# changed the names to president names, and also salary and application
president_name <- c("Trump", "Biden", "Washington")
salary <- c(400000, 400000, 25000)  # Approximate annual salaries (in USD)
application_status <- c(TRUE, TRUE, TRUE)  # Assuming all applied successfully
# access the second name in the president_name vector
president_name[2]
[1] "Biden"
# include items in the range 2 to 3
salary[2:3]
[1] 400000  25000
# exclude item 2 using the minus sign
salary[-2]
[1] 400000  25000
# use a vector to indicate whether to include item
salary[c(TRUE, TRUE, FALSE)]
[1] 4e+05 4e+05

# add ordered factor, in this case we used government_expenditure
government_expenditure <- factor(c("LOW", "MODERATE", "HIGH"),
                   levels = c("LOW", "MODERATE", "HIGH"),
                   ordered = TRUE)
# check for government_expenditure greater than moderate
government_expenditure > "MODERATE"
[1] FALSE FALSE  TRUE
#in which of the cases are the level grater than model, here it is our answer:
#retrive he name of the first president
president_name[1]
[1] "Trump"
salary[1]
[1] 4e+05
application_status[1]
[1] TRUE
government_expenditure[1]
[1] LOW
Levels: LOW < MODERATE < HIGH
# create list for presidency
subject1 <- list(fullname = president_name[1], 
                 salary = salary[1],
                 application_status = application_status[1],
                 government_expenditure = government_expenditure[1])
# display the presidency
subject1
$fullname
[1] "Trump"

$salary
[1] 4e+05

$application_status
[1] TRUE

$government_expenditure
[1] LOW
Levels: LOW < MODERATE < HIGH
#lets create a presidency data set
presidency_dataset <- data.frame(president_name, salary, application_status, government_expenditure, stringsAsFactors = FALSE)
                     
# display the data frame
presidency_dataset
#how to access elements in the dataset
# get a single column
presidency_dataset$president_name
[1] "Trump"      "Biden"      "Washington"
# get several columns by specifying a vector of names
presidency_dataset[c("salary", "application_status")]
# this is the same as above, extracting temperature and flu_status
presidency_dataset[2:3]
# accessing by row and column
presidency_dataset[2, 2]
[1] 4e+05
# accessing several rows and several columns using vectors
presidency_dataset[c(1, 2), c(2, 3)]
# column 1, all rows
presidency_dataset[, 1]
[1] "Trump"      "Biden"      "Washington"
# row 1, all columns
presidency_dataset[1, ]
# all rows and all columns
presidency_dataset[ , ]
# the following are equivalent
presidency_dataset[c(1, 3), c("president_name", "application_status")]
presidency_dataset[-2, c(-1, -3, -5, -6)]

Metrices

# Create a matrix named 'm1' using the matrix() function
# The c(1, 2, 3, 4) creates a vector containing the elements 1, 2, 3, and 4
# The nrow=2 specifies that the matrix should have 2 rows
m1<-matrix(c(1,2,3,4),nrow=2)
m1
     [,1] [,2]
[1,]    1    3
[2,]    2    4
m2<-matrix(c(1,2,3,4),ncol = 2)
m2
     [,1] [,2]
[1,]    1    3
[2,]    2    4
m1[1,1]
[1] 1
m2[2,1]
[1] 2
#creating a 2x3 matrix
m3 <- matrix(c(1,2,3,4,5,6), nrow=2)
m3
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
m4 <- matrix (c(2,3,7,9,11,10i),ncol = 2)
m4
     [,1]   [,2]
[1,] 2+0i  9+ 0i
[2,] 3+0i 11+ 0i
[3,] 7+0i  0+10i
#retrive the first row
m4[1,]
[1] 2+0i 9+0i
m4[,2]
[1]  9+ 0i 11+ 0i  0+10i
LS0tCnRpdGxlOiAiUiBEYXRhIFN0cnVjdHVyZSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CiMgY2hhbmdlZCB0aGUgbmFtZXMgdG8gcHJlc2lkZW50IG5hbWVzLCBhbmQgYWxzbyBzYWxhcnkgYW5kIGFwcGxpY2F0aW9uCnByZXNpZGVudF9uYW1lIDwtIGMoIlRydW1wIiwgIkJpZGVuIiwgIldhc2hpbmd0b24iKQpzYWxhcnkgPC0gYyg0MDAwMDAsIDQwMDAwMCwgMjUwMDApICAjIEFwcHJveGltYXRlIGFubnVhbCBzYWxhcmllcyAoaW4gVVNEKQphcHBsaWNhdGlvbl9zdGF0dXMgPC0gYyhUUlVFLCBUUlVFLCBUUlVFKSAgIyBBc3N1bWluZyBhbGwgYXBwbGllZCBzdWNjZXNzZnVsbHkKYGBgCgpgYGB7cn0KIyBhY2Nlc3MgdGhlIHNlY29uZCBuYW1lIGluIHRoZSBwcmVzaWRlbnRfbmFtZSB2ZWN0b3IKcHJlc2lkZW50X25hbWVbMl0KYGBgCgpgYGB7cn0KIyBpbmNsdWRlIGl0ZW1zIGluIHRoZSByYW5nZSAyIHRvIDMKc2FsYXJ5WzI6M10KYGBgCgpgYGB7cn0KIyBleGNsdWRlIGl0ZW0gMiB1c2luZyB0aGUgbWludXMgc2lnbgpzYWxhcnlbLTJdCmBgYAoKYGBge3J9CiMgdXNlIGEgdmVjdG9yIHRvIGluZGljYXRlIHdoZXRoZXIgdG8gaW5jbHVkZSBpdGVtCnNhbGFyeVtjKFRSVUUsIFRSVUUsIEZBTFNFKV0KYGBgCgpgYGB7cn0KCiMgYWRkIG9yZGVyZWQgZmFjdG9yLCBpbiB0aGlzIGNhc2Ugd2UgdXNlZCBnb3Zlcm5tZW50X2V4cGVuZGl0dXJlCmdvdmVybm1lbnRfZXhwZW5kaXR1cmUgPC0gZmFjdG9yKGMoIkxPVyIsICJNT0RFUkFURSIsICJISUdIIiksCiAgICAgICAgICAgICAgICAgICBsZXZlbHMgPSBjKCJMT1ciLCAiTU9ERVJBVEUiLCAiSElHSCIpLAogICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpCmBgYAoKCmBgYHtyfQojIGNoZWNrIGZvciBnb3Zlcm5tZW50X2V4cGVuZGl0dXJlIGdyZWF0ZXIgdGhhbiBtb2RlcmF0ZQpnb3Zlcm5tZW50X2V4cGVuZGl0dXJlID4gIk1PREVSQVRFIgojaW4gd2hpY2ggb2YgdGhlIGNhc2VzIGFyZSB0aGUgbGV2ZWwgZ3JhdGVyIHRoYW4gbW9kZXJhdGUsIGhlcmUgaXQgaXMgb3VyIGFuc3dlcjoKYGBgCgpgYGB7cn0KI3JldHJpZXZlIGhlIG5hbWUgb2YgdGhlIGZpcnN0IHByZXNpZGVudApwcmVzaWRlbnRfbmFtZVsxXQpgYGAKCmBgYHtyfQojcmV0cmlldmUgc2FsYXJ5LCBmaXJzdCB2YWx1ZQpzYWxhcnlbMV0KYGBgCgpgYGB7cn0KI3JldHJpdmUgYXBwbGljYXRpb25fc3RhdHVzLCBmaXJzdCB2YWx1ZQphcHBsaWNhdGlvbl9zdGF0dXNbMV0KYGBgCgpgYGB7cn0KI3JldHJpdmUgZ292ZXJubWVudF9leHBlbmRpdHVyZSwgZmlyc3QgdmFsdWUKZ292ZXJubWVudF9leHBlbmRpdHVyZVsxXQpgYGAKCmBgYHtyfQojIGNyZWF0ZSBsaXN0IGZvciBwcmVzaWRlbmN5IGFuZCBjYWxsIGl0IHN1YmplY3QxCnN1YmplY3QxIDwtIGxpc3QoZnVsbG5hbWUgPSBwcmVzaWRlbnRfbmFtZVsxXSwgCiAgICAgICAgICAgICAgICAgc2FsYXJ5ID0gc2FsYXJ5WzFdLAogICAgICAgICAgICAgICAgIGFwcGxpY2F0aW9uX3N0YXR1cyA9IGFwcGxpY2F0aW9uX3N0YXR1c1sxXSwKICAgICAgICAgICAgICAgICBnb3Zlcm5tZW50X2V4cGVuZGl0dXJlID0gZ292ZXJubWVudF9leHBlbmRpdHVyZVsxXSkKYGBgCgpgYGB7cn0KIyBkaXNwbGF5IHRoZSBwcmVzaWRlbmN5IGZvciBhbGwgdGhlIGZpcnN0IHZhbHVlcwpzdWJqZWN0MQpgYGAKCmBgYHtyfQojbGV0cyBjcmVhdGUgYSBwcmVzaWRlbmN5IGRhdGEgc2V0CnByZXNpZGVuY3lfZGF0YXNldCA8LSBkYXRhLmZyYW1lKHByZXNpZGVudF9uYW1lLCBzYWxhcnksIGFwcGxpY2F0aW9uX3N0YXR1cywgZ292ZXJubWVudF9leHBlbmRpdHVyZSwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQogICAgICAgICAgICAgICAgICAgICAKIyBkaXNwbGF5IHRoZSBkYXRhIGZyYW1lCnByZXNpZGVuY3lfZGF0YXNldApgYGAKCmBgYHtyfQojaG93IHRvIGFjY2VzcyBlbGVtZW50cyBpbiB0aGUgZGF0YSBzZXQKIyBnZXQgYSBzaW5nbGUgY29sdW1uCnByZXNpZGVuY3lfZGF0YXNldCRwcmVzaWRlbnRfbmFtZQpgYGAKCmBgYHtyfQojIGdldCBzZXZlcmFsIGNvbHVtbnMgYnkgc3BlY2lmeWluZyBhIHZlY3RvciBvZiBuYW1lcwpwcmVzaWRlbmN5X2RhdGFzZXRbYygic2FsYXJ5IiwgImFwcGxpY2F0aW9uX3N0YXR1cyIpXQpgYGAKCmBgYHtyfQojIHRoaXMgaXMgdGhlIHNhbWUgYXMgYWJvdmUsYW5vdGhlciB3YXkgdG8gZXh0cmFjdCBzYWxhcnkgYW5kIGFwcGxpY2F0aW9uX3N0YXR1cyAKcHJlc2lkZW5jeV9kYXRhc2V0WzI6M10KYGBgCgpgYGB7cn0KIyBhY2Nlc3NpbmcgYnkgcm93IGFuZCBjb2x1bW4KcHJlc2lkZW5jeV9kYXRhc2V0WzIsIDJdCmBgYAoKYGBge3J9CiMgYWNjZXNzaW5nIHNldmVyYWwgcm93cyBhbmQgc2V2ZXJhbCBjb2x1bW5zIHVzaW5nIHZlY3RvcnMKcHJlc2lkZW5jeV9kYXRhc2V0W2MoMSwgMiksIGMoMiwgMyldCmBgYAoKYGBge3J9CiMgY29sdW1uIDEsIGFsbCByb3dzCnByZXNpZGVuY3lfZGF0YXNldFssIDFdCmBgYAoKYGBge3J9CiMgcm93IDEsIGFsbCBjb2x1bW5zCnByZXNpZGVuY3lfZGF0YXNldFsxLCBdCmBgYAoKYGBge3J9CiMgYWxsIHJvd3MgYW5kIGFsbCBjb2x1bW5zCnByZXNpZGVuY3lfZGF0YXNldFsgLCBdCmBgYAoKYGBge3J9CiMgdGhlIGZvbGxvd2luZyBhcmUgZXF1aXZhbGVudApwcmVzaWRlbmN5X2RhdGFzZXRbYygxLCAzKSwgYygicHJlc2lkZW50X25hbWUiLCAiYXBwbGljYXRpb25fc3RhdHVzIildCmBgYAoKYGBge3J9CnByZXNpZGVuY3lfZGF0YXNldFstMiwgYygtMSwgLTMsIC01LCAtNildCmBgYAoqKk1ldHJpY2VzKioKYGBge3J9CiMgQ3JlYXRlIGEgbWF0cml4IG5hbWVkICdtMScgdXNpbmcgdGhlIG1hdHJpeCgpIGZ1bmN0aW9uCiMgVGhlIGMoMSwgMiwgMywgNCkgY3JlYXRlcyBhIHZlY3RvciBjb250YWluaW5nIHRoZSBlbGVtZW50cyAxLCAyLCAzLCBhbmQgNAojIFRoZSBucm93PTIgc3BlY2lmaWVzIHRoYXQgdGhlIG1hdHJpeCBzaG91bGQgaGF2ZSAyIHJvd3MKbTE8LW1hdHJpeChjKDEsMiwzLDQpLG5yb3c9MikKbTEKYGBgCmBgYHtyfQptMjwtbWF0cml4KGMoMSwyLDMsNCksbmNvbCA9IDIpCm0yCmBgYApgYGB7cn0KI2xldCB1cyBleHRyYWN0IHRoZSBlbGVtZW50IGluIHRoZSBmaXJzdCByb3cgYW5kIGZpcnN0IGNvbHVtbiBvZiBtYXRyaXggbTEKbTFbMSwxXQpgYGAKYGBge3J9CiNhbm90aGVyIGV4YW1wbGUgYnV0IHdpdGggbTIsIG5vdyBzZWNvbmQgcm93IGFuZCBmaXJzdCBjb2x1bW4KbTJbMiwxXQpgYGAKYGBge3J9CiNjcmVhdGluZyBhIDJ4MyBtYXRyaXgKbTMgPC0gbWF0cml4KGMoMSwyLDMsNCw1LDYpLCBucm93PTIpCm0zCmBgYApgYGB7cn0KI3doYXQgd2UgaGF2ZSBoZXJlIGl0IGlzIGRpZmZlcmVudCBpbWFnaW5hcnkgbnVtYmVycwptNCA8LSBtYXRyaXggKGMoMiwzLDcsOSwxMSwxMGkpLG5jb2wgPSAyKQptNApgYGAKYGBge3J9CiNyZXRyaXZlIHRoZSBmaXJzdCByb3cKbTRbMSxdCmBgYApgYGB7cn0KbTRbLDJdCmBgYAoKCg==