Note: d1 is the name of my data. As you’ll see, it has 6149 rows of 221 variables. About half of the variables were created or edited significantly by me.
d1 has a row of data for every phone call we attempted. So a single child might be represented 4 times if we called them 3 times before the answered.
You’ll see that the last command includes a filter - only including those that completed the survey, and those that lived in the relevant areas.
d1 %>% select(!rchid:is_respondent) %>% glimpse()
Rows: 6,149
Columns: 207
$ SubmissionDate <date> 2024-06-25, 2024-06-25, 2024-06-25, 2024-…
$ starttime <date> 2024-06-25, 2024-06-25, 2024-06-25, 2024-…
$ endtime <date> 2024-06-25, 2024-06-25, 2024-06-25, 2024-…
$ duration <dbl> 929, 78, 78, 149, 368, 223, 143, 281, 732,…
$ resp_sno <dbl> 1115, 1116, 1117, 1723, 1724, 1725, 1726, …
$ get_mother <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ get_mother_verification <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ has_number <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ mother_number <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ speak_other <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ speak_other_name <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ consent <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ have_vaccination_card <chr> "yes", NA, NA, NA, NA, NA, NA, NA, "yes", …
$ get_vacc_card <chr> "yes", NA, NA, NA, NA, NA, NA, NA, "yes", …
$ no_card_reason <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ age <dbl> 30, NA, NA, NA, NA, NA, NA, NA, 33, NA, NA…
$ gender <chr> "female", NA, NA, NA, NA, NA, NA, NA, "mal…
$ religion <chr> "hindu", NA, NA, NA, NA, NA, NA, NA, "othe…
$ caste <fct> FC, NA, NA, NA, NA, NA, NA, NA, OBC, NA, N…
$ education <chr> "degree", NA, NA, NA, NA, NA, NA, NA, "deg…
$ literacy <chr> "literate", "not literate", "not literate"…
$ occupation <chr> "agri", NA, NA, NA, NA, NA, NA, NA, "agri"…
$ occupation_agri <chr> "owns", NA, NA, NA, NA, NA, NA, NA, "owns"…
$ occupation_agri_2 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ child_gender <chr> "female", NA, NA, NA, NA, NA, NA, NA, "mal…
$ dob_stated <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ child_age <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ child_age_other <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ child_location <chr> "always", NA, NA, NA, NA, NA, NA, NA, "alw…
$ child_migration_pattern <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ age_or_date <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ child_migration_1_calendar <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ child_migration_2_calendar <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ vacc_visits <fct> जन्मानंतर सहा पेक्षा जास्त वेळा गेलो, NA, NA, NA,…
$ remaining_vaccines <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ next_vaccination <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ penta1_stated <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ penta2_stated <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ penta3_stated <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ mr1_stated <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ mr2_stated <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, NA…
$ mobilised <dbl> 0, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA, …
$ reminded <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_asha <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_anm <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_aww <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_doc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_fam <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_others <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded_7 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ reminded__9999 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_asha <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_anm <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_aww <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_doc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_fam <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_others <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status_7 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ checked_vaccine_status__9999 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_asha <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_anm <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_aww <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_doc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_fam <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_others <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info_7 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vaccine_info__9999 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ amb_presence <dbl> NA, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA,…
$ know_asha <dbl> 1, NA, NA, NA, NA, NA, NA, NA, 1, NA, NA, …
$ asha_convo <chr> NA, NA, NA, NA, NA, NA, NA, NA, "this week…
$ convo_initiation <dbl> NA, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA,…
$ belief_one <fct> नक्कीच उद्याच्या लसीकरणासाठी जाईन, NA, NA, NA…
$ get_vacc_card_later <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ get_card_appointment <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ get_card_pic <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ which_phone_pic <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ note_phone <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ iscomplete <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, ना…
$ callback <fct> हो, NA, NA, NA, NA, NA, NA, NA, हो, NA, ना…
$ surveyorcomment <chr> "*****", NA, NA, NA, NA, NA, NA, NA, NA, N…
$ instanceID <chr> "uuid:85b919a9-3fe4-4a51-aa90-a97feb5544be…
$ formdef_version <dbl> 2406251337, 2406251337, 2406251337, 240625…
$ penta1_date <date> 2022-07-14, NA, NA, NA, NA, NA, NA, NA, 2…
$ penta2_date <date> 2022-08-11, NA, NA, NA, NA, NA, NA, NA, 2…
$ penta3_date <date> 2022-10-10, NA, NA, NA, NA, NA, NA, NA, 2…
$ mr1_date <date> 2023-03-13, NA, NA, NA, NA, NA, NA, NA, 2…
$ mr2_date <date> 2023-11-13, NA, NA, NA, NA, NA, NA, NA, 2…
$ dob_rch <date> 2022-05-30, 2022-08-17, 2022-07-30, 2023-…
$ anm_name <chr> "Rupali Dattatray Kumthekar(ID-120227)(Mo…
$ asha_name <chr> "Nilam Vinod Shirke(ID-72234)(MobNo.-97635…
$ registrationdate <date> 2022-05-30, 2022-08-17, 2022-07-30, 2023-…
$ weight <dbl> 2.800, 2.800, 3.200, 2.400, 2.400, 2.100, …
$ bcg <date> 2022-06-01, 2022-08-19, 2022-08-02, 2023-…
$ opv0 <date> 2022-06-01, 2022-08-19, 2022-08-02, 2023-…
$ penta1_rch <date> 2022-07-11, 2022-10-07, 2022-09-12, 2023-…
$ penta2_rch <date> 2022-08-08, 2022-11-05, 2022-11-11, 2023-…
$ penta3_rch <date> 2022-09-12, 2022-12-02, 2022-12-08, 2023-…
$ mr1_rch <date> 2023-03-13, 2023-06-21, 2023-08-05, NA, N…
$ mr2_rch <date> 2023-10-09, 2024-03-02, 2023-11-12, NA, N…
$ block_village.x <chr> "Wai(18) Degaon (37904)", "Wai(18) Kalang…
$ block_cat <chr> "Wai", "Wai", "Wai", "Wai", "Wai", "Khanda…
$ health_block_r <chr> "Wai", "Wai", "Wai", "Koregaon", "Wai", "K…
$ block_village.y <chr> "Wai Degaon (37904)", "Wai Kalangwadi (3…
$ category_rch <chr> "pre_treat_wai", "pre_treat_wai", "pre_tre…
$ dob_actual <date> 2022-05-30, 2022-08-17, 2022-07-30, 2023-…
$ penta1_diff <dbl> 3, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA, …
$ dob_diff <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ penta2_diff <dbl> 3, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA, …
$ penta3_diff <dbl> 28, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA,…
$ mr1_diff <dbl> 0, NA, NA, NA, NA, NA, NA, NA, -2, NA, NA,…
$ mr2_diff <dbl> 35, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ big_dob <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
$ big_penta1 <lgl> FALSE, NA, NA, NA, NA, NA, NA, NA, FALSE, …
$ big_penta2 <lgl> FALSE, NA, NA, NA, NA, NA, NA, NA, FALSE, …
$ big_penta3 <lgl> FALSE, NA, NA, NA, NA, NA, NA, NA, FALSE, …
$ big_mr1 <lgl> FALSE, NA, NA, NA, NA, NA, NA, NA, FALSE, …
$ big_mr2 <lgl> FALSE, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ big_count <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ age_diff <drtn> 757 days, 678 days, 696 days, 446 days, 7…
$ agereg <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ age1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ age2 <dbl> 757, 678, 696, 446, 744, 707, 474, 714, 69…
$ agesurv <dbl> 757, 678, 696, 446, 744, 707, 474, 714, 69…
$ prepost <chr> "pre", "pre", "pre", "post", "pre", "post"…
$ treatment <dbl> 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, …
$ edu2 <fct> degree, NA, NA, NA, NA, NA, NA, NA, degree…
$ occupation_simp <chr> "farms own land", NA, NA, NA, NA, NA, NA, …
$ occupation_simp2 <fct> farms own land, NA, NA, NA, NA, NA, NA, NA…
$ card <chr> "has & got card", NA, NA, NA, NA, NA, NA, …
$ penta1_improv <chr> "both", "RCH only", "RCH only", "RCH only"…
$ penta2_improv <chr> "both", "RCH only", "RCH only", "RCH only"…
$ penta3_improv <chr> "both", "RCH only", "RCH only", "RCH only"…
$ mr1_improv <chr> "both", "RCH only", "RCH only", "neither",…
$ mr2_improv <chr> "both", "RCH only", "RCH only", "neither",…
$ penta1_date_joint <date> 2022-07-14, 2022-10-07, 2022-09-12, 2023-…
$ penta2_date_joint <date> 2022-08-11, 2022-11-05, 2022-11-11, 2023-…
$ penta3_date_joint <date> 2022-10-10, 2022-12-02, 2022-12-08, 2023-…
$ mr1_date_joint <date> 2023-03-13, 2023-06-21, 2023-08-05, NA, N…
$ mr2_date_joint <date> 2023-11-13, 2024-03-02, 2023-11-12, NA, N…
$ penta1_age <dbl> 45, NA, NA, NA, NA, NA, NA, NA, 66, NA, NA…
$ penta2_age <dbl> 73, NA, NA, NA, NA, NA, NA, NA, 94, NA, NA…
$ penta3_age <dbl> 133, NA, NA, NA, NA, NA, NA, NA, 122, NA, …
$ mr1_age <dbl> 287, NA, NA, NA, NA, NA, NA, NA, 365, NA, …
$ mr2_age <dbl> 532, NA, NA, NA, NA, NA, NA, NA, 521, NA, …
$ penta1_time <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ penta2_time <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ penta3_time <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ mr1_time <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ mr2_time <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ penta1_age_joint <dbl> 45, 51, 44, 68, 50, NA, NA, 70, 66, 61, 47…
$ penta2_age_joint <dbl> 73, 80, 104, 96, 82, NA, NA, 98, 94, 89, 7…
$ penta3_age_joint <dbl> 133, 107, 131, 124, 114, NA, NA, 133, 122,…
$ mr1_age_joint <dbl> 287, 308, 371, NA, NA, NA, NA, NA, 365, 33…
$ mr2_age_joint <dbl> 532, 563, 470, NA, NA, NA, NA, NA, 521, NA…
$ penta1_time_joint <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, …
$ penta2_time_joint <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, …
$ penta3_time_joint <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, …
$ mr1_time_joint <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, …
$ mr2_time_joint <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, …
$ vacc_stated <dbl> 6, NA, NA, NA, NA, NA, NA, NA, 3, NA, NA, …
$ penta1_implied <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ penta2_implied <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ penta3_implied <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
$ mr1_implied <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ mr2_implied <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ base_sub_penta1 <dbl> 100.00000, 100.00000, 66.66667, 100.00000,…
$ base_sub_penta2 <dbl> 100.00000, 100.00000, 66.66667, 100.00000,…
$ base_sub_penta3 <dbl> 100.00000, 100.00000, 66.66667, 50.00000, …
$ base_sub_mr1 <dbl> 100.00000, 100.00000, 66.66667, 50.00000, …
$ base_sub_mr2 <dbl> 100.00000, 100.00000, 66.66667, 0.00000, 1…
$ base_sub_penta1_joint <dbl> 100.00000, 100.00000, 100.00000, 100.00000…
$ base_sub_penta2_joint <dbl> 100.00000, 100.00000, 100.00000, 100.00000…
$ base_sub_penta3_joint <dbl> 100.00000, 100.00000, 100.00000, 50.00000,…
$ base_sub_mr1_joint <dbl> 100.00000, 100.00000, 100.00000, 50.00000,…
$ base_sub_mr2_joint <dbl> 100.00000, 100.00000, 100.00000, 0.00000, …
$ base_phc_penta1 <dbl> 93.75000, 93.75000, 93.75000, 91.66667, 81…
$ base_phc_penta2 <dbl> 95.31250, 95.31250, 95.31250, 91.66667, 81…
$ base_phc_penta3 <dbl> 93.75000, 93.75000, 93.75000, 75.00000, 81…
$ base_phc_mr1 <dbl> 84.37500, 84.37500, 84.37500, 72.22222, 72…
$ base_phc_mr2 <dbl> 35.93750, 35.93750, 35.93750, 25.00000, 27…
$ base_phc_penta1_joint <dbl> 95.31250, 95.31250, 95.31250, 91.66667, 10…
$ base_phc_penta2_joint <dbl> 96.87500, 96.87500, 96.87500, 91.66667, 10…
$ base_phc_penta3_joint <dbl> 95.31250, 95.31250, 95.31250, 75.00000, 10…
$ base_phc_mr1_joint <dbl> 85.93750, 85.93750, 85.93750, 72.22222, 90…
$ base_phc_mr2_joint <dbl> 37.50000, 37.50000, 37.50000, 27.77778, 27…
$ amb_recruit <date> 2023-10-04, 2023-10-04, 2023-10-04, 2023-…
$ amb_age <dbl> 492, 413, 431, 181, 479, 178, 209, 449, 42…
$ amb_treat_time <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ numb_amb <dbl> 0, 3, 0, 0, 3, 0, 4, 0, 0, 0, 0, 0, 0, 3, …
$ amb_in_vill <dbl> 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, …
$ base_sub_penta1_implied <dbl> 80.00000, 100.00000, 85.71429, 80.00000, 1…
$ base_sub_penta2_implied <dbl> 80.00000, 100.00000, 85.71429, 80.00000, 1…
$ base_sub_penta3_implied <dbl> 80.00000, 100.00000, 85.71429, 80.00000, 1…
$ base_sub_mr1_implied <dbl> 80.00000, 100.00000, 85.71429, 80.00000, 1…
$ base_sub_mr2_implied <dbl> 60.00000, 75.00000, 85.71429, 80.00000, 83…
$ base_phc_penta1_implied <dbl> 88.59649, 88.59649, 88.59649, 82.27848, 94…
$ base_phc_penta2_implied <dbl> 88.59649, 88.59649, 88.59649, 82.27848, 94…
$ base_phc_penta3_implied <dbl> 88.59649, 88.59649, 88.59649, 82.27848, 94…
$ base_phc_mr1_implied <dbl> 83.33333, 83.33333, 83.33333, 73.41772, 94…
$ base_phc_mr2_implied <dbl> 49.12281, 49.12281, 49.12281, 45.56962, 63…
$ nom_surv <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ asha_convo_this_month <dbl> NA, NA, NA, NA, NA, NA, NA, NA, 1, NA, NA,…
$ belief_one_code <dbl> 1, NA, NA, NA, NA, NA, NA, NA, 1, NA, NA, …
$ mobilised_others <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ got_card_code <dbl> 1, NA, NA, NA, NA, NA, NA, NA, 1, NA, NA, …
d1 %>% select(!rchid:is_respondent) %>% head()
d1 %>% summary()
SubmissionDate starttime endtime duration
Min. :2024-06-25 Min. :2024-06-25 Min. :2024-06-25 Min. : 7
1st Qu.:2024-07-04 1st Qu.:2024-07-04 1st Qu.:2024-07-04 1st Qu.: 48
Median :2024-07-15 Median :2024-07-12 Median :2024-07-12 Median : 77
Mean :2024-07-12 Mean :2024-07-11 Mean :2024-07-12 Mean : 228
resp_sno rchid mother_name father_name
Min. : 811 Length:6149 Length:6149 Length:6149
1st Qu.:1289 Class :character Class :character Class :character
Median :1786 Mode :character Mode :character Mode :character
Mean :1797
enrollee_phonenumber village_surv block health_centre
Length:6149 Length:6149 Length:6149 Length:6149
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
health_subcentre category_surv surveyor_name
Length:6149 Length:6149 Length:6149
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
call_status call_later
उचलला :1011 Min. :1900-06-28
प्रतिसादकर्त्याने नंतर कॉल करण्यास सांगितल: 262 1st Qu.:2024-07-02
अवैध क्रमांक / चुकीचा क्रमांक : 314 Median :2024-07-15
नंबर अगम्य/स्विच्ड ऑफ :1547 Mean :2024-01-21
verify_respondent is_respondent get_mother get_mother_verification
नाही: 152 Length:6149 नाही: 87 इतर [निर्दिष्ट करा]: 4
हो : 853 Class :character हो : 4 father_name : 0
NA's:5144 Mode :character NA's:6058 mother_name : 0
NA's :6145
has_number mother_number speak_other speak_other_name consent
नाही: 34 Length:6149 नाही: 24 Length:6149 नाही: 67
हो : 57 Class :character हो : 9 Class :character हो : 704
NA's:6058 Mode :character NA's:6116 Mode :character NA's:5378
have_vaccination_card get_vacc_card no_card_reason age
Length:6149 Length:6149 Length:6149 Min. :20.00
Class :character Class :character Class :character 1st Qu.:26.00
Mode :character Mode :character Mode :character Median :29.00
Mean :29.47
gender religion caste education
Length:6149 Length:6149 OBC : 130 Length:6149
Class :character Class :character FC : 395 Class :character
Mode :character Mode :character SC/ST: 158 Mode :character
NA's :5466
literacy occupation occupation_agri occupation_agri_2
Length:6149 Length:6149 Length:6149 शेतकरी : 0
Class :character Class :character Class :character शेत मजूर : 0
Mode :character Mode :character Mode :character उत्तर दिले नाही: 1
NA's :6148
child_gender dob_stated child_age
Length:6149 माहिती नाही : 52 Length:6149
Class :character इतर [निर्दिष्ट करा]: 79 Class :character
Mode :character child_dob : 0 Mode :character
NA's :6018
child_age_other child_location child_migration_pattern
Length:6149 Length:6149 Length:6149
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
age_or_date child_migration_1_calendar child_migration_2_calendar
बाळाचे वय : 394 Min. :2023-08-01 Min. :2023-07-01
कॅलेंडर महिना आणि वर्ष: 2 1st Qu.:2023-08-01 1st Qu.:2023-07-01
NA's :5753 Median :2023-08-01 Median :2023-07-01
Mean :2023-08-01 Mean :2023-07-01
vacc_visits remaining_vaccines
जन्मानंतर पाच वेळा गेलो : 226 Min. :0.000
जन्मानंतर चार वेळा गेलो : 161 1st Qu.:0.000
जन्मानंतर सहा पेक्षा जास्त वेळा गेलो: 79 Median :1.000
माहीत नाही : 65 Mean :1.333
next_vaccination penta1_stated penta2_stated
माहीत नाही : 9 नाही: 9 नाही: 1
या महिन्यात किंवा पुढच्या महिन्यात : 2 हो : 317 हो : 314
3-5 महिन्यांनी : 4 NA's:5823 NA's:5834
6 महिने किंवा अधिक : 0
penta3_stated mr1_stated mr2_stated mobilised reminded
नाही: 0 नाही: 9 नाही: 152 Min. :0.000 Length:6149
हो : 314 हो : 305 हो : 151 1st Qu.:0.000 Class :character
NA's:5835 NA's:5835 NA's:5846 Median :0.000 Mode :character
Mean :0.472
reminded_asha reminded_anm reminded_aww reminded_doc reminded_fam
No : 12 No : 241 No : 162 No : 247 No : 238
Yes : 263 Yes : 34 Yes : 113 Yes : 28 Yes : 37
NA's:5874 NA's:5874 NA's:5874 NA's:5874 NA's:5874
reminded_others reminded_7 reminded__9999 checked_vaccine_status
No : 263 No : 275 No : 275 Length:6149
Yes : 12 Yes : 0 Yes : 0 Class :character
NA's:5874 NA's:5874 NA's:5874 Mode :character
checked_vaccine_status_asha checked_vaccine_status_anm
No : 46 No : 234
Yes : 229 Yes : 41
NA's:5874 NA's:5874
checked_vaccine_status_aww checked_vaccine_status_doc checked_vaccine_status_fam
No : 155 No : 228 No : 231
Yes : 120 Yes : 47 Yes : 44
NA's:5874 NA's:5874 NA's:5874
checked_vaccine_status_others checked_vaccine_status_7
No : 258 No : 266
Yes : 17 Yes : 9
NA's:5874 NA's:5874
checked_vaccine_status__9999 vaccine_info vaccine_info_asha
No : 275 Length:6149 No : 70
Yes : 0 Class :character Yes : 205
NA's:5874 Mode :character NA's:5874
vaccine_info_anm vaccine_info_aww vaccine_info_doc vaccine_info_fam
No : 222 No : 186 No : 191 No : 252
Yes : 53 Yes : 89 Yes : 84 Yes : 23
NA's:5874 NA's:5874 NA's:5874 NA's:5874
vaccine_info_others vaccine_info_7 vaccine_info__9999 amb_presence
No : 265 No : 261 No : 265 Min. :0.000
Yes : 10 Yes : 14 Yes : 10 1st Qu.:0.000
NA's:5874 NA's:5874 NA's:5874 Median :0.000
Mean :0.121
know_asha asha_convo convo_initiation
Min. :0.000 Length:6149 Min. :0.000
1st Qu.:1.000 Class :character 1st Qu.:0.000
Median :1.000 Mode :character Median :0.000
Mean :0.962 Mean :0.142
belief_one get_vacc_card_later
नक्कीच 2 आठवड्यांनंतरच्या लसीकरणासाठी जाईन: 50 Length:6149
बहुधा 2 आठवड्यांनंतरच्या लसीकरणासाठी जाईन : 22 Class :character
खत्री नाही : 19 Mode :character
बहुधा उद्याच्या लसीकरणासाठीजाईन : 27
get_card_appointment get_card_pic which_phone_pic note_phone
Min. :2023-05-16 नाही: 49 Length:6149 Length:6149
1st Qu.:2024-07-02 हो : 276 Class :character Class :character
Median :2024-07-15 NA's:5824 Mode :character Mode :character
Mean :2024-07-06
iscomplete callback surveyorcomment instanceID
नाही: 146 नाही: 356 Length:6149 Length:6149
हो : 865 हो : 424 Class :character Class :character
NA's:5138 NA's:5369 Mode :character Mode :character
formdef_version penta1_date penta2_date
Min. :2406251337 Min. :2019-09-12 Min. :2019-11-14
1st Qu.:2407021004 1st Qu.:2022-10-03 1st Qu.:2022-11-11
Median :2407091817 Median :2023-03-13 Median :2023-04-17
Mean :2406931489 Mean :2023-01-18 Mean :2023-02-27
penta3_date mr1_date mr2_date
Min. :2022-02-15 Min. :2022-04-04 Min. :2022-04-20
1st Qu.:2022-12-19 1st Qu.:2023-05-31 1st Qu.:2023-12-08
Median :2023-05-24 Median :2023-10-22 Median :2024-03-08
Mean :2023-04-14 Mean :2023-09-20 Mean :2024-01-25
dob_rch anm_name asha_name registrationdate
Min. :2021-10-15 Length:6149 Length:6149 Min. :2021-10-15
1st Qu.:2022-07-02 Class :character Class :character 1st Qu.:2022-07-02
Median :2022-10-03 Mode :character Mode :character Median :2022-10-03
Mean :2022-10-03 Mean :2022-10-03
weight bcg opv0 penta1_rch
Min. :1.000 Min. :2021-10-15 Min. :2021-10-15 Min. :2021-12-01
1st Qu.:2.500 1st Qu.:2022-07-06 1st Qu.:2022-07-06 1st Qu.:2022-08-23
Median :2.800 Median :2022-10-07 Median :2022-10-04 Median :2022-11-04
Mean :2.797 Mean :2022-10-11 Mean :2022-10-08 Mean :2022-11-28
penta2_rch penta3_rch mr1_rch
Min. :2022-01-03 Min. :2022-01-12 Min. :2022-07-19
1st Qu.:2022-10-03 1st Qu.:2022-11-01 1st Qu.:2023-04-10
Median :2022-12-08 Median :2023-01-11 Median :2023-06-19
Mean :2022-12-31 Mean :2023-02-02 Mean :2023-07-30
mr2_rch block_village.x block_cat health_block_r
Min. :2023-02-11 Length:6149 Length:6149 Length:6149
1st Qu.:2023-11-12 Class :character Class :character Class :character
Median :2023-12-14 Mode :character Mode :character Mode :character
Mean :2024-01-02
block_village.y category_rch dob_actual penta1_diff
Length:6149 Length:6149 Min. :2017-02-25 Min. :-847.000
Class :character Class :character 1st Qu.:2022-07-02 1st Qu.: -4.500
Mode :character Mode :character Median :2022-10-03 Median : 0.000
Mean :2022-10-03 Mean : -1.292
dob_diff penta2_diff penta3_diff mr1_diff
Min. :-2273.0000 Min. :-819.000 Min. :-300.00 Min. :-359.00
1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: -18.00
Median : 0.0000 Median : 0.000 Median : 0.00 Median : 0.00
Mean : -0.2012 Mean : 5.236 Mean : 15.56 Mean : -16.96
mr2_diff big_dob big_penta1 big_penta2 big_penta3
Min. :-149.0 Mode :logical Mode :logical Mode :logical Mode :logical
1st Qu.: 0.0 FALSE:6131 FALSE:259 FALSE:258 FALSE:244
Median : 0.0 TRUE :18 TRUE :8 TRUE :5 TRUE :9
Mean : 8.6 NA's :5882 NA's :5886 NA's :5896
big_mr1 big_mr2 big_count age_diff
Mode :logical Mode :logical Min. :0.00000 Length:6149
FALSE:175 FALSE:24 1st Qu.:0.00000 Class :difftime
TRUE :22 TRUE :1 Median :0.00000 Mode :numeric
NA's :5952 NA's :6124 Mean :0.01025
agereg age1 age2 agesurv
Min. :-670.0000 Min. : 0.000 Min. : 0.0 Min. : 8.0
1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 490.0 1st Qu.: 498.0
Median : 0.0000 Median : 0.000 Median : 647.0 Median : 652.0
Mean : 0.4915 Mean : 4.916 Mean : 636.1 Mean : 648.4
prepost treatment edu2
Length:6149 Min. :0.0000 matriculation w/o degree: 226
Class :character 1st Qu.:0.0000 degree : 407
Mode :character Median :0.0000 secondary or less : 64
Mean :0.4041 NA's :5452
occupation_simp occupation_simp2 card
Length:6149 farms own land : 301 Length:6149
Class :character corporate or gov : 183 Class :character
Mode :character landless laborer : 116 Mode :character
small_business__other: 96
penta1_improv penta2_improv penta3_improv mr1_improv
Length:6149 Length:6149 Length:6149 Length:6149
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
mr2_improv penta1_date_joint penta2_date_joint
Length:6149 Min. :2019-09-12 Min. :2019-11-14
Class :character 1st Qu.:2022-08-29 1st Qu.:2022-10-03
Mode :character Median :2022-11-08 Median :2022-12-09
Mean :2022-11-28 Mean :2023-01-01
penta3_date_joint mr1_date_joint mr2_date_joint penta1_age
Min. :2022-01-12 Min. :2022-04-04 Min. :2022-04-20 Min. :-320.00
1st Qu.:2022-11-01 1st Qu.:2023-04-10 1st Qu.:2023-11-13 1st Qu.: 49.00
Median :2023-01-13 Median :2023-06-20 Median :2023-12-25 Median : 57.00
Mean :2023-02-04 Mean :2023-07-31 Mean :2024-01-05 Mean : 59.42
penta2_age penta3_age mr1_age mr2_age
Min. :-281.0 Min. :-253 Min. : -92.0 Min. :111.0
1st Qu.: 83.0 1st Qu.: 117 1st Qu.: 282.0 1st Qu.:503.0
Median : 91.0 Median : 128 Median : 294.0 Median :525.0
Mean : 100.3 Mean : 141 Mean : 305.4 Mean :522.5
penta1_time penta2_time penta3_time mr1_time
Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.04846 Mean :0.04798 Mean :0.04521 Mean :0.04326
mr2_time penta1_age_joint penta2_age_joint penta3_age_joint
Min. :0.00000 Min. :-621.00 Min. :-336.00 Min. :-289.0
1st Qu.:0.00000 1st Qu.: 48.00 1st Qu.: 80.00 1st Qu.: 111.0
Median :0.00000 Median : 56.00 Median : 89.00 Median : 121.0
Mean :0.01854 Mean : 59.38 Mean : 92.46 Mean : 126.1
mr1_age_joint mr2_age_joint penta1_time_joint penta2_time_joint
Min. :-107.0 Min. :111.0 Min. :0.0000 Min. :0.0000
1st Qu.: 282.0 1st Qu.:497.0 1st Qu.:1.0000 1st Qu.:1.0000
Median : 294.0 Median :517.0 Median :1.0000 Median :1.0000
Mean : 313.2 Mean :531.7 Mean :0.8172 Mean :0.7827
penta3_time_joint mr1_time_joint mr2_time_joint vacc_stated
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:4.000
Median :1.0000 Median :1.0000 Median :0.0000 Median :5.000
Mean :0.7552 Mean :0.5209 Mean :0.1321 Mean :4.594
penta1_implied penta2_implied penta3_implied mr1_implied
Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.08343 Mean :0.08294 Mean :0.08164 Mean :0.07578
mr2_implied base_sub_penta1 base_sub_penta2 base_sub_penta3
Min. :0.0000 Min. : 0.00 Min. : 50.00 Min. : 50.00
1st Qu.:0.0000 1st Qu.:100.00 1st Qu.:100.00 1st Qu.: 75.00
Median :0.0000 Median :100.00 Median :100.00 Median :100.00
Mean :0.0496 Mean : 93.54 Mean : 94.52 Mean : 87.64
base_sub_mr1 base_sub_mr2 base_sub_penta1_joint base_sub_penta2_joint
Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 50.00
1st Qu.: 75.00 1st Qu.: 20.00 1st Qu.:100.00 1st Qu.:100.00
Median :100.00 Median : 50.00 Median :100.00 Median :100.00
Mean : 85.96 Mean : 53.07 Mean : 94.79 Mean : 95.83
base_sub_penta3_joint base_sub_mr1_joint base_sub_mr2_joint base_phc_penta1
Min. : 50.00 Min. : 0.00 Min. : 0.00 Min. : 60.00
1st Qu.: 77.50 1st Qu.: 90.00 1st Qu.: 30.00 1st Qu.: 87.50
Median :100.00 Median :100.00 Median : 66.67 Median : 93.75
Mean : 89.42 Mean : 88.49 Mean : 64.72 Mean : 91.79
base_phc_penta2 base_phc_penta3 base_phc_mr1 base_phc_mr2
Min. : 66.67 Min. : 70.00 Min. : 50.00 Min. : 0.00
1st Qu.: 91.67 1st Qu.: 75.00 1st Qu.: 72.22 1st Qu.:20.00
Median : 92.86 Median : 85.00 Median : 84.38 Median :35.29
Mean : 91.31 Mean : 84.89 Mean : 81.38 Mean :36.59
base_phc_penta1_joint base_phc_penta2_joint base_phc_penta3_joint
Min. : 60.00 Min. : 66.67 Min. : 75.00
1st Qu.: 91.67 1st Qu.: 91.67 1st Qu.: 78.57
Median : 95.00 Median : 92.86 Median : 90.00
Mean : 93.28 Mean : 93.03 Mean : 87.62
base_phc_mr1_joint base_phc_mr2_joint amb_recruit amb_age
Min. : 50.00 Min. : 0.00 Min. :2023-01-13 Min. :-529.0
1st Qu.: 75.00 1st Qu.:27.78 1st Qu.:2023-01-13 1st Qu.: 160.0
Median : 85.94 Median :37.50 Median :2023-10-04 Median : 232.0
Mean : 84.69 Mean :41.10 Mean :2023-07-06 Mean : 276.6
amb_treat_time numb_amb amb_in_vill base_sub_penta1_implied
Min. :0.0000 Min. :0.00 Min. :0.0000 Min. : 0.00
1st Qu.:1.0000 1st Qu.:0.00 1st Qu.:0.0000 1st Qu.: 75.00
Median :1.0000 Median :0.00 Median :0.0000 Median : 83.33
Mean :0.9724 Mean :1.07 Mean :0.2571 Mean : 84.75
base_sub_penta2_implied base_sub_penta3_implied base_sub_mr1_implied
Min. : 0.00 Min. : 0.00 Min. : 0.00
1st Qu.: 75.00 1st Qu.: 75.00 1st Qu.: 66.67
Median : 80.00 Median : 80.00 Median : 80.00
Mean : 83.58 Mean : 82.93 Mean : 76.98
base_sub_mr2_implied base_phc_penta1_implied base_phc_penta2_implied
Min. : 0.00 Min. : 76.47 Min. : 76.47
1st Qu.: 50.00 1st Qu.: 82.28 1st Qu.: 82.28
Median : 66.67 Median : 86.79 Median : 86.54
Mean : 67.45 Mean : 85.71 Mean : 85.24
base_phc_penta3_implied base_phc_mr1_implied base_phc_mr2_implied
Min. : 73.53 Min. : 69.49 Min. : 0.00
1st Qu.: 81.13 1st Qu.: 73.42 1st Qu.: 44.44
Median : 84.21 Median : 77.36 Median : 49.12
Mean : 83.83 Mean : 78.03 Mean : 51.73
nom_surv asha_convo_this_month belief_one_code mobilised_others
Min. :0.00000 Min. :0.000 Min. :0.000 Min. :0.000
1st Qu.:0.00000 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:0.000
Median :0.00000 Median :0.000 Median :1.000 Median :0.000
Mean :0.07953 Mean :0.373 Mean :0.792 Mean :0.109
got_card_code
Min. :0.000
1st Qu.:0.000
Median :1.000
Mean :0.543
[ reached getOption("max.print") -- omitted 3 rows ]
d1 %>% str()
tibble [6,149 × 221] (S3: tbl_df/tbl/data.frame)
$ SubmissionDate : Date[1:6149], format: "2024-06-25" "2024-06-25" ...
$ starttime : Date[1:6149], format: "2024-06-25" "2024-06-25" ...
$ endtime : Date[1:6149], format: "2024-06-25" "2024-06-25" ...
$ duration : num [1:6149] 929 78 78 149 368 223 143 281 732 102 ...
..- attr(*, "label")= chr "Duration"
..- attr(*, "format.spss")= chr "F15.0"
$ resp_sno : num [1:6149] 1115 1116 1117 1723 1724 ...
..- attr(*, "label")= chr "कृपया तुम्ही ज्या प्रतिसादकर्त्याला कॉल करू इच्छिता त्याचा sno प्रविष्ट करा"
..- attr(*, "format.spss")= chr "F15.0"
$ rchid : chr [1:6149] "227023765057" "227024432924" "227024332530" "227027110279" ...
..- attr(*, "label")= chr "rchid"
..- attr(*, "format.spss")= chr "A12"
$ mother_name : chr [1:6149] "Priyanka Sunil Ithape(127024696803)" "Priyanka Vinod Pawar(127025092576)" "Gayatri Sunil Gaikwad(127025395656)" "Priyanka Krushnath Hanmant Jagtap(127026654806)" ...
..- attr(*, "label")= chr "mother_name"
..- attr(*, "format.spss")= chr "A52"
$ father_name : chr [1:6149] "Sunil Prakash Ithape" "Vinod Pawar" "Sunil GAIKWAD" "Krushnath Hanmant Jagtap" ...
..- attr(*, "label")= chr "father_name"
..- attr(*, "format.spss")= chr "A33"
$ enrollee_phonenumber : chr [1:6149] "7798814577" "9075128510" "8999762668" "9373826648" ...
..- attr(*, "label")= chr "enrollee_phonenumber"
..- attr(*, "format.spss")= chr "A10"
$ village_surv : chr [1:6149] "Degaon (37904)" "Kalangwadi (37918)" "Virmade (37898)" "Randullabad (38359)" ...
..- attr(*, "label")= chr "village"
..- attr(*, "format.spss")= chr "A28"
$ block : chr [1:6149] "Wai(18)" "Wai(18)" "Wai(18)" "Koregaon(22)" ...
..- attr(*, "label")= chr "block"
..- attr(*, "format.spss")= chr "A12"
$ health_centre : chr [1:6149] "Bhuinj(76)" "Bhuinj(76)" "Bhuinj(76)" "Wathar Station(26)" ...
..- attr(*, "label")= chr "health_centre"
..- attr(*, "format.spss")= chr "A18"
$ health_subcentre : chr [1:6149] "Degaon(184)" "Kikali(185)" "Udatare(183)" "Karanjkhop(152)" ...
..- attr(*, "label")= chr "health_subcentre"
..- attr(*, "format.spss")= chr "A21"
$ category_surv : chr [1:6149] "pre_treat_wai" "pre_treat_wai" "pre_treat_wai" "post_treat_wai" ...
..- attr(*, "label")= chr "category"
..- attr(*, "format.spss")= chr "A19"
$ surveyor_name : chr [1:6149] "Vishal Ghuge" "Vishal Ghuge" "Vishal Ghuge" "Sandhya Salve" ...
..- attr(*, "label")= chr "तुमचे नाव निवडा"
..- attr(*, "format.spss")= chr "A16"
$ call_status : Factor w/ 6 levels "उचलला","प्रतिसादकर्त्याने नंतर कॉल करण्यास सांगितल",..: 1 6 4 6 2 3 6 2 1 6 ...
..- attr(*, "label")= chr "कृपया कॉल स्थिती निवडा"
$ call_later : Date[1:6149], format: NA NA ...
$ verify_respondent : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ is_respondent : chr [1:6149] "Priyanka Sunil Ithape(127024696803)" NA NA NA ...
..- attr(*, "label")= chr "मी ${mother_name}/${father_name} यांच्याशी बोलत आहे का?"
..- attr(*, "format.spss")= chr "A48"
$ get_mother : Factor w/ 2 levels "नाही","हो": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "मी ${mother_name} किंवा ${father_name} यांच्याशी बोलू शकतो/शकते का?"
$ get_mother_verification : Factor w/ 3 levels "इतर [निर्दिष्ट करा]",..: NA NA NA NA NA NA NA NA NA NA ...
$ has_number : Factor w/ 2 levels "नाही","हो": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "कृपया तुम्ही मला ${mother_name} किंवा ${father_name} चा नंबर देऊ शकाल का?"
$ mother_number : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "कृपया मोबाईल नंबर ची नोंद करा:"
..- attr(*, "format.spss")= chr "A10"
$ speak_other : Factor w/ 2 levels "नाही","हो": NA NA NA NA NA NA NA NA NA NA ...
$ speak_other_name : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "कृपया तुमचे नाव सांगाल का?"
..- attr(*, "format.spss")= chr "A27"
$ consent : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ have_vaccination_card : chr [1:6149] "yes" NA NA NA ...
$ get_vacc_card : chr [1:6149] "yes" NA NA NA ...
$ no_card_reason : chr [1:6149] NA NA NA NA ...
$ age : num [1:6149] 30 NA NA NA NA NA NA NA 33 NA ...
..- attr(*, "label")= chr "कृपया तुमचे वय सांगू शकाल का? (पूर्ण वर्षांच्या संख्येत)"
..- attr(*, "format.spss")= chr "F15.0"
$ gender : chr [1:6149] "female" NA NA NA ...
$ religion : chr [1:6149] "hindu" NA NA NA ...
$ caste : Factor w/ 3 levels "OBC","FC","SC/ST": 2 NA NA NA NA NA NA NA 1 NA ...
$ education : chr [1:6149] "degree" NA NA NA ...
$ literacy : chr [1:6149] "literate" "not literate" "not literate" "not literate" ...
$ occupation : chr [1:6149] "agri" NA NA NA ...
$ occupation_agri : chr [1:6149] "owns" NA NA NA ...
$ occupation_agri_2 : Factor w/ 3 levels "शेतकरी","शेत मजूर",..: NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "कृपया विचारा की ते शेतकरी आहेत की शेतमजूर म्हणून काम करतात?"
$ child_gender : chr [1:6149] "female" NA NA NA ...
$ dob_stated : Factor w/ 3 levels "माहिती नाही",..: NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "कृपया मला तुमच्या बाळाची जन्मतारीख सांगू शकाल का?"
$ child_age : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "child_age"
..- attr(*, "format.spss")= chr "A5"
$ child_age_other : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "child_age_other"
..- attr(*, "format.spss")= chr "A4"
$ child_location : chr [1:6149] "always" NA NA NA ...
$ child_migration_pattern : chr [1:6149] NA NA NA NA ...
$ age_or_date : Factor w/ 2 levels "बाळाचे वय","कॅलेंडर महिना आणि वर्ष": NA NA NA NA NA NA NA NA NA NA ...
$ child_migration_1_calendar : Date[1:6149], format: NA NA ...
$ child_migration_2_calendar : Date[1:6149], format: NA NA ...
$ vacc_visits : Factor w/ 9 levels "माहीत नाही","कधीच नाही",..: 9 NA NA NA NA NA NA NA 6 NA ...
$ remaining_vaccines : num [1:6149] NA NA NA NA NA NA NA NA NA NA ...
$ next_vaccination : Factor w/ 5 levels "माहीत नाही","या महिन्यात किंवा पुढच्या महिन्यात",..: NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "तुमच्या बाळाचे पुढील लसीकरण कधी होणार आहे हे तुम्हाला माहीत आहे का?"
$ penta1_stated : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ penta2_stated : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ penta3_stated : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ mr1_stated : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ mr2_stated : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
$ mobilised : num [1:6149] 0 NA NA NA NA NA NA NA 0 NA ...
$ reminded : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुम्हाला तुमच्या बाळाचे लसीकरण करण्याची आठवण करून दिली आहे?"
..- attr(*, "format.spss")= chr "A9"
$ reminded_asha : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुम्हाला तुमच्या बाळाचे लसीकरण करण्याची आठवण करून दिली आहे?: आशा ताई?"
$ reminded_anm : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुम्हाला तुमच्या बाळाचे लसीकरण करण्याची आठवण करून दिली आहे?: ANM?"
$ reminded_aww : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ reminded_doc : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ reminded_fam : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ reminded_others : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ reminded_7 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुम्हाला तुमच्या बाळाचे लसीकरण करण्याची आठवण करून दिली आहे?: कोणी नाही?"
$ reminded__9999 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुम्हाला तुमच्या बाळाचे लसीकरण करण्याची आठवण करून दिली आहे?: माहीत नाही?"
$ checked_vaccine_status : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुमच्या बाळाचे लसीकरण झाले की नाही याची चौकशी किंवा पडताळणी केली आहे?"
..- attr(*, "format.spss")= chr "A9"
$ checked_vaccine_status_asha : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status_anm : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "label")= chr "खालीलपैकी कोणी-कोणी तुमच्या बाळाचे लसीकरण झाले की नाही याची चौकशी किंवा पडताळणी केली आहे?: ANM?"
$ checked_vaccine_status_aww : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status_doc : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status_fam : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status_others: Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status_7 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ checked_vaccine_status__9999 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info : chr [1:6149] NA NA NA NA ...
..- attr(*, "format.spss")= chr "A11"
$ vaccine_info_asha : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_anm : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_aww : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_doc : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_fam : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_others : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info_7 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ vaccine_info__9999 : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
$ amb_presence : num [1:6149] NA NA NA NA NA NA NA NA 0 NA ...
$ know_asha : num [1:6149] 1 NA NA NA NA NA NA NA 1 NA ...
$ asha_convo : chr [1:6149] NA NA NA NA ...
$ convo_initiation : num [1:6149] NA NA NA NA NA NA NA NA 0 NA ...
$ belief_one : Factor w/ 5 levels "नक्कीच 2 आठवड्यांनंतरच्या लसीकरणासाठी जाईन",..: 5 NA NA NA NA NA NA NA 5 NA ...
$ get_vacc_card_later : chr [1:6149] NA NA NA NA ...
$ get_card_appointment : Date[1:6149], format: NA NA ...
$ get_card_pic : Factor w/ 2 levels "नाही","हो": NA NA NA NA NA NA NA NA NA NA ...
$ which_phone_pic : chr [1:6149] NA NA NA NA ...
..- attr(*, "format.spss")= chr "A10"
$ note_phone : chr [1:6149] NA NA NA NA ...
..- attr(*, "label")= chr "कृपया फोन नंबरची नोंद करा."
..- attr(*, "format.spss")= chr "A16"
$ iscomplete : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
..- attr(*, "label")= chr "सर्वेक्षकाचे निरीक्षण [प्रतिसादकर्त्याला वाचू नका]: तुम्ही हे सर्वेक्षण पूर्ण करू शकलात का?"
$ callback : Factor w/ 2 levels "नाही","हो": 2 NA NA NA NA NA NA NA 2 NA ...
..- attr(*, "label")= chr "या प्रतिसादकर्त्याला इतर काही सर्वेक्षणासाठी पुन्हा कॉल केला पाहिजे का?"
$ surveyorcomment : chr [1:6149] "*****" NA NA NA ...
..- attr(*, "format.spss")= chr "A255"
$ instanceID : chr [1:6149] "uuid:85b919a9-3fe4-4a51-aa90-a97feb5544be" "uuid:2b56af35-067e-42d4-939b-1d824969b3ff" "uuid:b419131c-7b4e-4d15-b4f4-4e13783832c1" "uuid:c1dd931f-3430-4c9e-9da8-208f6e877d62" ...
..- attr(*, "label")= chr "instanceID"
..- attr(*, "format.spss")= chr "A41"
$ formdef_version : num [1:6149] 2406251337 2406251337 2406251337 2406251337 2406251337 ...
..- attr(*, "label")= chr "formdef_version"
..- attr(*, "format.spss")= chr "F15.0"
$ penta1_date : Date[1:6149], format: "2022-07-14" NA ...
[list output truncated]
#devtools::install_github("ropensci/skimr")
#install.packages("skimr")
skimr::skim(d1)
── Data Summary ────────────────────────
Values
Name d1
Number of rows 6149
Number of columns 221
_______________________
Column type frequency:
character 51
Date 28
difftime 1
factor 48
logical 6
numeric 87
________________________
Group variables None
NA
NA
d1 %>%
filter(child_location == "always" | child_location == "moved") %>% ## only children living in relevant vilage
filter(iscomplete == "हो") %>% skimr::skim()
Warning: There was 1 warning in `dplyr::summarize()`.
ℹ In argument: `dplyr::across(tidyselect::any_of(variable_names),
mangled_skimmers$funs)`.
ℹ In group 0: .
Caused by warning:
! There were 2 warnings in `dplyr::summarize()`.
The first warning was:
ℹ In argument: `dplyr::across(tidyselect::any_of(variable_names),
mangled_skimmers$funs)`.
Caused by warning in `min.default()`:
! no non-missing arguments to min; returning Inf
ℹ Run ]8;;ide:run:dplyr::last_dplyr_warnings()dplyr::last_dplyr_warnings()]8;; to see the 1 remaining warning.
── Data Summary ────────────────────────
Values
Name Piped data
Number of rows 579
Number of columns 221
_______________________
Column type frequency:
character 51
Date 28
difftime 1
factor 48
logical 6
numeric 87
________________________
Group variables None