library(rmarkdown)
library(markdown)
library(tidyverse)
library(finalfit)
library(survival)
library(survminer)
La courbe de survie de Kaplan-Meier s’obtient avec la fonction survfit de l’extension survival.
Les données concernent tous les patients en prenant en compte le delais de pregression à partir du debut de brigatinib
PFS_s_Br<-survfit(Surv(delais_prog_sous_Br,Prog_sous_Brigatinib )~1,data=t_survie_1)
PFS_s_Br
## Call: survfit(formula = Surv(delais_prog_sous_Br, Prog_sous_Brigatinib) ~
## 1, data = t_survie_1)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 24 23 0.32 0.23 0.59
ggsurvplot(PFS_s_Br,xlab="Time(years)")
ggsurvplot(PFS_s_Br, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = t_survie_1,xlab="Time(years)")
## Warning in .pvalue(fit, data = data, method = method, pval = pval, pval.coord = pval.coord, : There are no survival curves to be compared.
## This is a null model.
Ici le meme graphe mais avec la ligne de la médiane
plot(PFS_s_Br,,xlab="Time(year)",ylab="Survie")
abline(v=0.32,col="blue")
Les données concernent tous les patients en prenant en compte le delais de pregression à partir du debut de brigatinib
PFS_s_Br_m<-survfit(Surv(delais_prog_sous_Br_mois,Prog_sous_Brigatinib )~1,data=t_survie_1)
PFS_s_Br_m
## Call: survfit(formula = Surv(delais_prog_sous_Br_mois, Prog_sous_Brigatinib) ~
## 1, data = t_survie_1)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 24 23 3.84 2.76 7.08
ggsurvplot(PFS_s_Br_m,xlab="Time(Month)")
Ici le meme graphe mais avec la ligne de la médiane
plot(PFS_s_Br_m,,xlab="Time(month)",ylab="Survie")
abline(v=3.84,col="blue")
ggsurvplot(PFS_s_Br_m, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = t_survie_1,xlab="Time(month)")
## Warning in .pvalue(fit, data = data, method = method, pval = pval, pval.coord = pval.coord, : There are no survival curves to be compared.
## This is a null model.
==> verifier les données à partir de ce point
Surv_met_SNC_2025 <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/Theses_finies/these_Jean/update_2025/Surv_met_SNC_2025.csv", stringsAsFactors=TRUE)
PFS_Met_SNC<-Surv_met_SNC_2025
PFS_Met_SNC<-survfit(Surv(delais_prog_sous_Br,Prog_sous_Brigatinib )~1,data=Surv_met_SNC_2025)
PFS_Met_SNC
## Call: survfit(formula = Surv(delais_prog_sous_Br, Prog_sous_Brigatinib) ~
## 1, data = Surv_met_SNC_2025)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 24 23 0.32 0.23 0.59
ggsurvplot(PFS_Met_SNC,xlab="Time(years)")
Ici le meme graphe mais avec la ligne de la médiane
plot(PFS_Met_SNC,,xlab="Time(years)",ylab="Survie sans progression")
abline(v=0.28,col="blue")
PFS_Met_SNC_m<-survfit(Surv(delais_prog_sous_Br_mois,Prog_sous_Brigatinib )~1,data=Surv_met_SNC_2025)
PFS_Met_SNC_m
## Call: survfit(formula = Surv(delais_prog_sous_Br_mois, Prog_sous_Brigatinib) ~
## 1, data = Surv_met_SNC_2025)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 24 23 3.84 2.76 7.08
ggsurvplot(PFS_Met_SNC_m,xlab="Time(month)")
Ici le meme graphe mais avec la ligne de la médiane
plot(PFS_Met_SNC_m,xlab="Time(month)",ylab="Survie sans progression")
abline(v=3.36,col="blue")
PFS_Met_SNC_B<-survfit(Surv(delais_prog_sous_Br,Prog_sous_Brigatinib)~meta_cerbrale_av_Brigatinib,data=t_survie_1)
PFS_Met_SNC_B
## Call: survfit(formula = Surv(delais_prog_sous_Br, Prog_sous_Brigatinib) ~
## meta_cerbrale_av_Brigatinib, data = t_survie_1)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## meta_cerbrale_av_Brigatinib=Non 6 5 0.815 0.33 NA
## meta_cerbrale_av_Brigatinib=Oui 18 18 0.260 0.19 0.59
ggsurvplot(PFS_Met_SNC_B,xlab="Time(years)")
plot(PFS_Met_SNC_B,xlab="Time(years)",ylab="Survie sous brigatinib")
abline(v=c(1.12,0.28), col=c("blue","red"))
survdiff(Surv(delais_prog_sous_Br,Prog_sous_Brigatinib)~meta_cerbrale_av_Brigatinib,data=t_survie_1)
## Call:
## survdiff(formula = Surv(delais_prog_sous_Br, Prog_sous_Brigatinib) ~
## meta_cerbrale_av_Brigatinib, data = t_survie_1)
##
## n=24, 1 observation effacée parce que manquante.
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## meta_cerbrale_av_Brigatinib=Non 6 5 7.64 0.910 1.46
## meta_cerbrale_av_Brigatinib=Oui 18 18 15.36 0.452 1.46
##
## Chisq= 1.5 on 1 degrees of freedom, p= 0.2
ggsurvplot(PFS_Met_SNC_B, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = t_survie_1,xlab="Time(years)")
la courbe montre qu’il n’ya pas vraiment de difference de progression enre les patients ayant une meta cerebrale avant Brigatinib et patints n’ayant pas de meta cérébrales avant brigatinib
Surv_1_Update_brg_snc_V4 <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/Theses_finies/these_Jean/update_2025/Surv_1_Update_brg_snc_V4.csv", stringsAsFactors=TRUE)
PFS_SNC_Br<-survfit(Surv(delais_prog_sous_Br_mois,Prog_sous_Brigatinib)~1,data=Surv_1_Update_brg_snc_V4)
PFS_SNC_Br
## Call: survfit(formula = Surv(delais_prog_sous_Br_mois, Prog_sous_Brigatinib) ~
## 1, data = Surv_1_Update_brg_snc_V4)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 18 18 3.12 2.28 7.08
ggsurvplot(PFS_SNC_Br,xlab="Time(Month)")
PFS_SNC_Br<-survfit(Surv(delais_prog_sous_Br_mois,Prog_sous_Brigatinib )~1,data=Surv_1_Update_brg_snc_V4)
PFS_SNC_Br
## Call: survfit(formula = Surv(delais_prog_sous_Br_mois, Prog_sous_Brigatinib) ~
## 1, data = Surv_1_Update_brg_snc_V4)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## [1,] 18 18 3.12 2.28 7.08
ggsurvplot(PFS_SNC_Br,xlab="Time(Month)")
PFS_Met_SNC_B_m<-survfit(Surv(delais_prog_sous_Br_mois,Prog_sous_Brigatinib)~meta_cerbrale_av_Brigatinib,data=t_survie_1)
PFS_Met_SNC_B_m
## Call: survfit(formula = Surv(delais_prog_sous_Br_mois, Prog_sous_Brigatinib) ~
## meta_cerbrale_av_Brigatinib, data = t_survie_1)
##
## 1 observation effacée parce que manquante
## n events median 0.95LCL 0.95UCL
## meta_cerbrale_av_Brigatinib=Non 6 5 9.78 3.96 NA
## meta_cerbrale_av_Brigatinib=Oui 18 18 3.12 2.28 7.08
ggsurvplot(PFS_Met_SNC_B_m,xlab="Time(month)")
plot(PFS_Met_SNC_B_m,xlab="Time(month)",ylab="Survie sous brigatinib")
abline(v=c(13.44,3.36), col=c("blue","red"))
PFS_global_Br<-survfit(Surv(delais_Br_dernieres_nouvelles,Patient_DCD)~1,data=t_survie_1)
PFS_global_Br
## Call: survfit(formula = Surv(delais_Br_dernieres_nouvelles, Patient_DCD) ~
## 1, data = t_survie_1)
##
## n events median 0.95LCL 0.95UCL
## [1,] 25 11 1.74 1.01 NA
ggsurvplot(PFS_global_Br,xlab="Time(years)")
Ici le meme graphe mais avec la ligne de la médiane
plot(PFS_global_Br,xlab="Time(years)",ylab="Survie globale")
abline(v=2.74,col="blue")
PFS_global<-survfit(Surv(delais_diag_dernieres_nouvelles,Patient_DCD)~1,data=t_survie_1)
PFS_global
## Call: survfit(formula = Surv(delais_diag_dernieres_nouvelles, Patient_DCD) ~
## 1, data = t_survie_1)
##
## n events median 0.95LCL 0.95UCL
## [1,] 25 11 6.14 4.03 NA
ggsurvplot(PFS_global,xlab="Time(years)")
plot(PFS_global,xlab="Time(years)",ylab="Survie")
abline(v=6.14,col="blue")