final  value 1523.258592 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1543.174608
## iter  20 value 1528.093237
## iter  30 value 1527.348950
## final  value 1527.342068 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1544.085953
## iter  20 value 1525.922518
## iter  30 value 1525.114599
## final  value 1525.112146 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1542.680386
## iter  20 value 1522.631135
## iter  30 value 1521.771375
## final  value 1521.766656 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1550.201300
## iter  20 value 1532.652568
## iter  30 value 1531.402986
## final  value 1531.401486 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1543.935051
## iter  20 value 1526.594539
## iter  30 value 1525.220014
## final  value 1525.214201 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1540.726397
## iter  20 value 1523.160770
## iter  30 value 1522.602693
## final  value 1522.599954 
## converged
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1541.137472
## iter  20 value 1524.038770
## iter  30 value 1523.327745
## final  value 1523.325329 
## converged
##                  Df    AIC
## - Edadcat         2 3093.3
## - Nafiliacion     2 3093.8
## <none>              3094.3
## - INFOm           2 3095.5
## - Nrel            2 3095.8
## - Nocup           2 3097.1
## - Nutricionales   2 3097.2
## - ResidenciaTipo  2 3098.5
## - Vitaminas       2 3098.7
## - INFOnm          2 3102.2
## - Hierbas         2 3102.4
## - Estrato         2 3106.7
## - MAC_Animal      2 3114.8
## - SQUIM           2 3115.2
## # weights:  42 (26 variable)
## initial  value 1609.467003 
## iter  10 value 1538.078918
## iter  20 value 1521.057332
## iter  30 value 1520.648161
## final  value 1520.645832 
## converged
## 
## Step:  AIC=3093.29
## GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + Nafiliacion + ResidenciaTipo + 
##     Estrato + INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales + 
##     Vitaminas
## 
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1545.549057
## iter  20 value 1533.997145
## iter  30 value 1533.547054
## iter  30 value 1533.547043
## iter  30 value 1533.547043
## final  value 1533.547043 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1541.426032
## iter  20 value 1525.117706
## final  value 1524.690261 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1541.772188
## iter  20 value 1524.870079
## final  value 1523.644605 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1542.881392
## iter  20 value 1523.383037
## final  value 1522.331586 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1535.869439
## iter  20 value 1525.323795
## iter  30 value 1524.695573
## iter  30 value 1524.695572
## iter  30 value 1524.695572
## final  value 1524.695572 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1542.596091
## iter  20 value 1529.836582
## final  value 1529.431710 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1540.775566
## iter  20 value 1527.274828
## iter  30 value 1526.794328
## iter  30 value 1526.794328
## iter  30 value 1526.794328
## final  value 1526.794328 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1542.574476
## iter  20 value 1524.157403
## iter  30 value 1523.305699
## iter  30 value 1523.305697
## iter  30 value 1523.305697
## final  value 1523.305697 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1549.429541
## iter  20 value 1533.813443
## final  value 1532.886805 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1539.035797
## iter  20 value 1527.582605
## final  value 1526.506266 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1541.400450
## iter  20 value 1524.743727
## final  value 1524.105597 
## converged
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1541.376182
## iter  20 value 1525.552266
## final  value 1524.816913 
## converged
##                  Df    AIC
## - Nafiliacion     2 3092.7
## <none>              3093.3
## - INFOm           2 3094.6
## - Nrel            2 3095.3
## - Nutricionales   2 3096.2
## - Nocup           2 3097.4
## - ResidenciaTipo  2 3097.4
## - Vitaminas       2 3097.6
## - Hierbas         2 3101.0
## - INFOnm          2 3101.6
## - Estrato         2 3106.9
## - MAC_Animal      2 3113.8
## - SQUIM           2 3115.1
## # weights:  39 (24 variable)
## initial  value 1609.467003 
## iter  10 value 1542.881392
## iter  20 value 1523.383037
## final  value 1522.331586 
## converged
## 
## Step:  AIC=3092.66
## GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + ResidenciaTipo + Estrato + 
##     INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales + Vitaminas
## 
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1548.134924
## iter  20 value 1535.886722
## final  value 1535.626568 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1547.040504
## iter  20 value 1526.488754
## final  value 1525.957189 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1548.649163
## iter  20 value 1526.421085
## final  value 1525.088754 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1541.258321
## iter  20 value 1527.363418
## final  value 1526.766362 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1541.820244
## iter  20 value 1532.476720
## final  value 1531.612031 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1541.891150
## iter  20 value 1528.894735
## final  value 1528.504841 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1549.987974
## iter  20 value 1526.222150
## final  value 1524.940633 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1558.168422
## iter  20 value 1535.730526
## final  value 1535.079202 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1546.452652
## iter  20 value 1528.972255
## final  value 1528.013219 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1547.396007
## iter  20 value 1526.947712
## final  value 1525.929650 
## converged
## # weights:  36 (22 variable)
## initial  value 1609.467003 
## iter  10 value 1545.285525
## iter  20 value 1526.734759
## final  value 1526.241908 
## converged
##                  Df    AIC
## <none>              3092.7
## - INFOm           2 3093.9
## - Nrel            2 3094.2
## - Nutricionales   2 3095.9
## - Nocup           2 3095.9
## - Vitaminas       2 3096.5
## - ResidenciaTipo  2 3097.5
## - Hierbas         2 3100.0
## - INFOnm          2 3101.0
## - Estrato         2 3107.2
## - MAC_Animal      2 3114.2
## - SQUIM           2 3115.2
summary(modelo_stepwise)
## Call:
## multinom(formula = GAT_MAC$class.f ~ SQUIM + Nocup + Nrel + ResidenciaTipo + 
##     Estrato + INFOnm + INFOm + MAC_Animal + Hierbas + Nutricionales + 
##     Vitaminas, data = GAT_MAC)
## 
## Coefficients:
##            (Intercept)    SQUIMSi Nocup+Ocup    NrelOtra ResidenciaTipoUrbano
## R.Curativa  -0.5438082 -0.6630189  0.3824717 -0.07322162           -0.4893526
## R.Otra       1.9054560 -1.4749685  0.2775858 -0.35000488           -0.2372652
##            EstratoBajo   INFOnmSi   INFOmSi MAC_AnimalSi  HierbasSi
## R.Curativa   0.4642266  0.7453211 0.5453104    0.8465776  0.1697246
## R.Otra      -0.1259393 -0.4553146 0.1752311    0.4397541 -0.2676301
##            NutricionalesSi VitaminasSi
## R.Curativa       0.2731687   0.3381169
## R.Otra           0.3606175   0.3436759
## 
## Std. Errors:
##            (Intercept)   SQUIMSi Nocup+Ocup  NrelOtra ResidenciaTipoUrbano
## R.Curativa   0.5758800 0.3653961  0.1455072 0.1533677            0.1676465
## R.Otra       0.5327052 0.3318646  0.1467346 0.1597286            0.1781030
##            EstratoBajo  INFOnmSi   INFOmSi MAC_AnimalSi HierbasSi
## R.Curativa   0.1506176 0.3995724 0.2577840    0.1743963 0.1390865
## R.Otra       0.1456694 0.3697290 0.2701689    0.1859489 0.1389832
##            NutricionalesSi VitaminasSi
## R.Curativa       0.1378065   0.1378271
## R.Otra           0.1394197   0.1395403
## 
## Residual Deviance: 3044.663 
## AIC: 3092.663

OR

exp(coef(modelo2))
##            (Intercept)   SQUIMSi Nocup+Ocup ResidenciaTipoUrbano EstratoBajo
## R.Curativa   0.5805332 0.5152933   1.465903            0.6130232   1.5907834
## R.Otra       6.7224722 0.2287859   1.319939            0.7887821   0.8816684
##             INFOmSi MAC_AnimalSi HierbasSi NutricionalesSi VitaminasSi
## R.Curativa 1.725144     2.331653 1.1849785        1.314122    1.402304
## R.Otra     1.191521     1.552325 0.7651908        1.434215    1.410122
##             INFOnmSi  NrelOtra
## R.Curativa 2.1071178 0.9293948
## R.Otra     0.6342484 0.7046847
tab_model(modelo2)
  Dependent variable
Predictors Odds Ratios CI p Response
(Intercept) 0.58 0.19 – 1.80 0.345 R.Curativa
SQUIM [Si] 0.52 0.25 – 1.06 0.070 R.Curativa
Nocup [+Ocup] 1.47 1.10 – 1.95 0.009 R.Curativa
ResidenciaTipo [Urbano] 0.61 0.44 – 0.85 0.004 R.Curativa
Estrato [Bajo] 1.59 1.18 – 2.14 0.002 R.Curativa
INFOm [Si] 1.73 1.04 – 2.86 0.035 R.Curativa
MAC Animal [Si] 2.33 1.66 – 3.28 <0.001 R.Curativa
Hierbas [Si] 1.18 0.90 – 1.56 0.223 R.Curativa
Nutricionales [Si] 1.31 1.00 – 1.72 0.048 R.Curativa
Vitaminas [Si] 1.40 1.07 – 1.84 0.014 R.Curativa
INFOnm [Si] 2.11 0.96 – 4.61 0.062 R.Curativa
Nrel [Otra] 0.93 0.69 – 1.26 0.633 R.Curativa
(Intercept) 6.72 0.19 – 1.80 0.345 R.Curativa
SQUIM [Si] 0.23 0.25 – 1.06 0.070 R.Curativa
Nocup [+Ocup] 1.32 1.10 – 1.95 0.009 R.Curativa
ResidenciaTipo [Urbano] 0.79 0.44 – 0.85 0.004 R.Curativa
Estrato [Bajo] 0.88 1.18 – 2.14 0.002 R.Curativa
INFOm [Si] 1.19 1.04 – 2.86 0.035 R.Curativa
MAC Animal [Si] 1.55 1.66 – 3.28 <0.001 R.Curativa
Hierbas [Si] 0.77 0.90 – 1.56 0.223 R.Curativa
Nutricionales [Si] 1.43 1.00 – 1.72 0.048 R.Curativa
Vitaminas [Si] 1.41 1.07 – 1.84 0.014 R.Curativa
INFOnm [Si] 0.63 0.96 – 4.61 0.062 R.Curativa
Nrel [Otra] 0.70 0.69 – 1.26 0.633 R.Curativa
Observations 1465
R2 / R2 adjusted 0.050 / 0.049
library(gtsummary)
tbl_regression(modelo2, exponentiate = TRUE, add_estimate_to_reference_rows=TRUE)  %>% add_global_p()
Characteristic OR1 95% CI1 p-value
R.Curativa
SQUIM

<0.001
    No 1.00
    Si 0.52 0.25, 1.05
Nocup

0.027
    -Ocup 1.00
    +Ocup 1.47 1.10, 1.95
ResidenciaTipo

0.012
    Rural 1.00
    Urbano 0.61 0.44, 0.85
Estrato

<0.001
    Alto 1.00
    Bajo 1.59 1.18, 2.14
INFOm

0.074
    No 1.00
    Si 1.73 1.04, 2.86
MAC_Animal

<0.001
    No 1.00
    Si 2.33 1.66, 3.28
Hierbas

0.003
    No 1.00
    Si 1.18 0.90, 1.56
Nutricionales

0.027
    No 1.00
    Si 1.31 1.00, 1.72
Vitaminas

0.020
    No 1.00
    Si 1.40 1.07, 1.84
INFOnm

0.002
    No 1.00
    Si 2.11 0.96, 4.61
Nrel

0.063
    Católica 1.00
    Otra 0.93 0.69, 1.26
R.Otra
SQUIM

<0.001
    No 1.00
    Si 0.23 0.12, 0.44
Nocup

0.027
    -Ocup 1.00
    +Ocup 1.32 0.99, 1.76
ResidenciaTipo

0.012
    Rural 1.00
    Urbano 0.79 0.56, 1.12
Estrato

<0.001
    Alto 1.00
    Bajo 0.88 0.66, 1.17
INFOm

0.074
    No 1.00
    Si 1.19 0.70, 2.02
MAC_Animal

<0.001
    No 1.00
    Si 1.55 1.08, 2.23
Hierbas

0.003
    No 1.00
    Si 0.77 0.58, 1.00
Nutricionales

0.027
    No 1.00
    Si 1.43 1.09, 1.88
Vitaminas

0.020
    No 1.00
    Si 1.41 1.07, 1.85
INFOnm

0.002
    No 1.00
    Si 0.63 0.31, 1.31
Nrel

0.063
    Católica 1.00
    Otra 0.70 0.52, 0.96
1 OR = Odds Ratio, CI = Confidence Interval