Global Inflation Analysis: Time Series Modeling of CPI Price (2000–2024)

Introduction

This project focuses on analyzing global inflation trends using time series modeling techniques. The dataset, sourced from WorldData Bank, spans the years 2000 to 2024 and contains a wide range of macroeconomic indicators, such as GDP, population, and various economic monitors. However, the scope of this project is narrowed to inflation-related variables, specifically:

Core CPI, not seasonally adjusted

Core CPI, seasonally adjusted

CPI Price (% year-over-year, median weighted, seasonally adjusted)

Among these, the primary focus is on the CPI Price (% y-o-y, median weighted, seasonally adjusted) for conducting time series modeling.

Project Objectives

The primary goal of this project is to understand global and continental inflation dynamics over the last three decades and to forecast future trends. To achieve this, we:

Explored Historical Trends: Analyzed inflation data globally and by continent to identify patterns and anomalies.

Applied Time Series Models: Used ARIMA models to analyze and forecast CPI Price for different continents.

Generated Insights: Derived actionable insights about inflationary pressures and their implications for global economies.

#libraries
library(readr)
library(tidyverse)
library(zoo)
library(naniar)
library(janitor)
library(tseries)
library(forecast)
library(VIM)
library(mice)
#import dataset and rename it

e0debd4f_365a_4f6c_96cc_0cdf803e4610_Data <-         read_csv("e0debd4f-365a-4f6c-96cc-0cdf803e4610_Data.csv")


Global_Economic_Monitor <- e0debd4f_365a_4f6c_96cc_0cdf803e4610_Data
#go through the dataset

sample_n(Global_Economic_Monitor, 20)
## # A tibble: 20 × 129
##    Country   `Country Code` Series `Series Code` `2000 [2000]` `2000Q1 [2000Q1]`
##    <chr>     <chr>          <chr>  <chr>         <chr>         <chr>            
##  1 Slovenia  SVN            CPI P… CPTOTNSXN     67.944210032… ..               
##  2 Thailand  THA            Expor… DXGSRMRCHSAXD 0.67469296659 0.68619660419    
##  3 Dominica  DMA            Excha… DPANUSSPB     2.7           ..               
##  4 EMDE Sou… SAP            Impor… DMGSRMRCHSAKD ..            ..               
##  5 France    FRA            GDP,c… NYGDPMKTPSAKD 2410249.3566… 594619.05635318  
##  6 Virgin I… VIR            Total… TOTRESV       ..            ..               
##  7 Denmark   DNK            Expor… DXGSRMRCHNSKD 84541.341382… 19827.9994118682 
##  8 Taiwan C… TWN            Impor… DMGSRMRCHNSCD 112994.2      22800.8          
##  9 San Mari… SMR            Core … CORESA        ..            ..               
## 10 Congo De… COD            Impor… DMGSRMRCHNSCD ..            ..               
## 11 Benin     BEN            Stock… DSTKMKTXN     ..            ..               
## 12 Suriname  SUR            Offic… DPANUSLCU     1.32175030414 ..               
## 13 Sub-Saha… SST            Expor… DXGSRMRCHSAKD 81435.570659… 20674.4586833794 
## 14 Singapore SGP            Expor… DXGSRMRCHSACD 137565.03468… 32082.8745474386 
## 15 Italy     ITA            Unemp… UNEMPSA_      ..            ..               
## 16 Sri Lanka LKA            Expor… DXGSRMRCHSAKD ..            ..               
## 17 Dominica  DMA            Unemp… UNEMPSA_      ..            ..               
## 18 Jamaica   JAM            Stock… DSTKMKTXN     ..            ..               
## 19 Ecuador   ECU            Excha… DPANUSSPF     24974.628433… ..               
## 20 Australia AUS            Excha… DPANUSSPF     1.72524125735 ..               
## # ℹ 123 more variables: `2000Q2 [2000Q2]` <chr>, `2000Q3 [2000Q3]` <chr>,
## #   `2000Q4 [2000Q4]` <chr>, `2001 [2001]` <chr>, `2001Q1 [2001Q1]` <chr>,
## #   `2001Q2 [2001Q2]` <chr>, `2001Q3 [2001Q3]` <chr>, `2001Q4 [2001Q4]` <chr>,
## #   `2002 [2002]` <chr>, `2002Q1 [2002Q1]` <chr>, `2002Q2 [2002Q2]` <chr>,
## #   `2002Q3 [2002Q3]` <chr>, `2002Q4 [2002Q4]` <chr>, `2003 [2003]` <chr>,
## #   `2003Q1 [2003Q1]` <chr>, `2003Q2 [2003Q2]` <chr>, `2003Q3 [2003Q3]` <chr>,
## #   `2003Q4 [2003Q4]` <chr>, `2004 [2004]` <chr>, `2004Q1 [2004Q1]` <chr>, …
head(Global_Economic_Monitor, 20)
## # A tibble: 20 × 129
##    Country   `Country Code` Series `Series Code` `2000 [2000]` `2000Q1 [2000Q1]`
##    <chr>     <chr>          <chr>  <chr>         <chr>         <chr>            
##  1 Advanced… AME            Core … CORENS        ..            ..               
##  2 Advanced… AME            Core … CORESA        86.388887096… ..               
##  3 Advanced… AME            CPI P… CPTOTSAXMZGY  2.66416327159 ..               
##  4 Advanced… AME            CPI P… CPTOTSAXNZGY  ..            ..               
##  5 Advanced… AME            CPI P… CPTOTSAXN     84.055145253… ..               
##  6 Advanced… AME            CPI P… CPTOTNSXN     84.398336219… ..               
##  7 Advanced… AME            Excha… DPANUSSPB     47.110472601… ..               
##  8 Advanced… AME            Unemp… UNEMPSA_      5.84584165284 ..               
##  9 Advanced… AME            Total… TOTRESV       1362574.9335… ..               
## 10 Advanced… AME            Terms… TOT           ..            ..               
## 11 Advanced… AME            Stock… DSTKMKTXD     ..            ..               
## 12 Advanced… AME            Stock… DSTKMKTXN     ..            ..               
## 13 Advanced… AME            Retai… RETSALESSA    59.252174820… ..               
## 14 Advanced… AME            Real … REER          109.47208168… ..               
## 15 Advanced… AME            Offic… DPANUSLCU     ..            ..               
## 16 Advanced… AME            Nomin… NEER          105.17672551… ..               
## 17 Advanced… AME            Month… IMPCOV        0.28015471618 ..               
## 18 Advanced… AME            Indus… IPTOTNSKD     939888524752… ..               
## 19 Advanced… AME            Indus… IPTOTSAKD     895559268194… ..               
## 20 Advanced… AME            Impor… DMGSRMRCHSAXD 0.70271298953 0.7140059872     
## # ℹ 123 more variables: `2000Q2 [2000Q2]` <chr>, `2000Q3 [2000Q3]` <chr>,
## #   `2000Q4 [2000Q4]` <chr>, `2001 [2001]` <chr>, `2001Q1 [2001Q1]` <chr>,
## #   `2001Q2 [2001Q2]` <chr>, `2001Q3 [2001Q3]` <chr>, `2001Q4 [2001Q4]` <chr>,
## #   `2002 [2002]` <chr>, `2002Q1 [2002Q1]` <chr>, `2002Q2 [2002Q2]` <chr>,
## #   `2002Q3 [2002Q3]` <chr>, `2002Q4 [2002Q4]` <chr>, `2003 [2003]` <chr>,
## #   `2003Q1 [2003Q1]` <chr>, `2003Q2 [2003Q2]` <chr>, `2003Q3 [2003Q3]` <chr>,
## #   `2003Q4 [2003Q4]` <chr>, `2004 [2004]` <chr>, `2004Q1 [2004Q1]` <chr>, …
tail(Global_Economic_Monitor,20)
## # A tibble: 20 × 129
##    Country   `Country Code` Series `Series Code` `2000 [2000]` `2000Q1 [2000Q1]`
##    <chr>     <chr>          <chr>  <chr>         <chr>         <chr>            
##  1 Zambia    ZMB            Impor… DMGSRMRCHSACD 1092.1220193… 211.69438729382  
##  2 Zambia    ZMB            Impor… DMGSRMRCHNSCD 1100.7486372… 201.71035009241  
##  3 Zambia    ZMB            Impor… DMGSRMRCHSAKD ..            323.22596883259  
##  4 Zambia    ZMB            Impor… DMGSRMRCHNSKD ..            307.9544782286   
##  5 Zambia    ZMB            GDP,c… NYGDPMKTPSACD ..            ..               
##  6 Zambia    ZMB            GDP,c… NYGDPMKTPSACN ..            ..               
##  7 Zambia    ZMB            GDP,c… NYGDPMKTPSAKD ..            ..               
##  8 Zambia    ZMB            GDP,c… NYGDPMKTPSAKN ..            ..               
##  9 Zambia    ZMB            Expor… DXGSRMRCHSAXD ..            ..               
## 10 Zambia    ZMB            Expor… DXGSRMRCHNSKD ..            ..               
## 11 Zambia    ZMB            Expor… DXGSRMRCHSAKD ..            ..               
## 12 Zambia    ZMB            Expor… DXGSRMRCHNSCD 614.26933145… 131.21548020783  
## 13 Zambia    ZMB            Expor… DXGSRMRCHSACD 613.04868529… 128.72709784262  
## 14 Zambia    ZMB            Expor… DXGSRMRCHNSXD ..            ..               
## 15 Zambia    ZMB            Excha… DPANUSSPF     3.27304003309 ..               
## 16 <NA>      <NA>           <NA>   <NA>          <NA>          <NA>             
## 17 <NA>      <NA>           <NA>   <NA>          <NA>          <NA>             
## 18 <NA>      <NA>           <NA>   <NA>          <NA>          <NA>             
## 19 Data fro… <NA>           <NA>   <NA>          <NA>          <NA>             
## 20 Last Upd… <NA>           <NA>   <NA>          <NA>          <NA>             
## # ℹ 123 more variables: `2000Q2 [2000Q2]` <chr>, `2000Q3 [2000Q3]` <chr>,
## #   `2000Q4 [2000Q4]` <chr>, `2001 [2001]` <chr>, `2001Q1 [2001Q1]` <chr>,
## #   `2001Q2 [2001Q2]` <chr>, `2001Q3 [2001Q3]` <chr>, `2001Q4 [2001Q4]` <chr>,
## #   `2002 [2002]` <chr>, `2002Q1 [2002Q1]` <chr>, `2002Q2 [2002Q2]` <chr>,
## #   `2002Q3 [2002Q3]` <chr>, `2002Q4 [2002Q4]` <chr>, `2003 [2003]` <chr>,
## #   `2003Q1 [2003Q1]` <chr>, `2003Q2 [2003Q2]` <chr>, `2003Q3 [2003Q3]` <chr>,
## #   `2003Q4 [2003Q4]` <chr>, `2004 [2004]` <chr>, `2004Q1 [2004Q1]` <chr>, …
# Extract rows that contain macroeconomic indicators in the `Country` column and make 
#  macroeconomic indicator dataset from global monitor
macroeconomics_indicator <- Global_Economic_Monitor %>%
  filter(Country %in% unique(Global_Economic_Monitor$Country)[grep("EMDE|Countries|Income|developing|Emerging Market|High Income|World|Advanced Economies|Commodity",
                                                            unique(Global_Economic_Monitor$Country))])


# Remove these rows from the original data to keep only rows with country names
Global_Economic_Monitor <- Global_Economic_Monitor %>%
  filter(!Country %in% macroeconomics_indicator$Country)
#remove the duplicates
distinct(Global_Economic_Monitor)  
## # A tibble: 7,059 × 129
##    Country   `Country Code` Series `Series Code` `2000 [2000]` `2000Q1 [2000Q1]`
##    <chr>     <chr>          <chr>  <chr>         <chr>         <chr>            
##  1 Afghanis… AFG            Core … CORENS        ..            ..               
##  2 Afghanis… AFG            Core … CORESA        ..            ..               
##  3 Afghanis… AFG            CPI P… CPTOTSAXMZGY  ..            ..               
##  4 Afghanis… AFG            CPI P… CPTOTSAXNZGY  ..            ..               
##  5 Afghanis… AFG            CPI P… CPTOTSAXN     ..            ..               
##  6 Afghanis… AFG            CPI P… CPTOTNSXN     ..            ..               
##  7 Afghanis… AFG            Excha… DPANUSSPB     47.356666666… ..               
##  8 Afghanis… AFG            Unemp… UNEMPSA_      ..            ..               
##  9 Afghanis… AFG            Total… TOTRESV       ..            ..               
## 10 Afghanis… AFG            Terms… TOT           ..            ..               
## # ℹ 7,049 more rows
## # ℹ 123 more variables: `2000Q2 [2000Q2]` <chr>, `2000Q3 [2000Q3]` <chr>,
## #   `2000Q4 [2000Q4]` <chr>, `2001 [2001]` <chr>, `2001Q1 [2001Q1]` <chr>,
## #   `2001Q2 [2001Q2]` <chr>, `2001Q3 [2001Q3]` <chr>, `2001Q4 [2001Q4]` <chr>,
## #   `2002 [2002]` <chr>, `2002Q1 [2002Q1]` <chr>, `2002Q2 [2002Q2]` <chr>,
## #   `2002Q3 [2002Q3]` <chr>, `2002Q4 [2002Q4]` <chr>, `2003 [2003]` <chr>,
## #   `2003Q1 [2003Q1]` <chr>, `2003Q2 [2003Q2]` <chr>, …
unique(Global_Economic_Monitor$Series)
##  [1] "Core CPI,not seas.adj,,,"                                            
##  [2] "Core CPI,seas.adj,,,"                                                
##  [3] "CPI Price, % y-o-y, median weighted, seas. adj.,"                    
##  [4] "CPI Price, % y-o-y, not seas. adj.,,"                                
##  [5] "CPI Price, seas. adj.,,,"                                            
##  [6] "CPI Price,not seas.adj,,,"                                           
##  [7] "Exchange rate, new LCU per USD extended backward, period average,,"  
##  [8] "Unemployment rate,Percent,,,"                                        
##  [9] "Total Reserves,,,,"                                                  
## [10] "Terms of Trade,,,,"                                                  
## [11] "Stock Markets, US$,,,"                                               
## [12] "Stock Markets, LCU,,,"                                               
## [13] "Retail Sales Volume,Index,,,"                                        
## [14] "Real Effective Exchange Rate,,,,"                                    
## [15] "Official exchange rate, LCU per USD, period average,,"               
## [16] "Nominal Effective Exchange Rate,,,,"                                 
## [17] "Months Import Cover of Foreign Reserves,,,,"                         
## [18] "Industrial Production, constant US$,,,"                              
## [19] "Industrial Production, constant US$, seas. adj.,,"                   
## [20] "Imports Merchandise, Customs, Price, US$, seas. adj."                
## [21] "Imports Merchandise, Customs, Price, US$, not seas. adj."            
## [22] "Imports Merchandise, Customs, current US$, millions, seas. adj."     
## [23] "Imports Merchandise, Customs, current US$, millions, not seas. adj." 
## [24] "Imports Merchandise, Customs, constant US$, millions, seas. adj."    
## [25] "Imports Merchandise, Customs, constant US$, millions, not seas. adj."
## [26] "GDP,current US$,millions,seas. adj.,"                                
## [27] "GDP,current LCU,millions,seas. adj.,"                                
## [28] "GDP,constant 2010 US$,millions,seas. adj.,"                          
## [29] "GDP,constant 2010 LCU,millions,seas. adj.,"                          
## [30] "Exports Merchandise, Customs, Price, US$, seas. adj."                
## [31] "Exports Merchandise, Customs, constant US$, millions, not seas. adj."
## [32] "Exports Merchandise, Customs, constant US$, millions, seas. adj."    
## [33] "Exports Merchandise, Customs, current US$, millions, not seas. adj." 
## [34] "Exports Merchandise, Customs, current US$, millions, seas. adj."     
## [35] "Exports Merchandise, Customs, Price, US$, not seas. adj."            
## [36] "Exchange rate, old LCU per USD extended forward, period average,,"   
## [37] NA
str(Global_Economic_Monitor)
## spc_tbl_ [7,061 × 129] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Country        : chr [1:7061] "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ Country Code   : chr [1:7061] "AFG" "AFG" "AFG" "AFG" ...
##  $ Series         : chr [1:7061] "Core CPI,not seas.adj,,," "Core CPI,seas.adj,,," "CPI Price, % y-o-y, median weighted, seas. adj.," "CPI Price, % y-o-y, not seas. adj.,," ...
##  $ Series Code    : chr [1:7061] "CORENS" "CORESA" "CPTOTSAXMZGY" "CPTOTSAXNZGY" ...
##  $ 2000 [2000]    : chr [1:7061] ".." ".." ".." ".." ...
##  $ 2000Q1 [2000Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2000Q2 [2000Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2000Q3 [2000Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2000Q4 [2000Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2001 [2001]    : chr [1:7061] ".." ".." ".." ".." ...
##  $ 2001Q1 [2001Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2001Q2 [2001Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2001Q3 [2001Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2001Q4 [2001Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2002 [2002]    : chr [1:7061] ".." ".." ".." ".." ...
##  $ 2002Q1 [2002Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2002Q2 [2002Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2002Q3 [2002Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2002Q4 [2002Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2003 [2003]    : chr [1:7061] ".." ".." ".." ".." ...
##  $ 2003Q1 [2003Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2003Q2 [2003Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2003Q3 [2003Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2003Q4 [2003Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2004 [2004]    : chr [1:7061] ".." ".." ".." ".." ...
##  $ 2004Q1 [2004Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2004Q2 [2004Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2004Q3 [2004Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2004Q4 [2004Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2005 [2005]    : chr [1:7061] ".." ".." ".." "10.24715592289" ...
##  $ 2005Q1 [2005Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2005Q2 [2005Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2005Q3 [2005Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2005Q4 [2005Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2006 [2006]    : chr [1:7061] ".." ".." ".." "6.76652570958" ...
##  $ 2006Q1 [2006Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2006Q2 [2006Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2006Q3 [2006Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2006Q4 [2006Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2007 [2007]    : chr [1:7061] ".." ".." ".." "8.66675778504" ...
##  $ 2007Q1 [2007Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2007Q2 [2007Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2007Q3 [2007Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2007Q4 [2007Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2008 [2008]    : chr [1:7061] ".." ".." ".." "26.44383832063" ...
##  $ 2008Q1 [2008Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2008Q2 [2008Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2008Q3 [2008Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2008Q4 [2008Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2009 [2009]    : chr [1:7061] ".." ".." ".." "-6.79140946808" ...
##  $ 2009Q1 [2009Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2009Q2 [2009Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2009Q3 [2009Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2009Q4 [2009Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2010 [2010]    : chr [1:7061] ".." ".." ".." "2.18628234597" ...
##  $ 2010Q1 [2010Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2010Q2 [2010Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2010Q3 [2010Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2010Q4 [2010Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2011 [2011]    : chr [1:7061] ".." ".." ".." "11.82724209156" ...
##  $ 2011Q1 [2011Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2011Q2 [2011Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2011Q3 [2011Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2011Q4 [2011Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2012 [2012]    : chr [1:7061] ".." ".." ".." "6.44138171658" ...
##  $ 2012Q1 [2012Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2012Q2 [2012Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2012Q3 [2012Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2012Q4 [2012Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2013 [2013]    : chr [1:7061] ".." ".." ".." "7.38136116922" ...
##  $ 2013Q1 [2013Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2013Q2 [2013Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2013Q3 [2013Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2013Q4 [2013Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2014 [2014]    : chr [1:7061] ".." ".." ".." "4.66945580562" ...
##  $ 2014Q1 [2014Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2014Q2 [2014Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2014Q3 [2014Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2014Q4 [2014Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2015 [2015]    : chr [1:7061] ".." ".." ".." "-0.6701681989" ...
##  $ 2015Q1 [2015Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2015Q2 [2015Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2015Q3 [2015Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2015Q4 [2015Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2016 [2016]    : chr [1:7061] ".." ".." ".." "4.39026872486" ...
##  $ 2016Q1 [2016Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2016Q2 [2016Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2016Q3 [2016Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2016Q4 [2016Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2017 [2017]    : chr [1:7061] ".." ".." ".." "4.97948067594" ...
##  $ 2017Q1 [2017Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2017Q2 [2017Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2017Q3 [2017Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2017Q4 [2017Q4]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2018 [2018]    : chr [1:7061] ".." ".." ".." "0.62169546733" ...
##  $ 2018Q1 [2018Q1]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2018Q2 [2018Q2]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2018Q3 [2018Q3]: chr [1:7061] ".." ".." ".." ".." ...
##  $ 2018Q4 [2018Q4]: chr [1:7061] ".." ".." ".." ".." ...
##   [list output truncated]
##  - attr(*, "spec")=
##   .. cols(
##   ..   Country = col_character(),
##   ..   `Country Code` = col_character(),
##   ..   Series = col_character(),
##   ..   `Series Code` = col_character(),
##   ..   `2000 [2000]` = col_character(),
##   ..   `2000Q1 [2000Q1]` = col_character(),
##   ..   `2000Q2 [2000Q2]` = col_character(),
##   ..   `2000Q3 [2000Q3]` = col_character(),
##   ..   `2000Q4 [2000Q4]` = col_character(),
##   ..   `2001 [2001]` = col_character(),
##   ..   `2001Q1 [2001Q1]` = col_character(),
##   ..   `2001Q2 [2001Q2]` = col_character(),
##   ..   `2001Q3 [2001Q3]` = col_character(),
##   ..   `2001Q4 [2001Q4]` = col_character(),
##   ..   `2002 [2002]` = col_character(),
##   ..   `2002Q1 [2002Q1]` = col_character(),
##   ..   `2002Q2 [2002Q2]` = col_character(),
##   ..   `2002Q3 [2002Q3]` = col_character(),
##   ..   `2002Q4 [2002Q4]` = col_character(),
##   ..   `2003 [2003]` = col_character(),
##   ..   `2003Q1 [2003Q1]` = col_character(),
##   ..   `2003Q2 [2003Q2]` = col_character(),
##   ..   `2003Q3 [2003Q3]` = col_character(),
##   ..   `2003Q4 [2003Q4]` = col_character(),
##   ..   `2004 [2004]` = col_character(),
##   ..   `2004Q1 [2004Q1]` = col_character(),
##   ..   `2004Q2 [2004Q2]` = col_character(),
##   ..   `2004Q3 [2004Q3]` = col_character(),
##   ..   `2004Q4 [2004Q4]` = col_character(),
##   ..   `2005 [2005]` = col_character(),
##   ..   `2005Q1 [2005Q1]` = col_character(),
##   ..   `2005Q2 [2005Q2]` = col_character(),
##   ..   `2005Q3 [2005Q3]` = col_character(),
##   ..   `2005Q4 [2005Q4]` = col_character(),
##   ..   `2006 [2006]` = col_character(),
##   ..   `2006Q1 [2006Q1]` = col_character(),
##   ..   `2006Q2 [2006Q2]` = col_character(),
##   ..   `2006Q3 [2006Q3]` = col_character(),
##   ..   `2006Q4 [2006Q4]` = col_character(),
##   ..   `2007 [2007]` = col_character(),
##   ..   `2007Q1 [2007Q1]` = col_character(),
##   ..   `2007Q2 [2007Q2]` = col_character(),
##   ..   `2007Q3 [2007Q3]` = col_character(),
##   ..   `2007Q4 [2007Q4]` = col_character(),
##   ..   `2008 [2008]` = col_character(),
##   ..   `2008Q1 [2008Q1]` = col_character(),
##   ..   `2008Q2 [2008Q2]` = col_character(),
##   ..   `2008Q3 [2008Q3]` = col_character(),
##   ..   `2008Q4 [2008Q4]` = col_character(),
##   ..   `2009 [2009]` = col_character(),
##   ..   `2009Q1 [2009Q1]` = col_character(),
##   ..   `2009Q2 [2009Q2]` = col_character(),
##   ..   `2009Q3 [2009Q3]` = col_character(),
##   ..   `2009Q4 [2009Q4]` = col_character(),
##   ..   `2010 [2010]` = col_character(),
##   ..   `2010Q1 [2010Q1]` = col_character(),
##   ..   `2010Q2 [2010Q2]` = col_character(),
##   ..   `2010Q3 [2010Q3]` = col_character(),
##   ..   `2010Q4 [2010Q4]` = col_character(),
##   ..   `2011 [2011]` = col_character(),
##   ..   `2011Q1 [2011Q1]` = col_character(),
##   ..   `2011Q2 [2011Q2]` = col_character(),
##   ..   `2011Q3 [2011Q3]` = col_character(),
##   ..   `2011Q4 [2011Q4]` = col_character(),
##   ..   `2012 [2012]` = col_character(),
##   ..   `2012Q1 [2012Q1]` = col_character(),
##   ..   `2012Q2 [2012Q2]` = col_character(),
##   ..   `2012Q3 [2012Q3]` = col_character(),
##   ..   `2012Q4 [2012Q4]` = col_character(),
##   ..   `2013 [2013]` = col_character(),
##   ..   `2013Q1 [2013Q1]` = col_character(),
##   ..   `2013Q2 [2013Q2]` = col_character(),
##   ..   `2013Q3 [2013Q3]` = col_character(),
##   ..   `2013Q4 [2013Q4]` = col_character(),
##   ..   `2014 [2014]` = col_character(),
##   ..   `2014Q1 [2014Q1]` = col_character(),
##   ..   `2014Q2 [2014Q2]` = col_character(),
##   ..   `2014Q3 [2014Q3]` = col_character(),
##   ..   `2014Q4 [2014Q4]` = col_character(),
##   ..   `2015 [2015]` = col_character(),
##   ..   `2015Q1 [2015Q1]` = col_character(),
##   ..   `2015Q2 [2015Q2]` = col_character(),
##   ..   `2015Q3 [2015Q3]` = col_character(),
##   ..   `2015Q4 [2015Q4]` = col_character(),
##   ..   `2016 [2016]` = col_character(),
##   ..   `2016Q1 [2016Q1]` = col_character(),
##   ..   `2016Q2 [2016Q2]` = col_character(),
##   ..   `2016Q3 [2016Q3]` = col_character(),
##   ..   `2016Q4 [2016Q4]` = col_character(),
##   ..   `2017 [2017]` = col_character(),
##   ..   `2017Q1 [2017Q1]` = col_character(),
##   ..   `2017Q2 [2017Q2]` = col_character(),
##   ..   `2017Q3 [2017Q3]` = col_character(),
##   ..   `2017Q4 [2017Q4]` = col_character(),
##   ..   `2018 [2018]` = col_character(),
##   ..   `2018Q1 [2018Q1]` = col_character(),
##   ..   `2018Q2 [2018Q2]` = col_character(),
##   ..   `2018Q3 [2018Q3]` = col_character(),
##   ..   `2018Q4 [2018Q4]` = col_character(),
##   ..   `2019 [2019]` = col_character(),
##   ..   `2019Q1 [2019Q1]` = col_character(),
##   ..   `2019Q2 [2019Q2]` = col_character(),
##   ..   `2019Q3 [2019Q3]` = col_character(),
##   ..   `2019Q4 [2019Q4]` = col_character(),
##   ..   `2020 [2020]` = col_character(),
##   ..   `2020Q1 [2020Q1]` = col_character(),
##   ..   `2020Q2 [2020Q2]` = col_character(),
##   ..   `2020Q3 [2020Q3]` = col_character(),
##   ..   `2020Q4 [2020Q4]` = col_character(),
##   ..   `2021 [2021]` = col_character(),
##   ..   `2021Q1 [2021Q1]` = col_character(),
##   ..   `2021Q2 [2021Q2]` = col_character(),
##   ..   `2021Q3 [2021Q3]` = col_character(),
##   ..   `2021Q4 [2021Q4]` = col_character(),
##   ..   `2022 [2022]` = col_character(),
##   ..   `2022Q1 [2022Q1]` = col_character(),
##   ..   `2022Q2 [2022Q2]` = col_character(),
##   ..   `2022Q3 [2022Q3]` = col_character(),
##   ..   `2022Q4 [2022Q4]` = col_character(),
##   ..   `2023 [2023]` = col_character(),
##   ..   `2023Q1 [2023Q1]` = col_character(),
##   ..   `2023Q2 [2023Q2]` = col_character(),
##   ..   `2023Q3 [2023Q3]` = col_character(),
##   ..   `2023Q4 [2023Q4]` = col_character(),
##   ..   `2024 [2024]` = col_character(),
##   ..   `2024Q1 [2024Q1]` = col_character(),
##   ..   `2024Q2 [2024Q2]` = col_character(),
##   ..   `2024Q3 [2024Q3]` = col_character(),
##   ..   `2024Q4 [2024Q4]` = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>
# Reshape the data from wide to long format
Global_Economic_Monitor_long <- Global_Economic_Monitor %>%
  pivot_longer(
    cols = matches("^200\\d|^201\\d|^202\\d"),  # Matches columns starting with 200, 201, or 202
    names_to = "Year",
    values_to = "Value"
  )


Global_Economic_Monitor <- Global_Economic_Monitor_long
rm(Global_Economic_Monitor_long)
# Clean the 'year' column by removing the part in brackets (e.g., "[2000]" or "[2000Q1]")
# Clean the 'Year' column
Global_Economic_Monitor <- Global_Economic_Monitor %>%
  mutate(
    Year = gsub("\\[.*\\]", "", Year),        # Remove anything inside brackets
    Year = gsub("Q", "-Q", Year),            # Replace 'Q' with '-Q' for better readability
    Year = trimws(Year)                      # Remove any leading or trailing spaces
  )


sample_n(Global_Economic_Monitor, 10)
## # A tibble: 10 × 6
##    Country               `Country Code` Series         `Series Code` Year  Value
##    <chr>                 <chr>          <chr>          <chr>         <chr> <chr>
##  1 Lithuania             LTU            Imports Merch… DMGSRMRCHNSXD 2011… 1.23…
##  2 Estonia               EST            Imports Merch… DMGSRMRCHSACD 2005… 2401…
##  3 St. Kitts and Nevis   KNA            Exports Merch… DXGSRMRCHNSXD 2018… ..   
##  4 Cambodia              KHM            GDP,constant … NYGDPMKTPSAKN 2024  ..   
##  5 Haiti                 HTI            Exchange rate… DPANUSSPB     2012  41.6…
##  6 Philippines           PHL            Nominal Effec… NEER          2014… ..   
##  7 Sierra Leone          SLE            Imports Merch… DMGSRMRCHSACD 2003… 87.1…
##  8 Serbia and Montenegro YUG            Exports Merch… DXGSRMRCHSACD 2014… ..   
##  9 Georgia               GEO            Imports Merch… DMGSRMRCHSACD 2008  6328…
## 10 Isle of Man           IMN            Exports Merch… DXGSRMRCHNSXD 2009  ..
# Define the mapping of countries to continents

countries <- c(
  "Afghanistan", "Algeria", "Antigua and Barbuda", "Armenia", "Albania", 
  "Angola", "Argentina", "Australia", "Azerbaijan", "Aruba", 
  "Austria", "Bahamas The", "Bahrain", "Barbados", "Bangladesh", 
  "Belarus", "Belize", "Belgium", "Benin", "Bermuda", 
  "Bhutan", "Bosnia and Herzegovina", "Brazil", "Bulgaria", "Burundi", 
  "Cameroon", "Cape Verde", "Central African Republic", "Chile", "Colombia", 
  "Bolivia", "Botswana", "Brunei", "Burkina Faso", "Cambodia", 
  "Canada", "Cayman Islands", "Chad", "China", "Comoros", 
  "Congo Rep.", "Congo Dem. Rep.", "Costa Rica", "Croatia", "Cyprus", 
  "Cote d'Ivoire", "Cuba", "Denmark", "Djibouti", "Dominican Republic", 
  "Czech Republic", "Dominica", "El Salvador", "Ecuador", "Egypt Arab Rep.", 
  "Equatorial Guinea", "Eritrea", "Ethiopia", "Faeroe Islands", "Fiji", 
  "France", "Gabon", "Georgia", "Ghana", "Estonia", 
  "Finland", "French Polynesia", "Gambia The", "Germany", "Greece", 
  "Grenada", "Guinea", "Guyana", "Hong Kong China", "Iceland", 
  "Indonesia", "Iraq", "Isle of Man", "Greenland", "Guatemala", 
  "Guinea-Bissau", "Haiti", "Honduras", "Hungary", "India", 
  "Iran Islamic Rep.", "Ireland", "Israel", "Jamaica", "Jordan", 
  "Kenya", "Korea Rep.", "Kyrgyz Republic", "Lebanon", "Liberia", 
  "Lithuania", "Libya", "Lesotho", "Latvia", "Lao PDR", 
  "Kuwait", "Kiribati", "Japan", "Italy", "Kazakhstan", 
  "Luxembourg", "Macedonia FYR", "Malawi", "Maldives", "Malta", 
  "Mauritius", "Micronesia Fed. Sts.", "Mongolia", "Moldova", "Mexico", 
  "Mauritania", "Malaysia", "Madagascar", "Macao China", "Mali", 
  "Morocco", "Myanmar", "Nepal", "Netherlands Antilles", "New Zealand", 
  "Niger", "Norway", "Pakistan", "Papua New Guinea", "Peru", 
  "Mozambique", "Namibia", "Netherlands", "New Caledonia", "Nicaragua", 
  "Nigeria", "Oman", "Panama", "Paraguay", "Philippines", 
  "Somalia", "Slovenia", "Singapore", "Seychelles", "Senegal", 
  "Sao Tome and Principe", "Samoa", "Russian Federation", "Poland", "Qatar", 
  "Portugal", "Romania", "Rwanda", "San Marino", "Saudi Arabia", 
  "Serbia and Montenegro", "Sierra Leone", "Slovak Republic", "Solomon Islands", "South Africa", 
  "Spain", "St. Kitts and Nevis", "St. Vincent and the Grenadines", "Sudan", "Suriname", 
  "Sweden", "Syrian Arab Republic", "Tajikistan", "Thailand", "Togo", 
  "Timor-Leste", "Tanzania", "Taiwan China", "Switzerland", "Swaziland", 
  "St. Lucia", "Sri Lanka", "Tonga", "Tunisia", "Turkmenistan", 
  "Ukraine", "United Kingdom", "Vanuatu", "Vietnam", "Trinidad and Tobago", 
  "Turkey", "Uganda", "United Arab Emirates", "United States", "Uruguay", 
  "Uzbekistan", "Venezuela RB", "Virgin Islands (U.S.)", "Yemen Rep.", "Zimbabwe", 
  "Zambia"
) 

continents <- c(
  "Asia", "Africa", "North America", "Asia", "Europe", 
  "Africa", "South America", "Oceania", "Asia", "North America", 
  "Europe", "North America", "Asia", "North America", "Asia", 
  "Europe", "North America", "Europe", "Africa", "North America", 
  "Asia", "Europe", "South America", "Europe", "Africa", 
  "Africa", "Africa", "Africa", "South America", "South America", 
  "South America", "Africa", "Asia", "Africa", "Asia", 
  "North America", "North America", "Africa", "Asia", "Africa", 
  "Africa", "Africa", "North America", "Europe", "Europe", 
  "Africa", "North America", "Europe", "Africa", "North America", 
  "Europe", "North America", "North America", "South America", "Africa", 
  "Africa", "Africa", "Africa", "Europe", "Oceania", 
  "Europe", "Africa", "Asia", "Africa", "Europe", 
  "Europe", "Oceania", "Africa", "Europe", "Europe", 
  "North America", "Africa", "South America", "Asia", "Europe", 
  "Asia", "Asia", "Europe", "North America", "North America", 
  "Africa", "North America", "North America", "Europe", "Asia", 
  "Asia", "Europe", "Asia", "North America", "Asia", 
  "Africa", "Asia", "Asia", "Asia", "Africa", 
  "Europe", "Africa", "Europe", "Asia", "Africa", "Asia", "Oceania", "Asia", "Europe", "Asia", 
  "Europe", "Europe", "Africa", "Asia", "Europe", 
  "Africa", "Oceania", "Asia", "Europe", "North America", 
  "Africa", "Asia", "Africa", "Asia", "Africa", 
  "Africa", "Asia", "Asia", "North America", "Oceania", 
  "Africa", "Europe", "Asia", "Oceania", "South America", 
  "Africa", "Africa", "Europe", "Oceania", "North America", 
  "Africa", "Asia", "North America", "South America", "Asia", 
  "Africa", "Europe", "Asia", "Africa", "Africa", 
  "Africa", "Oceania", "Europe", "Europe", "Asia", 
  "Europe", "Europe", "Africa", "Europe", "Asia", 
  "Europe", "Africa", "Europe", "Oceania", "Africa", 
  "Europe", "North America", "North America", "Africa", "South America", 
  "Europe", "Asia", "Asia", "Asia", "Africa", 
  "Asia", "Africa", "Asia", "Europe", "Africa", 
  "North America", "Asia", "Oceania", "Africa", "Asia", 
  "Europe", "Europe", "Oceania", "Asia", "North America", 
  "Asia", "Africa", "Asia", "North America", "South America", 
  "Asia", "South America", "Oceania", "Asia", "Africa", 
  "Africa")


# Create the dataframe
countries_continents <- data.frame(Country = countries, Continent = continents)


#join the continent dataset to the Global Monitor dataset
Global_Economic_Monitor <- Global_Economic_Monitor %>%
  left_join(countries_continents, by = "Country")


sample_n(Global_Economic_Monitor, 10)
## # A tibble: 10 × 7
##    Country             `Country Code` Series `Series Code` Year  Value Continent
##    <chr>               <chr>          <chr>  <chr>         <chr> <chr> <chr>    
##  1 Portugal            PRT            CPI P… CPTOTSAXNZGY  2009… ..    Europe   
##  2 Senegal             SEN            GDP,c… NYGDPMKTPSAKD 2018… ..    Africa   
##  3 Gabon               GAB            Expor… DXGSRMRCHNSXD 2011  ..    Africa   
##  4 Lithuania           LTU            Excha… DPANUSSPF     2005… ..    Europe   
##  5 Italy               ITA            Expor… DXGSRMRCHSAKD 2024  ..    Europe   
##  6 Ireland             IRL            Impor… DMGSRMRCHNSCD 2023… 3709… Europe   
##  7 Armenia             ARM            Expor… DXGSRMRCHNSCD 2000  294   Asia     
##  8 Antigua and Barbuda ATG            Unemp… UNEMPSA_      2017… ..    North Am…
##  9 United Kingdom      GBR            GDP,c… NYGDPMKTPSAKD 2015  2756… Europe   
## 10 Sierra Leone        SLE            Excha… DPANUSSPF     2015  4308… Africa
# Convert the 'Value' column to numeric, replacing '..' with NA
Global_Economic_Monitor <- Global_Economic_Monitor %>%
  mutate(Value = ifelse(Value == "..", NA, as.numeric(Value)))

extract only inflation monitors from the Global Monitor dataset and create inflation-data dataset

# Filter Core CPI and YoY CPI
inflation_data <- Global_Economic_Monitor %>%
  filter(Series %in% c(
    "Core CPI,seas.adj,,,",
    "Core CPI,not seas.adj,,,",
    "CPI Price, % y-o-y, median weighted, seas. adj.,",
    "CPI Price, % y-o-y, not seas. adj.,"
  )) %>%
  mutate(
    # Identify type: Quarterly or Annual
    DataType = if_else(grepl("-Q", Year), "Quarterly", "Annual"),
    
    # Create a unified Date column
    Date = if_else(
      grepl("-Q", Year), 
      as.Date(as.yearqtr(Year, format = "%Y-Q%q")),  # Convert quarterly to Date
      as.Date(paste0(Year, "-01-01"))               # Convert annual to Date
    ),
    
    # Extract the year
    Year = if_else(DataType == "Quarterly", substr(Year, 1, 4), Year),
    
    # Extract the quarter for quarterly data
    Quarter = if_else(DataType == "Quarterly", substr(Year, 6, 7), NA_character_),
    
    # Add a decade column
    Decade = paste0(substr(Year, 1, 3), "0s")
  ) 



# remove the NAs in the quarter column
inflation_data <- inflation_data %>%
  mutate(
    Quarter = if_else(
      is.na(Quarter) & DataType == "Annual", 
      "Annual",  # Placeholder for annual data
      Quarter    # Retain existing quarter values
    )
  )

# Check a sample of the updated dataset
sample_n(inflation_data, 10)
## # A tibble: 10 × 11
##    Country    `Country Code` Series `Series Code` Year  Value Continent DataType
##    <chr>      <chr>          <chr>  <chr>         <chr> <dbl> <chr>     <chr>   
##  1 Madagascar MDG            Core … CORESA        2005     NA Africa    Annual  
##  2 Antigua a… ATG            Core … CORENS        2007     NA North Am… Annual  
##  3 French Po… PYF            Core … CORENS        2013     NA Oceania   Quarter…
##  4 Namibia    NAM            Core … CORENS        2024     NA Africa    Quarter…
##  5 Zimbabwe   ZWE            Core … CORESA        2021     NA Africa    Annual  
##  6 Kyrgyz Re… KGZ            Core … CORENS        2021     NA Asia      Quarter…
##  7 Mali       MLI            Core … CORENS        2018     NA Africa    Annual  
##  8 Australia  AUS            Core … CORENS        2019     NA Oceania   Annual  
##  9 Iran Isla… IRN            Core … CORENS        2010     NA Asia      Annual  
## 10 Sri Lanka  LKA            Core … CORESA        2010     NA Asia      Annual  
## # ℹ 3 more variables: Date <date>, Quarter <chr>, Decade <chr>
# Check for unique values in key columns
sapply(inflation_data, function(x) length(unique(x)))
##      Country Country Code       Series  Series Code         Year        Value 
##          196          196            3            3           25         2983 
##    Continent     DataType         Date      Quarter       Decade 
##            6            2          100            2            3
# Check for missing values
colSums(is.na(inflation_data))
##      Country Country Code       Series  Series Code         Year        Value 
##            0            0            0            0            0        70507 
##    Continent     DataType         Date      Quarter       Decade 
##            0            0            0            0            0
# Check for unique values in specific columns
unique(inflation_data$Series)
## [1] "Core CPI,not seas.adj,,,"                        
## [2] "Core CPI,seas.adj,,,"                            
## [3] "CPI Price, % y-o-y, median weighted, seas. adj.,"
unique(inflation_data$Continent)
## [1] "Asia"          "Africa"        "North America" "Europe"       
## [5] "South America" "Oceania"
# Separate annual and quarterly data
annual_data <- inflation_data %>% filter(DataType == "Annual")
quarterly_data <- inflation_data %>% filter(DataType == "Quarterly")


#rename the annual colomn
annual_data <- annual_data %>% 
  rename("Annualy" = "Quarter")  %>% #remove datatype colomn
  select(-DataType) %>%  #remove date colomn
  select(-Date)

inflation_annual_data <- annual_data 



#rename a colomn on quartely 
quarterly_data <- quarterly_data %>%
  rename("Quarterly" = "Quarter") %>% #remove datatype colomn 
  select(-DataType) %>% #remove date colomn
  select(-Date)

inflation_quarterly_data <- quarterly_data

Explotory Data Analysis For Inflation Annual Data

# Visualize the missingness in the dataset
gg_miss_var(inflation_annual_data)

The Value variable seems to have many missing values

#Use a chi-square test to see if missingness depends on other variables.
chisq.test(table(is.na(inflation_annual_data$Value), inflation_annual_data$Country))
## 
##  Pearson's Chi-squared test
## 
## data:  table(is.na(inflation_annual_data$Value), inflation_annual_data$Country)
## X-squared = 7517.7, df = 195, p-value < 2.2e-16

Null Hypothesis : The missingness of the Value variable is independent of the Country variable.

Alternative Hypothesis: The missingness of the Value variable depends on the Country variable.

Since the p-value is much smaller than the common significance level (e.g., 0.05), we reject the null hypothesis. This implies that there is a statistically significant association between the missingness of Value and the Country variable.

#Check which country have higher proportions of missing values
prop.table(table(is.na(inflation_annual_data$Value), inflation_annual_data$Country),
           margin = 2)
##        
##         Afghanistan   Albania   Algeria    Angola Antigua and Barbuda Argentina
##   FALSE   0.0000000 0.4533333 0.0000000 0.0000000           0.0000000 0.0000000
##   TRUE    1.0000000 0.5466667 1.0000000 1.0000000           1.0000000 1.0000000
##        
##           Armenia     Aruba Australia   Austria Azerbaijan Bahamas The
##   FALSE 0.4933333 0.0000000 0.0000000 0.0000000  0.0000000   0.0000000
##   TRUE  0.5066667 1.0000000 1.0000000 1.0000000  1.0000000   1.0000000
##        
##           Bahrain Bangladesh  Barbados   Belarus   Belgium    Belize     Benin
##   FALSE 0.0000000  0.0000000 0.0000000 0.6133333 0.6666667 0.0000000 0.0000000
##   TRUE  1.0000000  1.0000000 1.0000000 0.3866667 0.3333333 1.0000000 1.0000000
##        
##           Bermuda    Bhutan   Bolivia Bosnia and Herzegovina  Botswana
##   FALSE 0.0000000 0.0000000 0.0000000              0.0000000 0.0000000
##   TRUE  1.0000000 1.0000000 1.0000000              1.0000000 1.0000000
##        
##            Brazil    Brunei  Bulgaria Burkina Faso   Burundi  Cambodia
##   FALSE 0.6666667 0.0000000 0.0000000    0.0000000 0.0000000 0.0000000
##   TRUE  0.3333333 1.0000000 1.0000000    1.0000000 1.0000000 1.0000000
##        
##          Cameroon    Canada Cape Verde Cayman Islands Central African Republic
##   FALSE 0.0000000 0.6666667  0.0000000      0.0000000                0.0000000
##   TRUE  1.0000000 0.3333333  1.0000000      1.0000000                1.0000000
##        
##              Chad     Chile     China  Colombia   Comoros Congo Dem. Rep.
##   FALSE 0.0000000 0.4266667 0.5333333 0.6666667 0.0000000       0.0000000
##   TRUE  1.0000000 0.5733333 0.4666667 0.3333333 1.0000000       1.0000000
##        
##         Congo Rep. Costa Rica Cote d'Ivoire   Croatia      Cuba    Cyprus
##   FALSE  0.0000000  0.5066667     0.0000000 0.5600000 0.0000000 0.6666667
##   TRUE   1.0000000  0.4933333     1.0000000 0.4400000 1.0000000 0.3333333
##        
##         Czech Republic   Denmark  Djibouti  Dominica Dominican Republic
##   FALSE      0.6666667 0.6666667 0.0000000 0.0000000          0.6666667
##   TRUE       0.3333333 0.3333333 1.0000000 1.0000000          0.3333333
##        
##           Ecuador Egypt Arab Rep. El Salvador Equatorial Guinea   Eritrea
##   FALSE 0.0000000       0.5600000   0.4266667         0.0000000 0.0000000
##   TRUE  1.0000000       0.4400000   0.5733333         1.0000000 1.0000000
##        
##           Estonia  Ethiopia Faeroe Islands      Fiji   Finland    France
##   FALSE 0.0000000 0.0000000      0.0000000 0.2133333 0.0000000 0.6666667
##   TRUE  1.0000000 1.0000000      1.0000000 0.7866667 1.0000000 0.3333333
##        
##         French Polynesia     Gabon Gambia The   Georgia   Germany     Ghana
##   FALSE        0.0000000 0.0000000  0.0000000 0.2000000 0.6666667 0.0000000
##   TRUE         1.0000000 1.0000000  1.0000000 0.8000000 0.3333333 1.0000000
##        
##            Greece Greenland   Grenada Guatemala    Guinea Guinea-Bissau
##   FALSE 0.6666667 0.0000000 0.0000000 0.6400000 0.0000000     0.0000000
##   TRUE  0.3333333 1.0000000 1.0000000 0.3600000 1.0000000     1.0000000
##        
##            Guyana     Haiti  Honduras Hong Kong China   Hungary   Iceland
##   FALSE 0.0000000 0.0000000 0.6666667       0.5600000 0.6666667 0.6666667
##   TRUE  1.0000000 1.0000000 0.3333333       0.4400000 0.3333333 0.3333333
##        
##             India Indonesia Iran Islamic Rep.      Iraq   Ireland Isle of Man
##   FALSE 0.0000000 0.4800000         0.0000000 0.0000000 0.6666667   0.0000000
##   TRUE  1.0000000 0.5200000         1.0000000 1.0000000 0.3333333   1.0000000
##        
##            Israel     Italy   Jamaica     Japan    Jordan Kazakhstan     Kenya
##   FALSE 0.6666667 0.6666667 0.0000000 0.6666667 0.5066667  0.2400000 0.0000000
##   TRUE  0.3333333 0.3333333 1.0000000 0.3333333 0.4933333  0.7600000 1.0000000
##        
##          Kiribati Korea Rep.    Kuwait Kyrgyz Republic   Lao PDR    Latvia
##   FALSE 0.0000000  0.6666667 0.0000000       0.2000000 0.0000000 0.3333333
##   TRUE  1.0000000  0.3333333 1.0000000       0.8000000 1.0000000 0.6666667
##        
##           Lebanon   Lesotho   Liberia     Libya Lithuania Luxembourg
##   FALSE 0.0000000 0.0000000 0.0000000 0.0000000 0.6666667  0.6666667
##   TRUE  1.0000000 1.0000000 1.0000000 1.0000000 0.3333333  0.3333333
##        
##         Macao China Macedonia FYR Madagascar    Malawi  Malaysia  Maldives
##   FALSE   0.0000000     0.5333333  0.0000000 0.0000000 0.5333333 0.0000000
##   TRUE    1.0000000     0.4666667  1.0000000 1.0000000 0.4666667 1.0000000
##        
##              Mali     Malta Mauritania Mauritius    Mexico Micronesia Fed. Sts.
##   FALSE 0.0000000 0.6666667  0.0000000 0.4800000 0.6666667            0.0000000
##   TRUE  1.0000000 0.3333333  1.0000000 0.5200000 0.3333333            1.0000000
##        
##           Moldova  Mongolia   Morocco Mozambique   Myanmar   Namibia     Nepal
##   FALSE 0.0000000 0.0000000 0.0000000  0.0000000 0.0000000 0.0000000 0.0000000
##   TRUE  1.0000000 1.0000000 1.0000000  1.0000000 1.0000000 1.0000000 1.0000000
##        
##         Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua
##   FALSE   0.6666667            0.0000000     0.0000000   0.0000000 0.0000000
##   TRUE    0.3333333            1.0000000     1.0000000   1.0000000 1.0000000
##        
##             Niger   Nigeria    Norway      Oman  Pakistan    Panama
##   FALSE 0.0000000 0.6666667 0.6666667 0.0000000 0.2000000 0.0000000
##   TRUE  1.0000000 0.3333333 0.3333333 1.0000000 0.8000000 1.0000000
##        
##         Papua New Guinea  Paraguay      Peru Philippines    Poland  Portugal
##   FALSE        0.0000000 0.6666667 0.6666667   0.0000000 0.6666667 0.6666667
##   TRUE         1.0000000 0.3333333 0.3333333   1.0000000 0.3333333 0.3333333
##        
##             Qatar   Romania Russian Federation    Rwanda     Samoa San Marino
##   FALSE 0.0000000 0.5066667          0.6133333 0.0000000 0.0000000  0.0000000
##   TRUE  1.0000000 0.4933333          0.3866667 1.0000000 1.0000000  1.0000000
##        
##         Sao Tome and Principe Saudi Arabia   Senegal Serbia and Montenegro
##   FALSE             0.0000000    0.0000000 0.0000000             0.0000000
##   TRUE              1.0000000    1.0000000 1.0000000             1.0000000
##        
##         Seychelles Sierra Leone Singapore Slovak Republic  Slovenia
##   FALSE  0.0000000    0.0000000 0.6666667       0.6133333 0.6666667
##   TRUE   1.0000000    1.0000000 0.3333333       0.3866667 0.3333333
##        
##         Solomon Islands   Somalia South Africa     Spain Sri Lanka
##   FALSE       0.0000000 0.0000000    0.6133333 0.6666667 0.0000000
##   TRUE        1.0000000 1.0000000    0.3866667 0.3333333 1.0000000
##        
##         St. Kitts and Nevis St. Lucia St. Vincent and the Grenadines     Sudan
##   FALSE           0.0000000 0.0000000                      0.0000000 0.0000000
##   TRUE            1.0000000 1.0000000                      1.0000000 1.0000000
##        
##          Suriname Swaziland    Sweden Switzerland Syrian Arab Republic
##   FALSE 0.0000000 0.0000000 0.6666667   0.5333333            0.0000000
##   TRUE  1.0000000 1.0000000 0.3333333   0.4666667            1.0000000
##        
##         Taiwan China Tajikistan  Tanzania  Thailand Timor-Leste      Togo
##   FALSE    0.6666667  0.0000000 0.0000000 0.6666667   0.0000000 0.0000000
##   TRUE     0.3333333  1.0000000 1.0000000 0.3333333   1.0000000 1.0000000
##        
##             Tonga Trinidad and Tobago   Tunisia    Turkey Turkmenistan
##   FALSE 0.0000000           0.6666667 0.0000000 0.5866667    0.0000000
##   TRUE  1.0000000           0.3333333 1.0000000 0.4133333    1.0000000
##        
##            Uganda   Ukraine United Arab Emirates United Kingdom United States
##   FALSE 0.5333333 0.0000000            0.0000000      0.6666667     0.6666667
##   TRUE  0.4666667 1.0000000            1.0000000      0.3333333     0.3333333
##        
##           Uruguay Uzbekistan   Vanuatu Venezuela RB   Vietnam
##   FALSE 0.0000000  0.0000000 0.0000000    0.2133333 0.0000000
##   TRUE  1.0000000  1.0000000 1.0000000    0.7866667 1.0000000
##        
##         Virgin Islands (U.S.) Yemen Rep.    Zambia  Zimbabwe
##   FALSE             0.0000000  0.0000000 0.0000000 0.0000000
##   TRUE              1.0000000  1.0000000 1.0000000 1.0000000
#visualize which country has completely missing data and which ones has partial missing data
ggplot(inflation_annual_data, aes(x = Country, fill = is.na(Value))) +
  geom_bar(position = "fill") +
  labs(y = "Proportion", fill = "Missing Value") +
  theme_minimal() +
  ggtitle("Proportion of Missing Values by Country")

# Filter out countries with 100% missing data
missing_annual_summary <- inflation_annual_data %>%
  group_by(Country) %>%
  summarize(total_missing = sum(is.na(Value)), total_records = n()) %>%
  mutate(missing_percentage = total_missing / total_records)

# remove countries with <100% missing and leave countries with partial missing data
inflation_annual_data <- inflation_annual_data %>%
  filter(Country %in% missing_annual_summary$Country[missing_annual_summary$missing_percentage < 1])

# Convert `Year` to numeric 
inflation_annual_data$Year <- as.numeric(inflation_annual_data$Year)
# Clean column names to make them syntactically valid
inflation_annual_data <- inflation_annual_data %>%
  clean_names()
#check how many percent of missing data do we have 

aggr(inflation_annual_data)

we have more than 40% of the missing values on the Value variable which is alot of data, the best way to go about is to imputate data than removing it

#lets use the CART method to imputate data

predictor_matrix_annual <- make.predictorMatrix(inflation_annual_data)

#CART imputation
set.seed(123)
annual_imputation_cart <- mice(inflation_annual_data, m = 5, method = "cart")
## 
##  iter imp variable
##   1   1  value
##   1   2  value
##   1   3  value
##   1   4  value
##   1   5  value
##   2   1  value
##   2   2  value
##   2   3  value
##   2   4  value
##   2   5  value
##   3   1  value
##   3   2  value
##   3   3  value
##   3   4  value
##   3   5  value
##   4   1  value
##   4   2  value
##   4   3  value
##   4   4  value
##   4   5  value
##   5   1  value
##   5   2  value
##   5   3  value
##   5   4  value
##   5   5  value
#check the imputations CART
annual_imputation_cart$imp$value
##               1          2          3          4          5
## 1      84.15973   88.93484   54.27991   91.29758   69.44062
## 2      81.69164   86.59202   83.45336   87.33405   86.93202
## 3      88.96352   83.06365   72.74734   86.72466   76.81953
## 4      89.34008   86.73150   82.68579   91.50520   92.43986
## 5      90.64730   90.20065   90.74173   94.70750   68.72902
## 6      85.13210  101.08586   92.22074   79.68046   90.38887
## 26     84.31220   91.29758   84.05367   48.49429   77.81180
## 27     86.50740   76.38382   81.93143   60.65947  105.36680
## 28     87.79150   97.43460   93.66601   84.35955   83.06365
## 29     78.11804   79.00953   64.89455   89.34008   90.74173
## 30     76.93336   63.88924   92.13118   87.73624   64.21370
## 31     84.04155   75.51250   94.13769   85.46920   81.36691
## 50    129.92929  130.04505  222.04033  127.11430  265.24127
## 51     74.49210   87.53040   80.80704   79.54693   92.01060
## 52     79.62324   69.44062   76.81953   80.88184   54.07719
## 53    103.13131   60.65947   88.74066   90.63433   55.25180
## 54     61.05559   92.43986   95.73724   95.99940   70.34297
## 55     70.47614   53.45668   51.42515   59.30769   94.96576
## 56    101.08586   81.36691   97.36059   74.58034   97.04058
## 57     90.42765   99.33319   92.72501   94.04443   95.08687
## 58     83.82353   76.31949   57.27377   93.54729  101.77485
## 59     99.50617   91.33018   92.99362   97.53524   84.39734
## 60    102.33326   97.46060  100.35603   98.47596  101.16487
## 61     99.09979  101.00116   96.37148   97.49152  100.56819
## 62    104.64498  143.70360  104.98080  101.19407  104.18608
## 63    102.86540  108.71738  176.17889  105.96919  108.71738
## 64    103.93445  104.51977  113.20401  115.81716  111.17116
## 65    106.69451  105.80979  104.04960  120.33720  107.00910
## 66    104.13499  111.55464  106.01707  103.10562  338.64140
## 67    125.63590  107.90621  101.13796  171.38298  114.84006
## 68    125.17527  163.02863  103.32460  120.27348  113.70289
## 69    169.43669  105.68000  175.39744  111.90085  138.61044
## 70    115.63598  154.44546  136.74067  136.42447  105.61515
## 71    110.92591  136.66000  153.95683  269.03839  139.84188
## 72    225.69219  106.92900  118.33059  100.20202  193.74717
## 73    147.99678  131.22664  126.42586  164.06744  126.98589
## 74    298.66443  121.29630  132.01165  155.95655  103.33840
## 75    694.06484  139.11052  121.51767  188.21775  161.41631
## 76     89.20607   39.70148   74.82542   63.88756   85.54361
## 77     80.42268  103.13131   83.00664   79.51430   84.31220
## 78     60.03765   88.52320   88.98440   91.12610   84.86304
## 79     64.21370   82.88179   83.29147   75.65387   88.95131
## 80     79.31961   87.77418   64.83246   59.30769   62.68866
## 81     95.08687   99.01804   95.08687   82.70288   84.65185
## 82     88.75352   94.49291   91.27871   76.71611   81.19623
## 83     73.98322   91.12778   98.10208   84.21325   94.49291
## 101    76.81953   85.21347   82.76681   85.73580   60.57741
## 102    65.23464   87.17744   82.16888   85.15462   85.15462
## 103    92.17841   79.11190   81.93143   89.62937   76.45865
## 104    92.03260   79.31961   63.14192   70.11448   73.29890
## 105    91.35638   92.64793   89.91046   86.73150   92.72349
## 106    92.30889   88.10025   89.08903   69.46001   89.40975
## 107    79.46693   69.46001   95.82647   92.99346   93.51373
## 108    96.47162   82.74496   93.60593   81.36691  101.49594
## 126    84.15973   66.61348   77.84784   81.40956   89.62937
## 127    84.13422   84.16547   79.47932   91.95899   70.92046
## 128    57.40160   63.88756   50.76591   62.21331   92.38744
## 129   102.22222   92.13118   91.87575   85.50989  102.22222
## 130    92.43411   82.68579   92.75428   63.88924   90.48983
## 131    87.31443   95.86473   93.25658   81.95826   92.07572
## 132    96.59448   81.34965   87.22890   93.20396   97.48628
## 133    82.59775   69.57160   79.43407   95.24657   93.51373
## 134    98.34969   95.08520   88.01447   98.67298   98.72624
## 135    98.93923   99.10218   99.87192   98.78481  100.57566
## 136    98.93923  102.07249  100.64034   99.09979  101.05372
## 137   104.18608  100.81512  102.12298  101.35203  102.02099
## 138   104.38677  109.90148  176.17889  108.71738  105.63353
## 139   107.23509  111.22638  121.87968  106.04066  116.59730
## 140   109.72657  113.14683  104.58508  163.72257  122.76389
## 141   123.31008  104.58508  105.80979  119.29708  114.52303
## 142   120.80224  114.57763  124.61969  144.16979  445.05135
## 143   124.92263  173.10494   98.76626  111.88497  162.59319
## 144   110.11771  263.32021  175.68796  102.49127  116.94994
## 145   136.26939  118.41038  123.39230  116.84843  105.37942
## 146   117.26530  504.61556   99.45656  113.64010  126.04950
## 147   115.23936  131.62354  225.69219  118.33059  117.87264
## 148   146.18218  197.99311  130.73546  159.22729  106.95611
## 149   180.95638  179.23003  298.66443  168.40951  111.39208
## 150   136.08946  694.06484  144.07929  107.80223  112.80796
## 151   103.13131   76.78643   55.25180   87.17744   48.57916
## 152    91.29758   92.38744   82.63836   60.57741   37.81895
## 176    41.91126   85.65931   74.07757   84.43896   83.04769
## 177    95.58136   86.93202   76.43678   84.43896   86.30683
## 201    84.86304   62.27695   76.45865   84.99905   79.51359
## 202    81.93143   75.04270  103.54970   68.22153   68.22153
## 203    36.84186   76.45865   91.23674   88.96352   86.30683
## 204    70.83933   91.65234   94.78517   76.96681   76.00061
## 205    90.11586   93.06302   76.96681   91.27376   92.64793
## 206    83.40701   72.84820   97.40585   79.43407   84.65185
## 207    95.12441   95.58712   93.82111   84.34966   88.80377
## 208    93.45691   73.98322   73.98322   89.08083   81.62803
## 209    86.69231   94.08903   89.81541   95.33453   89.81541
## 210   103.99275  100.18869   99.27417  101.38605  100.66260
## 211   100.82659   98.27250   99.11064  100.14811   99.73802
## 212   101.82865  101.30346  124.71287  112.94194  111.49880
## 213   110.10368  127.01718  101.95037  103.83656  110.38870
## 214   107.23509  104.63845  146.30854  110.83466  110.43121
## 215   106.19343  104.32306  106.19239  157.19087  117.47672
## 216   109.38277  107.46319  110.40044  111.65145  107.72406
## 217   443.99619  113.94137  100.98039  108.81487  107.03457
## 218   108.81487  110.73692  118.79881  114.64604  107.68255
## 219   115.99308  149.15188  123.39230  118.15403  119.67466
## 220   116.94994  118.35876  119.22506  106.49688  110.33821
## 221   173.03177  161.96111  129.18871  281.71217   99.45656
## 222   160.95923  281.25637  117.18814  133.41070  164.53501
## 223   152.26835  121.63828  120.94487  162.66276  100.97778
## 224   180.75454  144.42358  162.55739  120.94736  131.79459
## 225   113.97262  264.08547  121.51767  123.84166  139.05238
## 276    60.03765   95.99851   87.39805   87.17744   95.99851
## 277    82.18296   85.57782   55.46753   54.27991   91.23674
## 278    89.20607   98.00046   86.17021   87.17744   54.23804
## 279    68.22087   91.44621   89.12743   87.84210   92.43411
## 280    87.74308   89.18316   91.02956   92.14181   79.07915
## 281    85.51540   69.57160   97.06889   88.66208   70.82698
## 282    97.79130   98.73440   85.50475   81.14328   93.55041
## 283    65.73624   96.35980   81.34965   94.18004   93.44149
## 284    96.36786   80.81964   91.49750   94.67902   91.38998
## 285   102.33326  100.50041  100.72108  101.50892   99.62979
## 286   100.11052  104.63885   95.71676  100.37677   97.93814
## 287   102.31760   98.62238  101.33319  106.15890  102.35425
## 288   103.14673  103.14673  108.22561  103.28180  105.45455
## 289   104.82608  110.24742  102.18154  106.29270  115.49029
## 290    99.26165  119.29708  112.66109  113.36324  109.72657
## 291   150.95828  124.49640  112.72938  133.20341  128.58474
## 292   107.03457  114.28594  111.56177  108.26279  102.72149
## 293   111.63016  108.67903  131.96356  128.31784  105.50042
## 294   137.21213  117.94491  185.25808  178.11105  118.24087
## 295   101.10717  109.74483  111.88715  127.86717  459.90827
## 296   110.19345  134.55432  141.46502  159.63346  101.02694
## 297   148.00592  136.02601  135.68230  117.37784  201.07692
## 298   113.55850  113.55850  100.97778  113.60385  116.51684
## 299   155.95655  169.95212  139.77087  144.57935  156.68950
## 300   130.28090  146.34694  136.95795  129.84296  162.00465
## 351    89.62937   79.47932   60.03765   89.35444   87.22372
## 352    88.03280   97.69301   86.17021   86.83467   82.24845
## 353    89.49587   86.53435   54.07719   95.62290   86.87865
## 354    89.91046   81.19130   75.74804   68.71703   79.07915
## 355    86.40904   82.68579   89.34008   71.60730   51.42515
## 356    91.06227   92.87873   81.36691   95.40466   81.56326
## 357    81.02273   89.08083   94.13769   88.04751   93.63286
## 358    88.66208   97.18258   93.41064   65.86113   85.46920
## 359   100.57932   96.80581   83.11151  101.52975   94.67902
## 360   100.05960  103.18209   98.53717  101.42751  101.38605
## 361    99.73802   97.64966  105.05805  100.50041  101.50892
## 362   101.41742   98.94547  104.24491  103.28508  109.08737
## 363   110.07958   97.65152  103.14673  128.88305  104.11632
## 364   106.79215  107.78203  110.83466  111.17116  107.23509
## 365   108.26402  105.18351  107.06580  108.02726  106.15231
## 366    99.26165  107.70150  103.95877  106.94296  111.82715
## 367   163.02863  110.77789  109.17025  105.34240  116.01471
## 368   111.17364  226.14411  136.54922  103.32460  113.61904
## 369   169.43669  142.76316  109.77954  110.35033  119.59454
## 370   149.90408  138.90371  112.23080  175.39744  102.82229
## 371   146.31352  109.61199  252.64430  139.51296  141.39107
## 372   117.18814  100.20202  280.86383  117.18814  300.11344
## 373   107.00071  146.12892  147.99678  146.12892  100.97778
## 374   155.62040  161.42447  121.29630  131.94135  194.26159
## 375   141.84511  142.73615  136.08946  138.72838  265.24127
## 376    41.56536  103.13131   89.67846   91.12610   88.96352
## 377    86.69055   82.16888   62.27695  104.95791   56.17321
## 378    79.72385   80.88184   79.88844   69.44062   87.96539
## 379    51.50991   82.68579   90.71247   91.44621   65.48751
## 380    90.41604   89.23611   92.16046   92.56843   92.52781
## 381    90.84525   95.50932   94.30423   76.36179   90.42765
## 382    87.94957   97.54756   93.45691   84.65185   97.49668
## 383    81.59536   94.67286   97.48628   92.87515   85.03254
## 384    94.85522   95.99433   96.31460   98.79779   91.29703
## 401    92.38744   91.95899   77.28096   45.05271   89.35444
## 402    76.38382   50.76591   89.76592   95.99851   76.43678
## 403    54.23804   87.53040   56.17321   84.57300   87.80122
## 404    76.00061   93.31453   92.40642  103.24544   75.91254
## 405    91.46595   93.31453   79.31961   85.01096   85.47067
## 406    96.28103   95.50932   81.44024   93.30245   96.84995
## 407    68.03409   96.46720   77.71553   94.20589   97.43797
## 408    95.58712   94.20589   85.50475   95.06454   65.73624
## 409    91.29703   98.59710   96.36786   97.89099   96.28845
## 426    87.51037   85.35007   87.80122   90.63433   91.29758
## 427    80.42268  104.02357   50.76591   87.68738   72.67589
## 428    74.10659   80.32086   75.04270   85.58530   60.67146
## 429    86.61646   53.67943   53.96413   83.29147   94.96020
## 430    92.43411   92.56843   81.19130   82.68579   89.58921
## 431   101.49594   92.72501   93.08193   93.20106   97.61660
## 432    57.27377   84.00430   94.20244   65.86113   81.56326
## 433    96.43636   96.56863   72.84820   87.22890   96.46720
## 434    97.91838   96.30855   98.67298   94.67902   95.08520
## 435    98.86450   99.36712   93.82459   99.75840   99.55544
## 436   100.82826   99.09979  101.19430   99.75840  100.82826
## 437   104.24491  100.99355  106.57789  106.56742  100.99107
## 438   110.38870  103.53723  105.82849  104.06422  111.40121
## 439   111.51049  114.26689  112.62179  105.11212  120.59903
## 440   106.40525  107.32870  106.44959  105.81129  108.04976
## 441   120.63251  154.11132   99.10803  111.06992  106.01707
## 442   108.81487  128.27916  127.07225  111.17364  421.37245
## 443   141.53477  108.18084  108.64252  123.02067  109.81380
## 444   106.27945  105.68665  101.06061  110.16721  133.42357
## 445   123.60592   99.95210  111.00068  141.09160  110.16721
## 446   253.72386  126.34791  139.51296  121.11444  139.10761
## 447   127.71320  107.26161  118.31005  134.16978  113.53051
## 448   100.74375  121.45621  145.60938  323.38504  371.76418
## 449   180.95638  144.42358  131.94135  134.46696  127.89719
## 450   138.58183  130.08440  130.08440  145.84562  149.47301
## 501    39.64751   74.07757   87.68738   87.11872   89.92114
## 502    89.07701   92.01060   80.42268   67.53835   57.46010
## 503    58.63290   90.62159   89.46176   89.62937   86.93202
## 504    94.38345   97.01757   89.12614   76.00061   91.35638
## 505    89.12614   89.34008  103.24544  102.63692   85.84441
## 506    82.36210   81.56326   92.99346   96.90043  100.69083
## 507    91.62297   97.95033   94.31004   72.84820   99.88840
## 508    85.10674   92.93456   94.63581   73.79112   89.08083
## 509    99.79936   91.23322   95.48108   99.83715   93.37227
## 510   100.51467  101.16487   99.98555   97.49152   99.73802
## 511    99.38790   99.12850   96.83548   99.27417   98.64589
## 512   104.30985  106.57789  102.12298  107.63287  102.93651
## 513    99.22778  104.01260  101.90236  104.42528   98.87984
## 514   137.90473  105.62299  115.81716  108.25918  104.63845
## 515   105.34078  140.79868  112.77843  123.45897  106.44959
## 516   104.98236  133.86898  106.44959  100.67826  104.98236
## 517   114.56494  173.10494  124.92916  104.69508  105.34240
## 518   117.52451  107.13503   99.10555  120.90543  110.65562
## 519   118.35876  113.34587  120.17103  149.13311  132.73306
## 520   231.53177  105.04348  129.13351  114.94452  117.56930
## 521   123.79254  107.86507  131.98531  124.28462  119.21853
## 522   133.41070  147.34885  127.98187  125.55251  101.07600
## 523   119.61698  133.39165  126.33907  133.39165  126.30539
## 524   247.11923  123.89558  183.04556  123.89558  161.07717
## 525   127.11430  552.45355  135.65222  123.84166  113.97262
## 576    89.46176   65.23464   86.31604   69.00621   62.21331
## 577    84.16547   87.19847   87.79150   60.45340   49.97188
## 578    91.22254   74.07757   85.65931   80.32086   70.92046
## 579    54.27027   88.95131   79.00953   91.76680   81.19130
## 580    91.46595   93.17554  102.81987   87.77418   53.96413
## 581    94.30423   96.90043   93.82111   76.94358   88.90840
## 582    95.14822   95.24657   96.99243   95.50927   98.35328
## 583    83.82353   96.35391   94.95988   95.09096   95.50927
## 584    91.38998   88.01447   98.21780   98.72624   97.25576
## 585    96.69969  102.72571  102.07249  101.84448  100.41002
## 586   101.27397  101.27936  100.05478  104.30909   99.64087
## 587   101.49203  101.88398  102.23617  104.18450  102.91591
## 588   114.83120  106.16602  104.09200  117.06788  109.57484
## 589   105.97367  112.37245  297.32487  107.23509  107.37269
## 590   104.39012  118.32347  112.66109  120.56460  105.31331
## 591   107.65160  133.41114  158.28096  163.72257  108.59176
## 592   115.48170  105.29668  109.17025  100.39817  102.72149
## 593   114.96845  103.32460  105.41559  111.20249  104.83339
## 594   120.41282  148.29801  128.64430  120.19411  132.04917
## 595   126.30030  116.14556  263.32021  105.68000  120.19411
## 596   114.82032  112.70218  126.65652  503.42939  123.00981
## 597   106.92900  117.92223  121.26949  106.92900  121.11605
## 598   117.70833  147.99678  146.18218  323.38504  122.30426
## 599   123.01758  247.11923  125.83247  155.69308  107.59025
## 600   136.95795  130.04505  123.52662  113.17387  146.90039
## 601    82.16888   87.80122   89.59827   76.38382   87.17744
## 602    84.86304   82.47773   65.10216   86.69055   41.91126
## 603    84.15973   93.96598   81.40956  104.95791   87.06867
## 604    92.14181   91.71909   91.70512   73.45181   88.88347
## 605    79.87391   73.45181   93.80379   80.66573   63.88924
## 626    65.23464   80.80704   54.29599   87.06867   41.68769
## 627    58.63290   86.87865   83.26203   81.69164   77.73452
## 628    90.98065   90.06059   86.50740   87.51037   76.54764
## 629    76.00061   67.96218   79.07915   92.72349   89.58921
## 630    80.66573   79.00953   85.01780   70.34297   91.78669
## 651    83.26203   85.84290   76.81953   74.07757   57.46010
## 652    85.54361   66.58774   39.70148   95.62290   84.35955
## 653    85.54361   95.62290   87.80122   45.05271   87.17744
## 654    77.60870   87.73624   68.22087   69.59554   79.39866
## 655    96.38065   95.78239   78.11804   85.41806   92.75428
## 656    83.47741   74.58034   79.43407   98.37955   92.27130
## 657    93.41064   95.52910   95.06454   95.70887   94.31041
## 658    97.06502   90.71457   93.48537   92.87873   92.43007
## 659    98.03552   97.51408   92.99362   96.28845   98.03552
## 660   103.99275   97.46060   98.83097   96.34616  102.70549
## 661    99.61333   99.36712  100.71676  103.49682   99.38790
## 662   104.44993  116.80319  103.27481  105.61495  101.35203
## 663   104.26492  104.25807  116.41026  104.01260  102.10524
## 664    99.28725  297.32487  105.97255  110.08035  106.56318
## 665   111.10829  112.30907  148.10349  105.12161  105.33277
## 666   114.57970  113.14683  105.80979  106.86974  108.13149
## 667   117.21355  105.34240  112.42533  113.96239  103.20968
## 668   110.54282   99.10555  116.13119  130.86886  171.10256
## 669   109.88743  103.63813  121.15220  109.40244  122.56407
## 670   105.36666  117.88098  116.77544  109.88743  102.82229
## 671   124.30313  112.70218  114.46560  115.73388  106.62682
## 672   125.83242  111.59231  127.71320  164.53501  127.09092
## 673   234.31872  159.31357  100.33670  115.92970  121.63828
## 674   115.24018  122.70613  140.19862  155.56938  137.91349
## 675   172.26418  125.10588  104.05021  203.22596  146.34694
## 676    82.76681   48.49429   79.51359   92.01060   86.83467
## 677    63.96155   55.25180   68.22153   82.18296   94.43840
## 678    86.69055   77.84784   86.24029   84.16547   50.76923
## 679    93.06302   94.46961   89.34008   93.17554   53.45668
## 680    88.95131   76.00061   92.35943   91.33736   75.51253
## 681    96.90043   86.12273   88.66208   97.49668   92.38893
## 701    49.97188   55.25180   70.89381   85.65931   94.96854
## 702    89.76592   86.31604   84.15973   75.04270   84.18221
## 703    80.42268   84.31220   69.07252   82.16888   87.11872
## 704    65.97222   90.40701   91.78669   87.60438   92.64793
## 705    84.62964   91.65234   91.78296   95.99940   88.67350
## 706    89.40975   88.39372   81.95826   95.68366   91.81731
## 726    90.82841   97.99331   83.06365   96.04111   89.29480
## 727    82.18296   88.03280   76.81953   93.66601   93.92426
## 728    89.62937   83.04769   85.65931   76.45865   87.17744
## 729    92.43986   80.66573   91.50520   80.47166   84.59334
## 730    89.23611   77.44490   92.92963   64.83246   97.01757
## 731    96.48148   95.74852   88.96866   96.59448   94.24815
## 732    69.95766  100.72745   99.46346   90.44223   95.29390
## 733    88.96866   80.12444   75.51250   85.46920   81.93557
## 734    96.61032   96.03599   97.48328   93.53041   98.92178
## 735    97.96420   97.93814  106.21088  101.44396  102.59875
## 736   101.00116  100.83501  101.52984   97.57504  100.16114
## 737   106.82686  105.05959  102.21498  105.05959  104.64498
## 738   105.86541  104.67952  110.69491   99.85425  104.67952
## 739   106.04066  106.79215  110.43121  108.37045  141.25711
## 740   107.19246  120.33720  108.46440  107.45388  105.81129
## 741   107.66647  110.42647  163.72257  107.66647  101.38032
## 742   110.76400  115.02123  106.70624  171.10256  106.26664
## 743   106.83120  114.70431  142.27293  114.09806  106.20255
## 744   109.52637  119.77823   99.61235  109.16456  130.64683
## 745   169.43669  101.64838  107.54896  117.22208  148.29801
## 746   112.05781  116.81906  188.53177  106.62682  110.92591
## 747   119.04110  118.33059  298.75559  118.87613  160.95923
## 748   119.52787  124.46827  140.40671  131.03259  323.38504
## 749   132.59326  183.04556  110.81273  132.40925  121.40603
## 750   204.07685  264.45420  222.04033  117.42197  136.81357
## 751    37.61926   90.62159   80.88184   45.05271   88.52178
## 752    86.69055   85.58530   83.45336   84.57300   60.67146
## 753    76.43678   68.22153   76.96728   83.45336   56.17321
## 754    91.73298   65.48751   70.34297   92.13118   85.84441
## 776    82.16888   86.59730   82.16888   72.74734   70.22650
## 777    77.34781   63.12598   77.84784   81.96664   87.79150
## 778    72.67589   75.67416   66.56782   91.95899   37.61926
## 779    90.14350   92.14181   94.96576   71.43483   87.74308
## 801    84.86304   55.25180   69.07252   62.27695   87.20973
## 802    84.16547   49.97188   77.26177  104.44557   97.99331
## 803    88.98440   87.17744   86.83467   64.04461   90.06059
## 804    79.91192   97.33569   64.21370   69.59554   89.91046
## 805    82.88179   64.89455   91.51116   54.27027   93.80379
## 806    88.66208   96.47162  100.24863   81.44024   88.02860
## 807    87.22890   67.14593   95.01535   65.86113   93.19046
## 808    99.46346   72.44891  100.24863   92.03243   81.34965
## 809    89.81541   99.11068  101.52975   93.89692   95.99433
## 810    99.89300   99.56051  100.83501   99.00218   97.82476
## 811    99.41273  102.33326   99.11660  101.05028   97.59288
## 812   101.78127  101.19407  103.33463  103.72201  104.54117
## 813   131.62010  105.82849  111.19878  102.11598  104.13530
## 814   106.44586  102.84426  146.43261  105.73638  108.05007
## 815   106.52577  103.95877  133.41114  129.29251  107.32870
## 816   155.66885  104.27782  102.84663  100.70149  112.72938
## 817   138.15359  114.81305  115.60556  125.63590  166.15643
## 818   105.57382  101.05646  107.69149  144.16979  111.42145
## 819   121.43812  109.22285  128.64430  201.13498  149.89209
## 820   117.27757  105.36666  119.77823  119.67466  175.68796
## 821   136.66000  269.03839  124.26543  139.51296  106.35650
## 822   119.04110  116.78040  113.34752  113.34752  117.92223
## 823   124.85976  152.11439  150.27818  182.98188  641.17255
## 824   144.24659  180.75454  120.74235  155.47134  183.04556
## 825   131.58517  132.68267  161.41631  136.95795  161.41631
## 876    87.24826   95.99851   67.53835   90.62159   52.63789
## 877    87.06867   86.83467   60.67146   68.38764   87.49543
## 878   104.44557   76.45865   88.52320   39.64751   85.65931
## 879    93.17554   92.56843   91.02956   65.48751   89.16226
## 880    96.04200   94.38345   77.44490   92.64793   86.40904
## 881    87.31443   95.52910   81.02273   94.01651   96.38773
## 882    95.14822   69.57160   95.01535   82.13950   94.20244
## 883    93.56191   95.31668   78.89058   76.84017   80.53962
## 884    87.92436  102.16049   91.23322   98.04965   99.43150
## 885   100.05478   87.53341  100.82826  101.77396  101.77396
## 886    98.47596  100.56819  101.97148  100.75329   98.37455
## 887   164.68155  103.21992  105.59849  101.98221  103.12208
## 888   105.82849  137.64899  104.23632  110.93115  114.50839
## 889   103.29765  104.85046  105.77540  106.79215  105.58494
## 890   107.82718  107.19246  109.80112  118.32347  109.88184
## 891   150.83178  106.65586  339.67420  103.29518  102.84663
## 892   443.99619  120.27348  112.14252  114.28594  111.90901
## 893   118.77751  138.15359  101.12053  101.05646  102.72149
## 894   183.98454  102.82229  263.32021  119.22506  101.47904
## 895   121.15220  113.99420  110.11968  117.60652  117.56930
## 896   131.76436  117.26530  101.38071  110.92591  129.18871
## 897   120.01017  116.98047  136.02601  109.59070  193.74717
## 898   147.78778  140.05422  152.11439  118.14756  126.67551
## 899   166.21369  144.42358  118.87561  162.55739  143.27033
## 900   165.32223  123.52662  222.04033  161.41631  133.98900
## 951    82.16888   80.05830   84.18221   90.82841   87.26977
## 952    60.57741   96.04111   85.54361   78.65690   89.35444
## 953    85.95653   74.07757   76.43678   87.13276   97.73589
## 954    51.50991   70.34297   66.86484   89.34008   97.63935
## 955    70.34297   91.35638   85.38321   93.80379   75.51253
## 956    75.63255   92.47394  101.30804   93.20106   89.32484
## 957    76.31949   88.96609   91.86796   83.82353   82.13950
## 958    95.40466   97.97282   82.59775   95.40466   91.04108
## 959    97.55989   98.34969   93.24469   86.57403   98.79779
## 960   102.77447   98.35841  101.00116  101.78553  104.63885
## 961   101.53984  100.14188  101.14326  100.65492  100.69733
## 962   104.69265  105.05959  106.70248  124.71287  104.24491
## 963   100.90090  260.74334  109.90148  104.99403  110.69491
## 964   108.52239  115.49029  103.35298  100.39438  116.59730
## 965   112.72046  109.05125  103.07126  113.14683  102.37739
## 966   107.82718  128.58474  132.51117  102.41684  112.55576
## 967   111.20249  105.38898  166.15643  121.33839  172.70436
## 968   109.25246  107.59355  125.96739  173.80710  116.22330
## 969   105.61515  108.26185  117.45057  117.27757  119.89695
## 970   105.61515  182.71795  105.68665  111.40073  120.42606
## 971   111.41676  117.26530  101.02694  116.11264  188.46154
## 972   143.70353  147.53804  148.02632  133.75443  120.49509
## 973   130.19223  118.14450  126.42586  132.05508  322.99700
## 974   136.96747  132.59326  131.79459  140.11829  155.62316
## 975   162.00465  125.25585  117.74875  694.06484  129.60765
## 1026   49.97188   69.44062   83.11619   79.11190   58.84880
## 1027   65.23464   37.61926   59.26252   84.31220   82.14150
## 1028   50.76923   87.53040   89.35444   94.43840   89.20607
## 1029   79.31961   87.77418   78.95833   85.41806   78.11804
## 1030   85.38321   94.78517   87.73624   79.07915   91.70512
## 1031   91.04108   73.59809   95.68366   99.01258   91.54061
## 1032   90.82499   94.31041   93.30245   81.34965   95.50927
## 1033   88.75352   79.41074   92.71848   94.36870   89.33854
## 1034   99.11068   96.80581   91.23322  101.11111   92.99362
## 1035   99.83780  100.64270  104.30909  101.14849   95.14710
## 1036   97.54033  103.30935  101.49803  101.82777   98.86450
## 1037  100.81512  101.03491  107.49766  102.23617  101.19407
## 1038  104.13554  105.38233  116.41026  104.23632  104.32099
## 1039  104.90277  111.51049  106.44586  109.15415  107.37269
## 1040  108.80848  121.95756  102.37739  102.75253  114.52303
## 1041  112.72046  103.64503  103.29518  103.37193  110.84700
## 1042  172.79024  135.20384  100.58081  103.62654  108.26279
## 1043  108.81487  138.67541  115.08633  108.18084  143.61967
## 1044  263.32021  113.40656  263.32021  127.86717  141.37796
## 1045  113.34587  118.35876  111.00068  149.71884  109.89934
## 1046  131.79286  503.42939  119.31776  123.54022  114.46560
## 1047  113.34752  114.28304  100.20202  160.98321  193.57454
## 1048  129.88913  173.05755  144.79541  115.76390  112.59431
## 1049  132.78361  138.41941  130.87151  120.94736  156.67740
## 1050  141.93627  136.81357  558.52660  138.56469  148.70509
## 1101   86.53435   50.76923   83.26203   87.79150   95.62290
## 1102   85.35007   84.13422   87.80122   67.53835   81.88533
## 1103   74.49210   89.86462   80.07062   54.27991   54.07719
## 1104   93.63502   53.58974   89.70028   92.43986   91.76680
## 1105   85.01780   80.92282   80.48137   90.71247   84.62964
## 1106   84.30664   92.03243   94.95988   94.49291   76.36179
## 1107  101.08586   98.10208   86.07052   75.51250   98.10208
## 1108   96.90043   96.35391   96.59448   76.94358   76.24359
## 1109   98.73339   92.99362   99.11068  100.72271   97.54853
## 1110  100.12157  102.33326   99.75840   97.43512   99.69388
## 1111  100.05960  100.69733   99.71523  100.14811  101.52495
## 1112  103.27481   98.62238  103.03193  102.59787  112.73950
## 1113  104.09200  104.06422  260.74334  106.10577  118.19123
## 1114  111.22638  115.59832  101.96945  114.26689  108.52239
## 1115  112.77843  114.70735  103.64503  107.60348  122.51773
## 1116  112.72938  142.50793  106.19239  380.88026   99.10803
## 1117  136.54922  124.92916  174.29516  121.48413  105.38898
## 1118  107.90621  120.80224  113.17658  124.92916  134.81898
## 1119  120.17103  117.56930  105.72636  118.56621  120.42606
## 1120  168.95985  117.94491  113.83465  102.82229  148.29801
## 1121  119.31776  119.21853  123.54022  504.61556  111.87852
## 1122  113.53051  148.34477  112.31792  117.87264  280.86383
## 1123  122.01325  146.12892  126.98589  120.94487  119.52787
## 1124  123.77131  136.73844  246.70513  143.27033  118.87561
## 1125  123.11356 1158.86006  160.34981  171.68524  129.60765
## 1126   69.00621   87.96539   78.65690   86.69055   82.37310
## 1127   96.04111   89.76592   75.04270   79.47972   80.21945
## 1128   86.53435   86.84609   57.46010   68.38764   82.14150
## 1129   78.52077   89.58921   93.75936   90.40701   91.27376
## 1130   63.37863   89.79684   85.38321   87.60438   90.41604
## 1131   69.57160   98.30169   89.33854   89.18050   94.24815
## 1132   97.40585   95.58712   68.03409   94.63581   96.99243
## 1133   95.06454   95.01535   74.04314   92.27130   85.50475
## 1134  100.57932   96.73800   93.70331   88.39189  101.52975
## 1151   65.10216   54.27991   89.35444   76.81953   79.54693
## 1152   79.62324   88.71275   79.51430   69.07252   91.23674
## 1153   37.61926   79.51430   75.04270   85.10968   50.76591
## 1154   92.72349   90.74173   91.71909   97.31578   91.65234
## 1155   92.14181   96.38065   89.12614   73.45181   62.53634
## 1156   93.82111   91.80362   95.01535   98.73440   97.68078
## 1157   82.25437   84.21325   67.80351   97.10315   94.08517
## 1158   97.62545   98.98092   97.43797   91.10648   94.13769
## 1159   97.54853   97.48328   96.36786  100.36361   97.48328
## 1176   79.51359   79.88844   76.78643   54.23804   82.63836
## 1177   74.10659   93.66601   78.65690   87.13276   48.57916
## 1178   77.34781   89.59827   83.06365   82.38095   67.95676
## 1179   51.42515  102.22222   80.92282   70.83933   64.89455
## 1180   68.72902   88.16347   53.96413   88.15822   85.50989
## 1181   84.40052   97.04058   85.35279   95.75119   94.16257
## 1182   85.84962   84.30664   88.10025   95.50932   81.62223
## 1183   93.82111   98.95550   88.29308   85.50475   90.73737
## 1184  101.01189   96.73800   84.39734   80.81964   93.24469
## 1185   98.93923   98.27656  101.00116  101.25268  100.55374
## 1186  100.15878   98.96999  101.50892  101.05028  101.38662
## 1187  110.77857   99.86831  103.03193  100.99355  104.54117
## 1188  102.10524  114.49640   97.65152  104.32099  116.61568
## 1189  122.62570  104.63845  116.59730  124.85189  105.21949
## 1190  112.77843  108.22281  148.10349  107.78501   98.76626
## 1191  109.05125   99.75145  107.93066  107.31383  124.49640
## 1192  116.88010  142.27293  116.01471  103.85802  107.74817
## 1193  162.59319  108.05597  117.21355  100.65657  108.38241
## 1194  163.68244  109.36204  123.11031  109.52637  105.36666
## 1195  120.41282  136.26939  482.34621  106.78980  114.13370
## 1196  104.76930  126.65652  153.94484  121.02656  209.26474
## 1197  117.03804  136.02601  143.12299  143.12299  127.71320
## 1198  642.56618  173.05755  369.82714  115.81266  117.63545
## 1199  110.00582  157.06490  143.37168  120.74235  130.87151
## 1200  161.15159  107.80223  264.08547  125.56559  159.70753
## 1201   74.10659   79.51430   66.62354   37.81895   85.46386
## 1202   41.62287   85.15462   41.91126   84.57300   86.59730
## 1203   87.17744   78.65690   84.43896   85.46386   76.78643
## 1204   91.35638   82.88179   51.42515   62.53634   63.14192
## 1226   80.42268   75.04270   81.93143   87.20973   84.16547
## 1227   58.63290   92.38744   80.89354   90.87033   84.99905
## 1228   82.24845   41.68769   77.73452   76.78643   81.69164
## 1229   53.67943   90.11586   87.73624   92.16046   61.05559
## 1251   95.58136   85.21347   89.76592   84.43896   80.32086
## 1252   41.56536   85.10968   87.06867   83.04769   76.38382
## 1253   62.27695   36.84186   85.57589   56.17321   82.18981
## 1254   82.88179   91.50520   85.95374   90.74173   75.69345
## 1255   70.85132   89.70028   77.44490   95.53165   91.50520
## 1256   76.36179   91.80362   68.83437   85.25325   95.29390
## 1257   81.14328   93.19046   74.55635   88.66208   94.24815
## 1258   85.84962   92.71848   85.03254   95.52910   85.50475
## 1259  100.48347   96.31460   97.73416   99.37149   91.38998
## 1260  101.40897  100.14407  101.27397  100.11052  100.69733
## 1261  102.41009   97.34595   87.53341  100.24537  100.54435
## 1262  109.08737  101.81424  101.41742  112.94194  104.24491
## 1263  106.10577  104.36852  103.69813  105.63353  105.03229
## 1264  115.49029  108.52239  108.05007  102.84426  123.20209
## 1265  108.16236  113.14683  144.62638  109.78778  107.03475
## 1266  105.15247  118.11594  124.48441  127.12370  114.60203
## 1267  111.71435  100.58081  121.52324  138.15359  125.63590
## 1268  107.74817  108.64252  126.56843  162.89176  111.88497
## 1269  121.15220  119.89695  132.44916  112.36902  117.45057
## 1270  112.15884  109.89934  103.24642  117.94491  110.72814
## 1271  113.64010  119.31776  131.76436  118.46197  126.65652
## 1272  127.71320  113.84924  117.72698  121.15786  123.57199
## 1273  122.30426  123.20902  150.27818  127.06840  205.16297
## 1274  131.79459  446.58161  123.73880  123.77131  121.40603
## 1275  264.08547 1158.86006  192.28893  129.92929  104.05021
## 1276   87.39805   89.76592   68.22153   86.30683   39.70148
## 1277   76.45865   88.74066   50.76591   89.07701   67.53835
## 1278   86.59202   87.96539   90.06059   58.84880   85.10968
## 1279   80.66573   91.65234   87.73624   65.48751   59.30769
## 1280   70.42076   71.43483   86.40904   93.17554   89.12614
## 1281   92.21888   69.00003   99.01258   92.87515   94.31004
## 1282   93.88938   92.71848   94.13769   94.67286   81.56326
## 1283   97.75885   88.80377   73.59809   84.65185   89.16429
## 1284   95.99433   88.01447   96.30855   97.25576   92.29034
## 1301   88.52320   98.00046   74.82542   66.58774   63.96155
## 1302   86.53435   66.61348   85.57782   83.06365   79.88844
## 1303   72.74734   90.98065   90.40317   67.95676  104.02357
## 1304   75.74804   86.88603   87.77418   91.76680   53.58974
## 1305   51.50991   59.41362   63.88924   86.46140   91.46595
## 1306   79.36409   90.70701   93.51373   98.98092   92.72501
## 1307   85.46920   88.62501   97.04058   90.82499   93.49512
## 1308   57.27377   96.38773   91.12778   82.13950   89.18050
## 1309   98.59710   95.82734  101.11111   95.98072   86.43389
## 1310  101.81193  101.50892  100.37677   99.75840  100.32598
## 1311  101.96822   99.09051  100.12157  100.18869  100.63553
## 1312  101.98221   98.22391  108.96594  106.43074  124.71287
## 1313  117.06788  114.83120  104.13554  104.11632  110.07958
## 1314  146.43261   98.93909  104.55332  108.05007  108.25918
## 1315  105.35619  107.31383  110.40044  124.48441  129.12470
## 1316  140.96680  109.40672  112.43048  102.94933  123.45897
## 1317  100.39817  125.88797  114.70431  108.64252  106.26664
## 1318  111.90901  135.10290  104.18835  138.67541  111.90901
## 1319  127.86717  185.25808  110.38324  122.56407  228.18339
## 1320  131.30663  109.40244  132.04917  119.22506  117.45057
## 1321  105.58526  133.32345  112.72984  125.15530  110.46473
## 1322  101.07600  148.00592  100.61697  138.74334  148.08496
## 1323  115.17637  129.88913  133.39165  109.17176  126.45552
## 1324  157.06490  140.19862  138.41941  120.27834  110.00582
## 1325 1164.81025  222.04033  694.06484  172.02019  171.68524
## 1326   86.17021   84.57300   60.03765   94.37539   70.89381
## 1327   76.45865   76.81953   96.04111   58.84880   84.43896
## 1328   89.76592   52.63789   95.99851   57.40160   95.62290
## 1329   92.92963   86.45978   86.73150   78.03115   82.68579
## 1330   83.29147   92.64793   79.07915   90.71247   80.47166
## 1331   93.88938   88.62501   93.20396  101.30804   85.50475
## 1332   88.80377   81.36691   83.82353   96.48763   94.49291
## 1333   96.69225   94.80933   92.43007   70.48157   88.39372
## 1334   92.48857   99.37149   99.37149   83.11151   86.57403
## 1335  101.33226   98.93923  100.95731   99.81995  100.32598
## 1336  100.23257  100.24116   99.99093   99.61333  100.14407
## 1337  107.55417  103.33463  104.69265  102.49331  103.16092
## 1338  104.89362   97.65152  104.85359  103.40427  108.71738
## 1339  106.29270  106.16497  101.96257  104.59202  105.62299
## 1340  105.52295  105.80979  112.55568  133.86898  107.35540
## 1341  120.82444  108.59176  108.59176  126.46410  108.46440
## 1342  109.29728  123.62344  107.90621  108.54908  125.17527
## 1343  116.13950  113.64498  110.54282  104.92897  120.80224
## 1344  108.83104  118.02153  227.16294  112.36902  110.95365
## 1345  182.62523  103.24642  123.57135  117.22208  109.52637
## 1346  110.19345  118.49745  118.46938  119.17671  161.35232
## 1347  147.53804  120.26897  168.76751  114.09905  160.95923
## 1348  121.45621  469.84718  115.17637  128.97574  133.39165
## 1349  132.78361  138.84010  143.82307  125.86420  127.42447
## 1350  136.08946  150.12676  125.69222  218.14585  142.78418
## 1401   86.30683   87.39805   69.00621   90.62159   86.69055
## 1402   79.11190   94.96854   45.05271   84.31220   65.23464
## 1403   85.03723   72.67589   90.82841   41.62287   65.23464
## 1404   82.88179   61.37006   93.33426   91.46595   53.45668
## 1405   91.27376   89.16226   97.31578   82.80109   92.64793
## 1406   93.09747   96.84995   88.29308   94.04443   93.32995
## 1407   95.06454   92.21888   93.49512   72.27934   94.63581
## 1408   74.04314   92.71848   96.59448   98.35328   97.68078
## 1409   94.96702   96.28845   94.96702   99.11068   91.38998
## 1410   99.73802  102.33326  100.44107   98.54870   99.50709
## 1411  100.62028   94.57160  102.64242  102.41009   99.99093
## 1412  107.49766  101.30591  105.61495  106.70248  103.27372
## 1413  127.01718  128.88305  114.83120  104.23632  101.63512
## 1414  105.74991  138.18694  140.53637  106.47748  296.34216
## 1415  102.75253  116.68623  102.84663  103.39979  142.50793
## 1416  148.10349  106.80057  104.98236  105.34078  106.44959
## 1417  113.61904  115.48170  166.15643  105.41559  121.33839
## 1418  121.33839  106.47021  108.05597  106.86067  113.18423
## 1419  115.65967  101.06061  123.57135  105.36249  459.90827
## 1420  149.13311  109.88743  128.06191  117.27757  169.43669
## 1421  116.11264  124.28462  110.76649  119.21853  111.87852
## 1422  114.09905  112.31792  120.01017  551.74526  120.40953
## 1423  133.72371  124.46827  115.44542  152.14427  122.01325
## 1424  153.54877  166.21369  125.86420  136.57597  134.46696
## 1425  135.65222  120.14175  131.58517  123.11356  142.73615
## 1426   87.79150   87.53040   79.54693   87.80122   63.88756
## 1427   89.49587   36.79145   85.15462   69.00621   82.37310
## 1428   89.67846   78.65690   55.46753   80.32086   57.40160
## 1429   85.41806   97.01757   70.34297   94.96020   89.34008
## 1430   91.27376   85.95374   79.39866   91.27376   97.33569
## 1431   78.89058   94.36870   79.68046   67.14593   94.01651
## 1432   76.24359   94.21084   95.70887   74.58034   96.48148
## 1433   94.08517   94.95988   95.12441   96.69225   97.75885
## 1434   81.86683   94.97735   93.24388   97.65652   91.29703
## 1435   98.02852   99.93156   99.42365  100.54435  100.35603
## 1451   79.51359   70.92046   85.54361   88.93484   87.90980
## 1452   91.95899   80.88184   84.57300   83.11619   87.90980
## 1453   52.63789   91.22254   85.46386   63.96155   81.93143
## 1454   82.88179   95.53165   93.63502   76.00061   75.65387
## 1455   96.38065   97.31578   54.27027   67.96218   91.78669
## 1456   74.04314   95.50927   97.61660   87.31443   84.30664
## 1457   88.75352   69.46001   93.63286   95.11866   81.36691
## 1458   92.30889   70.48718   98.92117   89.32484   88.21839
## 1459   99.50617   95.82734   98.04965   91.29703   96.80581
## 1460  102.41009   96.37148   99.73802   97.59288  100.61728
## 1461   99.09051  101.33226   99.27417   98.86450   98.02852
## 1462  101.98221  103.27372   98.94547  104.51553  104.54117
## 1463  261.53239  103.69813  104.36852  107.80484   97.65152
## 1464  110.08035  251.21835  106.44943  146.43261  105.64624
## 1465  107.93066  144.62638  117.87121  103.95877  143.88818
## 1466  100.70149  116.60229  109.85664  107.70150  104.27782
## 1467  129.20194   98.68517  108.54908  108.54908  121.48413
## 1468  116.48510  109.25246  108.00357  117.82492  108.38241
## 1469  142.76316  163.68244  116.94994  131.40097  200.09478
## 1470  117.94491  123.60592  228.18339  102.49127  108.13923
## 1471  115.16107  118.49745  139.28538  107.86507  119.04881
## 1472  126.42660  118.92416  199.02722  118.87613  134.12285
## 1473  100.97778  115.76390  171.64470  124.85976  115.81266
## 1474  140.19862  162.17781  155.95655  210.95186  247.11923
## 1475  113.97262  123.52662  129.84296  105.01465  142.88328
## 1476   84.18221   80.05830   84.05367   78.65690   84.57300
## 1477   88.93484   83.06365   91.22254   72.74734   68.38764
## 1478   48.49429   80.42268   89.67846   80.21945   91.22254
## 1479   62.53634   71.60730   90.41604   86.88603  102.22222
## 1480   75.51253   96.38065   61.37006   86.88603   85.47067
## 1481   97.61660   57.27377   96.90043   90.37662   95.09096
## 1482   86.59472   85.10674   89.40975   92.71848   73.98322
## 1483   93.44149   92.21888   86.12273   97.95033   96.38773
## 1484  100.76289   99.83715   97.89099   99.50617   97.91254
## 1485  100.31855   99.63279   99.11064  101.30359   93.82459
## 1486  100.92643   97.34595  100.92643   87.53341  102.64242
## 1487  106.37830  103.21992  110.28205  103.33463  107.55417
## 1488  115.39095  107.83794  132.29157  105.45455  101.90236
## 1489  130.50308  106.44943  146.30854  107.23509  102.73968
## 1490  111.10829  148.87401  141.68112  116.28912  115.40892
## 1491  115.26170  142.50793  116.62201  107.78501  110.06902
## 1492  116.13950  113.61904  104.99610  172.70436  125.96739
## 1493  127.07225  114.85910  151.70141  107.12818  108.32327
## 1494  109.52637  109.21517  101.10717  109.74483  163.49441
## 1495  131.13302  146.05516  106.49688  118.41038  129.47695
## 1496  119.25739  504.61556  161.35232  101.43678  109.61199
## 1497  120.40953  115.23936  112.31792  147.53804  117.72698
## 1498  119.52787  131.27959  472.19814  135.07640  162.66276
## 1499  157.06490  132.01165  122.18326  115.24018  143.27033
## 1500  558.52660  172.26418  132.72405  549.88519  187.06083
## 1551   81.69164   82.18981   85.54361   87.68738   97.69924
## 1552   90.63433   54.29599   86.53435   39.70148  104.95791
## 1553   68.22153   86.72466   56.17321   91.23674   94.43840
## 1554   89.70028   87.74308   69.59554   91.27376   96.04200
## 1555   86.65280   80.66573   92.56843   70.11448  102.81987
## 1556   94.49291   87.78115   90.84525   95.50927   65.73624
## 1557   90.82499   88.29308   93.48537   70.60962   79.46693
## 1558  101.77485   95.90900   95.36379   70.48718   97.36059
## 1559   98.73339   95.08520   94.88037   99.79936  101.01189
## 1560   99.10475  101.86310   98.96999   99.87192  100.41002
## 1561  101.90641  100.06442  100.21679   97.59288   99.50709
## 1562  100.36611  144.11512  106.70248  104.70148  102.23617
## 1563  107.75036  110.93115  107.63745  104.06422  110.07958
## 1564  101.44664  114.77675  116.12136  106.23389  122.62570
## 1565  106.15231  107.88385  106.52577  111.55464  100.70149
## 1566  105.18351  122.51773  114.60203  107.03475  114.48351
## 1567  160.60608  123.43232  113.18423  131.96356  105.33872
## 1568  135.20384  165.59228  163.02863  104.66835  125.38679
## 1569  130.64683  109.22285  112.15884  228.18339  149.13311
## 1570  129.81371  120.17103  123.13061  141.09160  105.37942
## 1571  106.62682  209.70686  101.43678  112.05781  111.36527
## 1572  132.30845  116.78040  117.18814  149.56982  113.53051
## 1573  135.07640  113.79071  131.12663  107.00071  259.83518
## 1574  120.27834  143.37168  132.44122  132.34528  110.00582
## 1575  131.13682  190.30216  139.11052  161.63692  133.98900
## 1626   58.63290   81.40956   48.49429   60.45340   89.76592
## 1627   83.11619   69.00621   54.07719   74.82542   76.45865
## 1628   91.29758   90.98065   86.53435   80.05830   88.93484
## 1629   75.69345   86.46140   84.59334   87.95048   92.43411
## 1630   82.80109  103.24544   77.44490   89.67338   85.41806
## 1631   97.54756   95.03849   95.82647   81.19623   92.27130
## 1632   95.01535   68.83437   93.55041   88.66208   88.62501
## 1633   97.40585  101.81818  101.77485   73.12163   94.35900
## 1634  100.57932   86.69231   89.63739   89.81541   97.89099
## 1635   99.87192  104.30909  102.32023   98.00079   99.65537
## 1636  101.86862   99.87192  101.27936  100.12157  101.78553
## 1637  101.82865  111.49880  101.81424  116.21552  144.11512
## 1638  114.10497  111.19878  103.69813  104.89362  128.88305
## 1639  115.52511  112.37245  110.24742  115.59832  130.50308
## 1640  108.22281  113.36324  119.79731  107.65160  105.33277
## 1641  103.64503   98.91687  108.80848   99.95012  117.88453
## 1642  112.63187  110.65562   98.34403  226.14411  141.54676
## 1643  115.08633  107.61321  107.61321  106.28720  105.56697
## 1644  114.59080  132.04917  105.60676  116.29395  105.89684
## 1645  201.13498  104.77194  131.30663  254.13701  107.93025
## 1646  160.52852  111.00177  110.44112  139.84188  126.34791
## 1647  120.26897  147.53804  107.26161  117.03804  148.02632
## 1648  131.03259  126.33907  131.25519  164.06744  144.79541
## 1649  107.59025  179.23003  102.90404  139.77087  136.72429
## 1650  125.69222  172.09421  176.53174  128.53692  139.11052
## 1651   63.88756   86.53435   88.52178   87.39805   76.54764
## 1652   83.26203   69.07252   84.31220   86.69055   87.80122
## 1653   97.73589   87.06867   76.78643   82.76681   80.76570
## 1654   90.33507   91.76680   90.74173   53.67943   68.71703
## 1676   85.46386   72.74734   85.10968   82.47773   52.63789
## 1677   86.59730   84.99905   54.07719   80.21945   79.88844
## 1678   85.46386   84.35955   80.07062   88.03280   79.54693
## 1679   90.48983   87.77418   70.85132   86.45978   92.13118
## 1701   89.29480   63.96155   63.96155   85.21347   55.25180
## 1702   88.52178   89.92114   85.35007   59.26252   80.21945
## 1703   85.58530   86.59202   86.59202   86.53435   82.47773
## 1704   75.69345   96.04200   76.00061   75.51253   96.01923
## 1705   91.02956   90.11586  102.63692   91.87575   91.46595
## 1706   85.09039   95.70887   88.21839   85.13210   65.34469
## 1707   96.47162   98.98092   90.42765   93.60593   86.60671
## 1708   97.62545   93.56191   85.46920   93.88938   74.04314
## 1709  100.48347  100.76289   99.43150   81.86683   95.33453
## 1710  101.38605  112.35484  100.93304   98.71030   99.73802
## 1711   94.27515   98.71030  101.71123  100.63553   99.00218
## 1712  104.18450  124.71287  101.34497  101.88398  103.63267
## 1713  105.86541  110.38870  106.69830  100.90090   99.22778
## 1714  106.48477  107.91788   97.50000  106.44943  115.07238
## 1715  106.02534  108.14570  108.22281  112.95271  132.51117
## 1716  338.64140  107.00910  106.27126  112.95271  109.96946
## 1717  101.12053  125.93080  110.76400  128.89845  171.79073
## 1718  119.06632  111.90901  207.17797  135.20384  113.04051
## 1719  119.89695  112.60621  105.37942  125.82905  110.11771
## 1720  108.93227  115.99308  104.77194  110.33369  134.23700
## 1721  144.82208  111.41676  106.35650  124.28462  153.95683
## 1722  300.11344  116.98047  119.47703  106.92900  136.02601
## 1723  105.44614  371.76418  126.84464  117.63545  109.17176
## 1724  155.62040  155.56938  125.83247  143.62978  144.24659
## 1725  552.45355  204.07685  161.41631  142.78418  129.60765
## 1776   63.88756   63.12598   87.24826   89.29480   83.00664
## 1777   81.96664   97.73589   92.38744   82.38095   63.88756
## 1778   79.72385   85.57782   81.40956   89.35444   66.61348
## 1779   75.74804   88.66636   91.73298   92.92963   84.62964
## 1780   72.67259   63.14192   92.92963   76.96681   91.62935
## 1781   95.14822   83.40701   72.84820   93.49512   97.79130
## 1782   99.01804   94.31041   99.01804   82.25437   91.62297
## 1783   81.65959   81.36691   79.43407   94.18004   73.12163
## 1784   80.81964   94.67902   98.79779   94.08903   93.53041
## 1785   99.04384   97.22840   98.00079  101.82777  100.35603
## 1786   99.04384  100.24116  104.82981   99.71523  101.14326
## 1787  106.82686  102.97982  103.33463  103.21992  104.24491
## 1788  104.67952  108.71738  110.16345  101.95037  108.22561
## 1789  296.34216  105.00669  118.86091  116.83474  108.37045
## 1790  100.70149  108.36584  119.66948  120.82444  155.66885
## 1791  106.69451  107.46319  120.82444  104.27782  380.88026
## 1792  445.05135  111.42145  114.70431  107.90621  103.32460
## 1793  106.20642  106.86067  171.79073  112.92240  135.20384
## 1794  109.88743  183.98454  113.42653  131.58368  123.57135
## 1795  110.72814  105.89684   99.49455  116.94994  105.68000
## 1796  173.21939  503.42939  116.81906  119.31776  132.60389
## 1797  108.27679  125.83242  121.26949  193.74717  100.20202
## 1798  131.25519  152.14427  104.67249  121.74531  145.29628
## 1799  127.89719  131.79459  143.62978  158.06623  157.06490
## 1800  145.45282  552.45355  134.47319  172.26418  129.84296
## 1801   70.22650   87.53040   77.81180   36.79145   84.43896
## 1802  103.54970   52.64988   86.69055   85.54361   77.26177
## 1803   58.63290   92.38744   90.40317   39.70148   58.63290
## 1804   72.67259   54.27027   89.91046   95.78239   87.84210
## 1805   89.79684   86.88603   91.73298   87.77418   92.35943
## 1806   65.86113   83.30883   89.08903   88.21839   96.35391
## 1807   95.11866   91.12778   88.75876   81.34965   83.40701
## 1826   37.61926   67.95676   41.62287   90.63433   86.24029
## 1827   85.46386   89.29480   67.53835   86.69055   97.99331
## 1828   63.88756   91.22254   90.63433   86.24029   36.84186
## 1829   94.78517   91.76680   88.16347   92.72349   91.02956
## 1830   89.12614   92.69186   79.31961   78.11804   90.20065
## 1831  101.81818   82.82758   90.73737   77.10697   88.96866
## 1832   93.82111   92.87873   95.70887   87.94957   65.73624
## 1851   79.72385   87.22372   83.00664   80.80704   82.76681
## 1852   85.84290   89.46176   76.96728   82.14150   82.14150
## 1853   79.88844   55.25180   65.10216   89.29480  104.95791
## 1854   95.73724   93.33426   92.03260   75.74804   93.80144
## 1855   84.59334   88.16347   79.07915   87.84210   92.40642
## 1856  101.08586   88.62501   94.08517   94.20589   76.36179
## 1857   98.92117   91.62297   83.40701   87.88031   98.30169
## 1858   91.54061   97.10315   96.48763   91.14090   94.80933
## 1859   96.24320   91.37769   90.73224   90.73224   91.38998
## 1860   99.75840   98.27656  101.14849  100.50736   99.98555
## 1861   99.71523  101.00116  101.14326  100.37677  100.14188
## 1862  100.21886  103.23319  104.54117  100.99107   99.97401
## 1863  111.54449  114.83120  115.19239  103.88052   98.87984
## 1864  106.62398   99.28725  105.64624  118.86091  108.25918
## 1865  107.45388  105.34785  110.40044   99.68729  114.76495
## 1866  105.31331  339.67420  108.46440  112.30907  120.76648
## 1867  116.47105  103.20968  111.90901  116.75936  100.65657
## 1868  162.89176  107.12818  114.81305  113.64498  101.12053
## 1869  262.87131  155.17818  117.27757  109.89934  136.26939
## 1870  117.92879  113.82010  113.34587  118.24087  136.26939
## 1871  106.40085  161.35232  139.84188  115.73388  139.10761
## 1872  143.70353  550.46210  160.95923  149.28719  118.92416
## 1873  322.99700  128.97574  147.99678  234.31872  122.01325
## 1874  121.95838  103.33840  120.97504  118.87561  744.15548
## 1875  561.63418  149.47301  125.68050  160.54959  135.65222
## 1876   86.69055   54.23804   41.62287   87.13276   85.15462
## 1901   84.05367   56.17321   93.66601   85.15462   67.95676
## 1926   78.65690   90.82841   41.91126   84.31220   86.69055
## 1927   89.29480   55.46753   68.38764   86.50740   45.05271
## 1928   88.93484   82.18296   98.00046   56.17321   87.90980
## 1929   75.91254   85.41806   91.44621   88.66636   91.62935
## 1930   67.96218   85.84441   90.71247   95.53165   86.61646
## 1931   95.68366   94.41715  100.72745   91.10648   69.00003
## 1932   97.97282   93.48537   93.09747   90.42765   97.40585
## 1933   90.45155   93.45691   88.75326   95.06454   89.40975
## 1934   86.57403   98.21780   96.31460   95.08520   90.73224
## 1935  100.60372  100.79759   99.65537  102.33326  100.42671
## 1936  100.35603   95.14710  101.77396  101.41693  100.12346
## 1937  101.03491  164.68155  103.33463  102.74182   99.86831
## 1938  105.23602  110.38870  110.10368  102.11598  106.69830
## 1939  118.86091  106.29270  105.73638  104.59202  103.29765
## 1940  108.59176  106.27126  116.11344  107.73630  114.52303
## 1941  109.78778  103.35406  105.35619  133.91909  107.45388
## 1942  113.61904  104.92897  101.12053  107.74817  108.26279
## 1943  120.80224   98.68517  116.48510  183.38993  106.18512
## 1944  112.15884  108.93227   99.15473  114.59080  113.42653
## 1945  117.22208  134.40526  169.43669  155.17818  131.58368
## 1946  106.03173  136.83834  123.79254  117.31404  115.73388
## 1947  111.12892  120.70979  127.98187  117.72698  121.26949
## 1948  162.66276  234.31872  121.62320  120.26701  146.12892
## 1949  136.96747  136.73844  132.97959  134.46696  298.66443
## 1950  124.18577  549.88519  172.26418  132.24449  117.42197
## 2001   87.24826   91.22254   87.96539   94.37539   92.38744
## 2002   91.32519   50.76591   80.89354   88.98440   88.98440
## 2003   68.86478  104.44557   81.88533   48.57916   80.05830
## 2004   90.20065   78.11804   63.37863   59.41362   84.59334
## 2005   93.63502   81.19130   71.43483   68.22087   92.56843
## 2006   97.58905   72.27934   88.75326   69.57160   87.76968
## 2007   79.46693   96.81781   99.92734   95.90900   82.13950
## 2008   85.28735   95.86473   95.29390   94.18004   81.36691
## 2009   98.04965   93.24388   96.24320   99.79936   93.70331
## 2010  100.16114  101.19430  100.42671  100.90765  100.44107
## 2011  101.72575  100.42671  100.82659  101.14849   99.04384
## 2012  103.72201  101.33319  124.71287  106.37830  112.94194
## 2013  104.25807  176.17889  105.03229  115.39095  110.38870
## 2014  104.63845  146.30854  106.23389  115.07092  104.82608
## 2015  108.02726  132.21463  111.65145  108.02726  119.82356
## 2016  106.94296  117.41760  104.13499  107.93066  148.87401
## 2017  156.88157  101.13796  106.18512  107.59355  114.42351
## 2018  116.75936  101.86646  166.01565  109.42068  173.80710
## 2019  106.27945  138.80017  163.68244  178.26917  116.75754
## 2020  117.88098  110.11968  108.26185  183.03745  113.82010
## 2021  118.49745  111.41676  102.11599  106.07573  281.71217
## 2022  120.26897  119.47703  149.56982  160.95923  320.44206
## 2023  173.03357  100.74375  472.19814  145.13791  205.34826
## 2024  144.42358  127.89719  155.62316  156.47473  127.89719
## 2025  160.34981  123.52662  141.93627  129.92929  121.51767
## 2076   87.49543   82.18981   63.96155   58.63290   86.59202
## 2077   82.63836   78.65690   91.32519   92.01060   67.95676
## 2078   79.88844   39.70148   57.40160   88.52178   79.47972
## 2079   53.32295   91.72003   89.70028   61.05559   75.74804
## 2080   92.75428   95.78239   69.59554  102.81987   70.11448
## 2081   72.84820  100.69083   81.95826   84.30664   95.82647
## 2082   89.08903   84.34966   99.01804   77.71553   90.42765
## 2083   96.43636   93.19046   84.11676   85.84962   94.24815
## 2084   96.70003  100.36361   86.84800   96.21200   94.67902
## 2085  106.21088  102.72571   99.04384  100.14407   99.10475
## 2086   87.28822  101.53984  100.42671  100.24917   97.96079
## 2087  108.96594  106.37830  104.02852  103.53782  103.16092
## 2088  101.78633  104.06422  116.41026  111.56361  108.22561
## 2089  108.25918  116.98133  104.88907  105.00669  105.32322
## 2090  107.32870  112.95271  119.29708  128.58474  150.95828
## 2091  109.85664  105.31331  100.70149  107.32870  108.80848
## 2092  207.17797  120.23951  107.03457  107.59355  103.62725
## 2093  116.48510  108.18084  109.70550  118.71088  114.70431
## 2094  201.13498  175.39744  108.26185  136.68277  129.47695
## 2095  107.97407  110.35033  262.87131  105.94276  115.65967
## 2096  281.71217  121.02656  119.21853  140.58533  113.64010
## 2097  193.57454  123.85819  143.70353  136.02601  106.35207
## 2098  126.84464  113.79071  133.39165  144.79541  173.05755
## 2099  157.06490  132.59326  132.34528  446.58161  132.78361
## 2100  139.11052  104.60157  129.60765  146.68127  150.12676
## 2151   86.59730   81.69164   80.89354   91.22254   82.47773
## 2152   79.51359   97.73589   41.91126   92.38744   97.69924
## 2153   57.40160   84.98210   81.13119   79.51359   90.63433
## 2154   54.27027   82.88179   91.02956   91.87575   54.27027
## 2155   63.37863  102.81987   94.70750   92.43986   87.74308
## 2156   93.44638   90.58389   92.22074   97.68078   84.11676
## 2157   92.38893   94.16257   94.49291   92.71848   92.87873
## 2158   88.62501   95.86473   69.82193   94.31004   95.75119
## 2159   93.63993   97.25576   97.91254   97.18961   98.04965
## 2160   96.69969  101.86862  104.30909   98.83097  100.65897
## 2161  100.60372  100.16114  105.05805   97.32866  100.82826
## 2162  105.90647  104.10156  102.59787  104.98080  114.94785
## 2163  113.69048  106.69830  108.33239  104.06422  105.96625
## 2164  104.74776  106.44586  113.99777  116.59730  101.99868
## 2165  110.01897  119.66948  111.06928  106.02534  104.27782
## 2166  109.72657  112.72046  105.52295  106.01707  117.41760
## 2167  105.04076  125.88797  111.17364  162.89176  173.66124
## 2168  114.84006  108.26279  109.81380  111.88497  116.75936
## 2169  118.15403  111.88715  111.40073  110.35033  105.36666
## 2170  122.56407  117.22208  118.15403  112.60621  133.08417
## 2171  153.95683  133.32345  504.61556  105.91190  131.76436
## 2172  114.09905  147.34885  112.69286  298.75559  182.04600
## 2173  152.11439  131.01205  122.01325  100.74375  123.15992
## 2174  111.04844  102.60741  155.62316  161.07717  447.30782
## 2175  132.72405  131.13682  160.38801  160.38801  165.70582
## 2226   88.98440   87.96539   89.35444   80.05830   88.97681
## 2227   81.13119   91.32519   86.83467   80.80704   63.96155
## 2228   87.51037   86.83467   91.29758   82.18296   66.61348
## 2229   91.46595   81.19130   53.96413   86.77549   89.12743
## 2230   78.95833   91.33736   93.33426   63.88924   91.78669
## 2231   89.33854   95.11866   87.88031   93.88938   94.95988
## 2232   88.80377   97.54756   84.34966   95.75119   97.68078
## 2233   88.02860   88.66208   69.82193   91.62297   92.30889
## 2234   95.98072   99.50617   98.21780  100.81566   99.79936
## 2235   97.46060   97.46060  100.79741   99.89300   99.36712
## 2236   97.34595  100.50041   97.15385   98.98914   97.34595
## 2237  100.21886  110.47760  106.43074  102.74182  105.56488
## 2238  114.83120  106.69773  137.64899  110.16345  108.71738
## 2239  110.40473  120.74558  109.15415  104.55332  107.23509
## 2240  105.81129  114.52303  112.47647  105.72252  107.07546
## 2241  133.91909  123.45897  103.39979  105.12161  126.87452
## 2242  121.48413  105.46017  165.32051  117.82492  113.64498
## 2243  106.83120  118.71088  184.33610  111.56177  135.20384
## 2244   99.15473  112.23080  110.33821  113.42653  110.36058
## 2245  119.67466  123.57135  108.13923  163.49441  182.46342
## 2246  131.98531  110.44112  139.28538  131.98531  124.28462
## 2247  181.84691  134.16978  148.00592  135.68230  111.59231
## 2248  116.51684  371.76418  205.34826  323.38504  128.50156
## 2249  143.62978  194.98985  125.82266  122.70613  102.60741
## 2250  127.11430  148.70509  144.49301  145.45282  149.47301
## 2251   83.45336   54.23804   88.03280   49.97188   86.53435
## 2252   86.59202   85.95653   64.04461   45.30148   82.75869
## 2253   87.19251   86.72466   76.96728   72.67589   82.14150
## 2254   92.35943   93.33426   85.01096   86.00700   86.40904
## 2255   86.77549   92.75428   91.51116   97.33569   94.96020
## 2256   76.24359   96.59448   81.65959   97.99241   91.04108
## 2276   86.50740   87.20973   82.75869   91.22254   54.27991
## 2277   36.84186   37.61926   87.26977   80.21945   90.63433
## 2278   39.70148   85.57782   82.37310   50.76591   55.25180
## 2279   63.14192   59.30769   90.64730   86.40904   85.84441
## 2280   76.93336   78.52077   92.03260   81.00761   76.00061
## 2281   85.13210   93.45691   74.55635   82.13950  100.69083
## 2301   60.45340   95.58136   58.84880   88.03280   97.69301
## 2302   55.46753   88.52178   87.20973   82.38095   93.96598
## 2303   83.26203   41.91126   89.49587   39.64751   86.59202
## 2304   86.45978   92.03260   89.34008   91.87575   87.95048
## 2305   86.77549   82.80109   76.00061   70.11448   53.67943
## 2306   84.42922   94.74379   95.70887  101.36364   95.06403
## 2307   90.18384   95.70887   89.81119   88.90840   88.29308
## 2308   96.48148   93.51373   81.62803   79.08784   65.73624
## 2309   97.51408   98.03552   94.96702   99.50617   66.97690
## 2310  102.17427   99.11660  100.14188  101.27936   97.35783
## 2311  100.12346  100.31855  100.95731  101.52984   97.63176
## 2312  101.78127  103.03193  104.51553  104.02718  112.73950
## 2313  100.72350  105.45455  137.77702  117.06788  110.69491
## 2314  109.87936  141.25711  104.90277  110.30481  105.77540
## 2315  109.40672  107.66647  100.48315  117.47672  152.66391
## 2316  122.51773  116.62201   99.75145  113.73976  117.47672
## 2317  173.66124  114.81305  142.27293  123.62344  110.21956
## 2318  114.42351  108.32327  128.31784  114.64604  104.92897
## 2319  119.67466  108.04980  118.04719  118.02153  263.32021
## 2320  106.49688  109.78499  131.46856  105.37942  114.59080
## 2321  141.39107  101.43678  131.98531  105.91190  118.46938
## 2322  281.25637  298.75559  125.55251  121.11605  193.74717
## 2323  147.97806  182.98188  126.49420  113.79071  259.83518
## 2324  111.39208  215.03420  210.95186  140.11829  132.40925
## 2325  218.14585 1158.86006  128.48153  142.88328  136.81357
## 2376   57.40160   89.46176   86.84609   84.16547   93.96598
## 2377   63.96155   94.37539   82.18296   83.45336   55.25180
## 2378   76.52190   85.84290  104.95791   77.84784   79.11190
## 2379   89.91046   86.46140   53.96413   89.16226   82.80109
## 2380   89.23611   86.00700   71.43483   92.03260   89.79684
## 2381   92.22074   91.29655   77.71553   84.11676  101.36364
## 2382   96.47162   97.62545   74.55635   88.10025   97.18258
## 2383   99.84694   94.63581   94.67286   89.08903   97.97282
## 2384   97.65004   97.45069   97.73416   97.55989   95.98072
## 2385   99.93156  100.54435   97.43512   96.69969   99.00218
## 2386  102.72571  100.15878   98.87331   98.78481  101.72575
## 2387  102.74791  106.57789  102.27588  103.89341  109.08737
## 2388  104.09200  102.10524  109.81291  104.13530  107.76005
## 2389  106.47748  116.83474  104.51977  107.37269  109.30307
## 2390  132.29487  106.15231  111.04849   99.95012  339.67420
## 2391  155.66885  110.88988  105.18351  106.01707  110.42647
## 2392  105.36204  104.66835  166.15643  118.77751  105.57382
## 2393  105.56697  123.43232  114.81305  106.70624  110.21956
## 2394  109.29769  106.27945  117.94491  128.46265  116.41392
## 2395  120.17103  114.13370  107.93025  121.15220  136.26939
## 2396  133.32345  115.73388  113.64695   99.45656  188.36214
## 2397  199.02722  112.95776  320.44206  125.97572  117.03804
## 2398  115.92970  128.50156  148.98291  124.85976  126.33907
## 2399  126.91669  161.42447  183.04556  132.40925  214.85200
## 2400  144.04091  130.08440  105.01465  112.80796  149.70657
## 2401   87.20973   67.95676   97.43460   79.62324   83.00664
## 2402   74.82542   80.05830   87.02385   45.05271   86.83467
## 2403   84.31220   90.87033   85.57782   54.23804   77.84784
## 2404   93.31453   65.48751   79.07915   59.30769   93.63502
## 2405   59.30769   63.37863   84.59334   79.07915   90.71247
## 2406   90.19618   92.98638   69.57160   97.36059   98.45387
## 2407   95.01535   89.32484   81.02273   97.61660   96.99243
## 2408   91.29655   94.13769   92.67817   91.04108   77.10697
## 2409   96.59170   86.84800   98.03552   96.03599   93.37227
## 2410  101.72575  102.77447  102.29349  100.15878  100.26036
## 2426  104.95791   68.38764   89.35444   76.45865   84.15973
## 2427   87.90980   77.28096   85.03723   77.84784   87.33405
## 2428   79.51359   83.04769   55.25180   68.22153   67.53835
## 2429   73.29890   75.69345   53.32295   79.31961   97.63935
## 2430   64.83246   67.96218   97.01757   97.63935   77.44490
## 2431   93.55041   84.30664   69.00003   92.67817   77.22249
## 2432   95.08687   89.40975   92.80954   94.16257   95.31668
## 2433   82.74496   94.16257   97.79130   94.63581   90.90446
## 2434   91.29703   97.54853   81.86683   91.29703  100.48347
## 2435   98.49700  100.14188   98.47596  102.44425   98.86450
## 2436   97.32866  103.30935   87.53341   96.83548  101.27936
## 2437  109.08737  103.72201  102.27588  103.27481  100.36611
## 2438  104.01260  104.04441  109.57484  110.07958  104.24219
## 2439  103.35298  102.73968  104.59839  115.49029  105.11212
## 2440  338.64140  102.67333  142.75597  110.34835  103.79710
## 2441  105.72252  105.45406  106.10489  107.93066  106.00929
## 2442  158.47743  107.05697  143.06488  120.96710  107.12818
## 2443  103.32460  107.13503  138.67541  116.22330  107.67523
## 2444  105.04348  120.41282  141.09160  102.39567  115.95317
## 2445  117.88098  116.04334  105.68000  169.43669  105.68000
## 2446  139.28538  121.33702  119.17671  111.23670  145.10697
## 2447  136.02601  133.41070  116.98047  280.86383  101.07600
## 2448  135.07640  140.40671  472.19814  117.70833  116.63109
## 2449  448.92817  122.70613  136.73844  132.44122  102.90404
## 2450  204.07685  203.22596  161.15159  186.58759  549.88519
## 2451   85.10968   84.57300   87.68738   52.64988   57.46010
## 2452   60.65947   76.78643   89.86462   86.59730   88.97681
## 2453   87.49543   88.97681   82.18296   97.69301   97.43460
## 2454   87.74308   96.04200   79.07915   80.92282   90.41604
## 2455   86.40904   78.95833   69.59554   86.73150   87.77418
## 2456   99.33319   98.73440   90.71457   72.44891   95.09096
## 2457   89.33854   93.48537   88.27120   94.18004   82.36210
## 2458   96.47162   96.99243   73.31933   87.88031   99.01804
## 2459   97.32737   93.63993   83.11151   98.03552   66.97690
## 2460   99.00218  101.33226   99.09979  100.54435  100.37677
## 2461   99.89300   99.11660  102.77447   97.34595  100.79741
## 2462  101.19407  101.32439  100.21886  120.11251  104.70148
## 2463   98.87984  109.57484  103.46585  104.20592  107.76005
## 2464  102.48273  137.90473  110.83466  107.97734  110.40473
## 2465  110.88988  107.19246  110.52339  116.11344  120.61749
## 2466  109.78778  106.52577  110.06902  154.11132  110.06902
## 2467  120.27348  112.14252  107.14378  110.16206  120.53017
## 2468  165.32051  111.90901  105.04076  114.83924  124.92916
## 2469  111.79653  129.47695  101.10717   99.61235  110.33369
## 2470  119.77823  108.60014  105.36666  111.97003  166.79235
## 2471  113.25841  101.02694  118.49745  123.54022  123.79254
## 2472  160.98321  106.92900  113.53051  112.23078  112.31792
## 2473  134.68528  131.27959  115.17637  229.18128  128.97574
## 2474  126.82551  131.58996  123.00804  127.37305  126.91669
## 2475  265.24127  190.33094  107.75534  158.67835  320.94026
## 2526   80.80704   85.84290   90.82841   88.52178   41.56536
## 2527   41.68769   66.56782   85.46386   67.53835   60.67146
## 2528   76.43678   87.17744   84.15973   96.04111   45.05271
## 2529   63.37863   75.51253   62.53634   81.00761  102.81987
## 2530   61.05559   91.27376   86.65280   79.07915   91.87575
## 2531   91.29655   76.31949   88.27120   98.64865   80.53962
## 2532   94.31041   93.60593   85.50475   84.30664   81.02273
## 2533   92.71848   88.96609   57.28155   97.04058   98.10208
## 2534   94.88037   96.73800   87.92436  101.11111   91.23322
## 2535   97.93814  101.14849  100.99320   99.12850   97.64966
## 2536   99.16667  101.42751   99.87306  100.64034   98.53717
## 2537  101.82865  101.32439  104.64498  104.24491  102.35425
## 2538  113.69048  104.85359  101.95037  107.41162  104.11632
## 2539  106.62398  106.16497   97.88709  115.07238  108.52239
## 2540  129.12470  105.45406  102.94933  112.30907  102.37739
## 2541  100.48315  107.88385  110.52339  129.79219  129.13669
## 2542  144.16979  108.93434  162.59319  111.63016  114.96845
## 2543  105.04076  108.20070  108.01316  108.67903  114.85910
## 2544  136.33958  116.42214  118.02153  196.36738  119.29898
## 2545  109.39168  134.40526  108.83104  227.16294  123.11031
## 2546  123.00981  109.61199  104.76930  133.66675  121.33702
## 2547  108.32169  120.01017  118.33059  300.11344  121.11605
## 2548  117.64437  147.99678  131.01205  157.64839  152.40741
## 2549  102.60741  123.89558  138.41941  117.63546  136.72429
## 2550  171.68524  159.64830 1164.81025  188.21775  125.25585
## 2576   84.15973   87.96539   82.14150   52.64988   89.92114
## 2577   85.84290  105.36680   81.69164   76.54764   88.96352
## 2578   66.61348   82.47773   88.97681   77.81180   41.68769
## 2579   91.51116   63.88924   86.65280   88.66636   91.02956
## 2580   80.66573   79.31961   97.33569   79.00953   96.04200
## 2581   76.94358   95.11866   90.73737   93.48537   79.41074
## 2582   77.71553   97.04058   67.45901   77.10697   92.75237
## 2583   92.30889   93.44149   90.19618   97.58905   97.06502
## 2584   94.85522   97.91254   99.78021   95.81535   92.63786
## 2585   96.83548   96.92005  101.82777   94.57160  100.24917
## 2586   98.78481   99.83780  101.24048  102.77447  100.69733
## 2587  103.27372  107.63287  102.23617  100.21886  101.32439
## 2588  104.01260  110.91719  108.71738  102.11598  105.23602
## 2589  106.44586  108.05007  109.30307  105.73638  109.23746
## 2590  100.48315  100.70149  102.94933  107.60348   99.29293
## 2591  117.36111  112.55568  109.85664  109.64912  150.59021
## 2592  106.18512  112.14252   98.34403  101.86646  111.06092
## 2593  112.14252  114.57763  106.70624  108.38241  103.62725
## 2594  114.33968  163.49441  254.13701  117.02929  117.34249
## 2595  116.14556  196.36738  106.49688  138.90371  120.17103
## 2596  136.83834  134.55432  119.65444   99.45656  269.03839
## 2597  112.69286  121.48569   99.42058  100.61697  106.39642
## 2598  127.97053  322.99700  113.55850  148.98291  108.83501
## 2599  156.47473  161.42447  183.04556  127.37305  127.16439
## 2600  159.70753  132.33709  145.45282  125.25585  144.49301
## 2601   88.97681   56.17321   87.17744   77.73452   86.59730
## 2602   54.27991   57.40160   57.46010   84.16547   49.78525
## 2603   79.47932   86.59202   79.47972   94.96854   87.96539
## 2604   91.76680   94.96576   71.60730   53.32295   89.91046
## 2605   53.96413   62.53634   75.74804   87.60438   85.38321
## 2606   90.84525   94.31004   88.39372   86.43748   93.20106
## 2607   75.36743   82.70288   83.47741   96.90043   95.14822
## 2608   94.35900   70.48157   70.74005   96.48763   92.87873
## 2609   80.81964   97.25576   92.93899   97.88507   97.25576
## 2610  100.11052   98.86147   99.90523   99.81995  101.24048
## 2611  102.29349  100.12346  100.41002  112.68137  100.99320
## 2612  101.49203  101.24287  104.98915  104.54931  112.42372
## 2613  106.16602  103.28180  101.85638  106.16602  107.56032
## 2614  104.63845  106.15365  104.51977  105.00669  122.96154
## 2615  103.35406  107.65160  107.93969  107.73630  132.29487
## 2616  121.63392  132.51117  118.92588  110.01897  109.49226
## 2617  111.84694  118.77751  126.23905  118.79881  108.81487
## 2618  100.39817  445.05135  113.04051  124.61969  108.44376
## 2619  116.73749  136.74067  108.13923  111.98145  108.13923
## 2620  118.02153  178.26917  117.56930  132.04917  109.78499
## 2621  209.70686  110.76649  110.37718  119.04881  111.87852
## 2622  147.53804  121.15786  125.97572  551.74526  113.84924
## 2623  131.12663  173.05755  371.76418  157.64839  130.19223
## 2624  144.42358  194.98985  254.51475  179.39371  166.21369
## 2625  117.36180  131.58517  144.49301  138.72838  132.24449
## 2676   91.22254   76.54764   88.59921   87.26977   69.44062
## 2677   86.59202   81.40956   91.95899   76.52190   77.26177
## 2678   86.30683   65.23464   87.26977   81.40956   86.84609
## 2679   64.21370   92.40642   97.31578   85.47067   71.43483
## 2680   92.75428   92.64793   76.00061   86.40904   86.40904
## 2681   90.38887   70.82698   97.06889   96.46720   98.30169
## 2682   91.12778   69.00003   84.00430   93.54731   94.20589
## 2683   73.98322   98.35328   95.74852   84.40052   69.57160
## 2684   97.45069   91.33018   97.54853   91.33018   91.33018
## 2685   98.27250  100.60372   99.63279  101.96489  100.57566
## 2686  101.96822  100.60372   95.14710  102.46154   98.02852
## 2687  106.37830  104.44993  109.08737  100.81512  105.56488
## 2688  110.36126  104.38677  105.88496  114.49640  101.95037
## 2689  105.58494  112.78478  103.89858  114.77675  120.59903
## 2690  105.07883  107.00910  128.58474  109.72657  111.10829
## 2691  107.03475  144.62638   99.26165  120.61749  108.26402
## 2692  131.98691  166.01565  173.10494  105.34240  130.97942
## 2693  109.42068  112.50254  111.06092  104.83339  171.79073
## 2694  132.44916  108.04980  109.88743  117.59139  127.89172
## 2695  120.19411  128.06191  120.40397   99.15473  114.33968
## 2696  109.00806  132.96764  188.53177  141.39107  280.27231
## 2697  149.56982  108.32169  118.33059  125.97572  125.83242
## 2698  641.17255  123.20902  172.59508  122.01325  116.40820
## 2699  123.77131  162.17781  155.62316  102.90404  132.34528
## 2700  139.71409  117.74875  107.75534  124.18577  150.12676
## 2751   80.05830   76.43678   95.58136   66.58774   64.04461
## 2752   87.33405   89.49587   80.05830   81.93143   76.96728
## 2753   88.97681   70.22650   55.25180   85.95653   85.46386
## 2754   90.33507   90.64730   89.58921   86.65280   96.01923
## 2755   77.44490   73.29890   78.95833   80.47166   70.47614
## 2756   98.30169   85.51540   84.34966   75.36743   94.41715
## 2757   85.09039   95.36544   81.36691   85.35279   75.36743
## 2758   95.31668   67.80351   90.42765   65.86113   96.90043
## 2759   84.80091   94.67902   97.18961  100.60156   96.20178
## 2760  100.63553  100.91489  102.33326  100.62028   98.86450
## 2761  100.62028   99.63279   87.28822  101.40897   95.71676
## 2762  101.30346  102.58764  103.89341  114.94785  103.53782
## 2763  106.10577  104.11632  108.33239  103.83656  119.68387
## 2764  123.20209  105.64624  110.30481  106.47748  124.85189
## 2765  150.95828  104.32306  115.40892  105.34785  115.26170
## 2766  112.95271  105.15247  109.40672  124.49640  133.91909
## 2767  107.74817  158.47743  111.06092  100.65657  115.02123
## 2768  225.73809  130.70175  144.16979  115.35073  108.20070
## 2769  115.95317  134.44921  116.96535  116.14556  132.79034
## 2770   99.49455  182.62523  111.79653  110.38324  110.33821
## 2771  115.01951  106.62682  113.31907  119.04881  159.63346
## 2772  150.69379  144.04249  281.25637  199.02722  127.98187
## 2773  128.97574  131.22664  133.39165  107.00071  171.64470
## 2774  161.07717  125.82266  122.70613  126.82551  156.47473
## 2775  146.68127  105.01465  191.44475  124.17258  121.51767
## 2776   68.38764   80.42268   48.57916   86.24029   94.37539
## 2777   74.10659   57.40160   85.54361   85.35007   89.62937
## 2778   77.34781   97.99331   87.02385   81.88533   88.52320
## 2779   93.75936   75.51253   90.41604   79.91192   91.72003
## 2780   70.47614   87.74308  102.63692   86.00700   73.45181
## 2781   95.25656   81.59536   98.35328   96.59448   95.50927
## 2782   88.90840   91.86796   89.16429   92.27130   72.84820
## 2783   85.84962   92.71862   98.45387   85.09039   96.56863
## 2784   99.78021   94.96702  101.01189   96.21200   97.76746
## 2785  104.11347  102.44425   99.73544  101.27936   98.86147
## 2786  101.05028  100.42671   98.49700   99.65537  100.32598
## 2787  101.78127  110.47760  104.69265  104.64498  119.98249
## 2788   98.06457  101.90236  106.30195  176.17889  103.03508
## 2789  105.11212  104.59202  112.62179  101.23358  130.50308
## 2790  133.86898  126.87452  102.37739  126.87452  119.66948
## 2791  142.75597  106.52577  150.95828  106.12299  122.51773
## 2792  163.02863  102.88259  173.80710  114.70431  142.27293
## 2793  116.01471  111.17364  117.21355  114.42351  108.81487
## 2794  105.61515  112.23080  111.97003  131.72418  114.03509
## 2795  105.89684  109.22285  107.97407  133.42357  116.75754
## 2796  110.92591  124.30313  114.83612  119.31776  161.35232
## 2797  125.66086  140.12399  100.34580  107.26161  122.96619
## 2798  118.14756  150.27818  126.30539  131.22664  157.85270
## 2799  118.87561  130.87151  179.23003  179.95995  180.75454
## 2800  136.81357  129.92929  131.58517  160.54959  123.44480
## 2801   85.65931  104.44557   66.56782   97.99331   88.59921
## 2802   85.35007  105.36680   41.62287   89.35444   95.62290
## 2803   87.80122   89.29480   97.43460   39.64751   76.43678
## 2804   88.16347   77.60870   63.14192   70.85132   92.69186
## 2805   70.11448   92.16046   79.31961   92.92963   64.83246
## 2806   74.58034   73.31933   70.48718   96.48763   86.12273
## 2807  101.08586   88.39372   81.36691   75.63255   81.65959
## 2826   69.00621   97.69301   83.00664   69.44062  104.95791
## 2827   45.05271   90.40317   60.65947   86.69055   62.27695
## 2828   60.67146   89.29480   81.40956   85.58530   50.76591
## 2829   97.01757   88.67350   92.43986   75.69345   87.95048
## 2830   91.71909   64.83246   89.16226   91.02956   73.45181
## 2831   84.00430   91.72060   95.25656  101.49594   72.27934
## 2832   84.11676  100.69083   81.65959   87.78115   97.61660
## 2833  101.77485   97.49668   83.40701   91.62297   97.62545
## 2834   97.00814   98.72624  100.81566   97.91838   97.76746
## 2835  100.12157   95.71676   98.71030   95.14710  100.90765
## 2836  100.51467  101.77396  100.56819   97.93814   99.09979
## 2837  104.54931  101.82713  104.64498  103.72201  103.46780
## 2838  114.83120  175.67105  104.42528  104.67952  101.85638
## 2839  100.39438  106.48477   98.93909  105.77540  105.73638
## 2840  107.03475  110.88988  110.06902   99.68729  107.88385
## 2841  105.45406  109.37046  102.72838  107.35540   99.10803
## 2842  110.21956  110.77789  105.34240  119.10727  108.64252
## 2843  162.59319  120.96710  116.48510  111.17364  126.70203
## 2844  113.82010  110.95365  110.35033  119.59946  120.41282
## 2845  123.11031  115.65967  127.89172  109.89934  111.88715
## 2846  121.91524  124.30313  123.80165  153.95683  119.25739
## 2847  126.42660  193.74717  121.11605  149.56982  137.70471
## 2848  121.63828  234.31872  124.46827  126.16537  134.36864
## 2849  139.77087  132.78361  161.42447  138.84010  120.27834
## 2850  144.49301  142.01975  130.04505  144.07929 1158.86006
## 2901   74.49210   89.86462   85.21347  103.13131   79.11190
## 2902   87.17744   85.65931   87.68738   41.68769   54.07719
## 2903   84.43896   49.97188   84.16547   81.13119   74.07757
## 2904   53.58974   64.61268   76.93336   80.47166   84.59334
## 2905   82.80109   93.75936   63.88924   95.53165   90.90331
## 2906   90.45155   97.54756   92.87873   81.95826   79.41074
## 2907   97.75885   93.51373   97.75885   84.34966   91.80362
## 2908   86.43748   80.12444   95.36544   92.75237   94.20244
## 2909   99.38990  100.48347  100.48347   97.91838  100.36361
## 2910  102.71888  101.43779  101.49803  104.11347   98.78481
## 2911  100.24116  103.30935  100.05478   98.64589  101.33226
## 2912  101.34497  112.73950  105.56488  112.42372  106.56742
## 2913  107.41162  114.50839  104.11632  111.19878  104.39336
## 2914  106.23389  113.20401  104.85046  296.34216  104.51539
## 2915  105.12161  120.76648  103.07126  110.52339  104.39012
## 2916  129.64517  107.35540  105.80979  104.27782  117.36111
## 2917  124.92263  130.70175  112.50254  104.92897  125.17527
## 2918  142.27293  130.70175  173.80710  126.23905  129.20194
## 2919  105.72636  105.04348  117.88098  113.56284  134.27156
## 2920  120.43349  119.59454  100.69865  105.84461  121.15220
## 2921  173.03177  121.33702  102.82315  123.79254  111.23670
## 2922  318.79224  118.87613  111.59231  127.98187  134.16978
## 2923  107.00071  120.23951  108.83501  130.19223  148.98291
## 2924  131.79459  666.96867  137.91349  179.39371  194.26159
## 2925  218.14585  165.32223  123.11356  141.84511  190.30216
## 2926   82.37310   97.73589   36.79145   86.17021   80.05830
## 2927   60.03765   41.56536   68.38764   49.78525   75.67416
## 2928   48.57916   59.26252   77.81180   84.31220   88.03280
## 2929   91.78669   93.17554   91.87575   89.79684   86.40904
## 2930   92.35943   95.73724   84.62964   61.37006   89.91046
## 2951   84.13422   94.96854   91.29758   85.03723   77.28096
## 2952   87.33405   54.23804   62.21331   89.35444   85.54361
## 2953   86.53435   80.89354   86.53435   86.93202   79.11190
## 2954   78.11804   93.33426   93.80144   77.44490   53.96413
## 2955   92.43411   91.02956   51.42515   94.96020   71.60730
## 2976   82.76681   80.05830   90.63433   88.71275   60.03765
## 2977   85.95653   58.84880   80.07062   80.80704   49.97188
## 2978   77.34781   58.63290   63.96155   81.40956   87.53040
## 2979   53.45668   95.78239   86.73150   92.13118   93.63502
## 2980   53.67943   94.96576   85.38321   91.78296   87.57756
## 2981   78.96031   82.25437   96.59448   91.86796   95.52910
## 2982   97.58905   81.59536   88.80377   94.31041   93.32995
## 2983   94.74379   92.79609   94.95988   88.75352   91.04108
## 2984   94.97735   96.03599   86.43389   94.88037   98.73339
## 2985   97.57504   99.09979  101.77396  100.11052  100.61728
## 2986   99.55544   98.49700   99.11660   97.82476  100.05478
## 2987  103.53782  101.82865  103.21992  102.28962  106.37830
## 2988  104.66425  114.83120  110.07958  101.63512  104.66425
## 2989  102.84426  123.20209  102.31685  296.34216  106.44943
## 2990  116.68623  120.76648  109.64912  103.39979  106.27126
## 2991  104.98236  108.42367  380.88026  120.82444  124.49640
## 2992  128.89845  102.72149  113.94137  123.02067  102.88259
## 2993  118.71088  114.81305  105.29668  118.01427  112.63187
## 2994  128.46265  117.56930  118.35876  125.63096  101.47904
## 2995  182.46342  120.45371  183.03745  146.05516  106.32642
## 2996  159.63346  121.63101  188.77562  188.77562  129.18871
## 2997  111.53629  120.26897  193.57454  120.96510  106.00618
## 2998  145.13791  133.72371  130.73546  119.52787  259.83518
## 2999  194.26159  102.60741  116.65668  183.04556  121.95838
## 3000  125.90079  115.57830  204.07685  694.24147  176.53174
## 3051   52.64988   58.63290  103.13131   80.42268   81.13119
## 3052   87.22372   85.03723   84.16547   89.29480   84.18221
## 3053   89.20607   76.45865   45.05271   45.30148   86.26102
## 3054   86.77549   91.73298   91.76680   92.92963   63.88924
## 3055   87.74308   87.57756   86.46140   70.85132   92.72349
## 3056   94.36870   90.44223   90.82499   90.58389   95.11866
## 3057   83.30883   74.55635   74.58034   70.60962   85.50475
## 3058   93.44149   91.04108   78.00297   67.45901   90.82462
## 3059   84.39734   96.70003   96.36786  100.36361  100.57932
## 3060   99.89300   99.27417   99.10475  101.93226   98.83097
## 3061  103.49682  100.60372   99.41273   98.98863  101.43557
## 3062  107.41470  103.03193  102.40672  103.89341  111.49880
## 3063  111.40121  104.04441  106.10577  104.66425  104.04441
## 3064  108.37045  102.31685  101.44664  116.59730  107.91788
## 3065  124.49640  105.35619  105.33277  109.40839  114.57970
## 3066  107.19246  116.62201  133.20341  105.80979  152.66391
## 3067  114.07154  103.62654  105.57382  116.13119  100.98039
## 3068  112.63187  106.83120  115.48170  107.13503  110.33443
## 3069  128.06191  127.89172  119.29898  111.98145  130.64683
## 3070  109.39168  109.89934  105.94276  138.80017  143.06911
## 3071  133.32345  161.35232  113.64695  118.46197  173.21939
## 3072  111.72181  121.11605  112.31792  138.74334  125.18827
## 3073  147.77804  113.79071  119.52787  133.72371  112.59431
## 3074  748.29994  127.37305  143.36483  136.96747  666.96867
## 3075  552.45355  123.11356  160.34981  120.14175  121.42321
## 3076   86.24029   86.26102   85.21347  105.36680   76.52190
## 3077   93.96598   75.67416   84.13422   91.22254   92.17841
## 3078   88.52320   86.59202   86.24029   77.26177   87.19251
## 3079   92.35943   91.73298   92.72349   91.51116   70.83933
## 3080   80.47166   85.47067   70.47614   83.29147   89.58921
## 3081   91.10648   91.29655   81.44024   57.28155   87.88031
## 3082   92.71862   88.80377   79.46693   67.80351   89.40975
## 3101   87.53040   78.65690   82.38095   86.31604   95.99851
## 3102   85.58530   90.62159   81.93143   79.72385   85.21347
## 3103   85.73580   92.17841   41.62287   97.69301   41.56536
## 3104   53.58974   85.01780   86.00700   68.71703   70.11448
## 3105   80.48137   85.84441   89.67338   93.17554   88.88347
## 3106   88.62501   93.19046   96.56863   95.50927   91.14090
## 3107   92.75237   95.86473   69.00003   73.12163   93.44638
## 3126   94.37539   80.21945   88.97681   90.98065   63.88756
## 3127   54.23804   90.98065   76.45865   85.73580   92.38744
## 3128   86.59202   85.10968   81.13119   90.40317   50.76923
## 3129   53.45668   86.77549   86.73150   89.58921   75.74804
## 3130   70.83933   79.00953   75.69345   89.34008   75.74804
## 3131   90.45155   81.19623   99.88840   88.90840   94.96528
## 3132   65.34469   84.84667   95.24657   98.92117   83.40701
## 3133   94.96528   90.45155   97.68078   92.38225   94.24815
## 3134   93.24388   91.18015   98.73339   96.24320  100.72271
## 3135   95.14710   99.62979   99.27417  100.72108  100.64270
## 3136  101.97148   98.98914  101.78696  100.91489   98.99128
## 3137  103.23319  102.00745  111.52278  102.12298  101.41742
## 3138  104.42528  108.28144  110.07958  103.88052  106.92872
## 3139  102.31685  104.55332  104.54255  106.62398  106.44943
## 3140  113.47576  107.45388  106.44959  154.11132  105.52295
## 3141  132.21463  110.01897  109.85664  110.94952  107.78501
## 3142  166.01565  112.22418  124.92916  158.28209  125.63590
## 3143  104.95144  131.98691  158.28209  106.47021  105.56697
## 3144  116.04334  118.15403  113.91920  110.36058  117.63440
## 3145  109.88743  102.82229  125.82905  105.41838  155.76773
## 3146  116.81906  106.35650  109.61199  131.79286  121.02656
## 3147  111.12892  106.00618  118.87613  121.48569  550.46210
## 3148  126.30539  115.76390  120.26701  233.93590  164.06744
## 3149  180.40634  144.57935  446.72370  138.84010  170.04323
## 3150  320.94026  161.41631  158.36933  125.56559  136.81357
## 3201   85.84290   69.07252   95.62290   93.92426   82.37310
## 3202   79.88844   57.46010   77.34781   54.27991   86.84609
## 3203   79.62324   90.82841   78.65690   87.39805   60.57741
## 3204   89.58921   75.65387   91.71909   87.84210   89.12614
## 3205   90.33507   91.65131   89.91046   76.96681   86.00700
## 3206   94.24815   57.27377   85.98439   95.74852   92.72501
## 3207   81.44024  102.22279   92.71862   94.20589   90.44223
## 3208   88.11056   85.50475   94.69594   97.18258   92.43007
## 3209   99.02634   93.70331   94.97735  100.76289  100.81566
## 3210   99.27417  101.00116  100.44107   87.28822  101.38662
## 3211   99.90523   98.00079  100.12157   99.11064   97.64966
## 3212  105.05959  107.11129  102.28962  102.40672  119.98249
## 3213  104.23632   98.06457   98.87984  115.39095  105.86541
## 3214  100.39438  112.62179  251.21835  103.93445  122.96154
## 3215  112.30907  120.56460  105.18351  143.88818  106.44959
## 3216  143.88818  105.15247  102.67333  107.07546  122.76389
## 3217  109.25246  138.67541  115.60556  173.80710  118.01427
## 3218  103.20968  138.15359  166.15643  111.84694  114.57763
## 3219  117.52653  109.21517  117.34249  136.33958  115.99308
## 3220  116.89807  110.33369  141.37796  136.26939  129.81371
## 3221  109.00806  113.25841  123.54022  118.26464  129.18871
## 3222  137.90285  117.72698  134.16978  181.84691  119.44971
## 3223  145.13791  229.18128  172.59508  124.85976  152.11439
## 3224  143.37168  123.01758  447.30782  125.86420  133.97964
## 3225  121.48754  125.90079  132.33709  112.80796  139.05238
## 3226   76.96728   49.78525   80.80704   92.17841   83.26203
## 3227   89.46176   41.56536   78.65690   79.72385   36.84186
## 3228   82.24845   79.68953   76.81953   77.84784   87.19847
## 3229   91.46595   85.50989   93.33426   85.41806   69.59554
## 3230   82.80109   61.37006   75.51253   89.12614   91.44621
## 3251   41.56536   67.95676   45.05271   89.62937   87.79150
## 3252   82.63836   56.17321   90.40317   80.05830   74.07757
## 3253   97.69301   76.38382   86.17021   37.81895   69.44062
## 3254   89.91046   91.51116   92.69186   54.27027   79.31961
## 3255   97.33569   92.03260   91.33736   94.70750   66.86484
## 3276   55.25180   82.24845   41.62287   77.34781   93.96598
## 3277   85.54361   76.52190   49.78525   85.57589   66.61348
## 3278   50.76923   83.45336   77.73452   72.67589   81.40956
## 3279   77.60870   73.45181   88.66636   92.43986   92.52781
## 3280   89.58921   91.62935   67.96218   91.46595   93.33426
## 3281   95.29390   80.73125   95.86473   81.36691   93.63286
## 3282  101.77485   92.93456   84.00430   93.45691   83.82353
## 3283   88.66208   97.62545   90.70701   90.19618   76.84017
## 3284   99.54432   93.37227   92.63786   84.80091   86.57403
## 3285  101.44396  102.70549  101.14849   99.61333   98.99128
## 3286   97.15385   97.58014   99.12850  100.03001   98.98914
## 3287  105.56488  101.82713  106.15890  104.02718  102.40672
## 3288  101.90236  103.88052  103.28180  102.11598  104.99403
## 3289  106.04066  104.59202  104.85046  130.72207  113.99777
## 3290  108.09263  108.13149  108.60962  109.80112   98.76626
## 3291  102.67333  133.91909  128.58474  110.88988  110.06902
## 3292  111.63016  108.44376  113.04051  108.05597  143.61967
## 3293  109.81380  104.95144  105.34240   98.34403  101.86646
## 3294  116.73749  116.94994  163.68244  113.56284  105.65981
## 3295  134.23700  138.80017  106.49688  166.79235  134.27156
## 3296  117.26530  139.10761  110.76649  136.66000  124.26543
## 3297  201.41034  111.59231  133.41070  225.69219  100.20202
## 3298  157.64839  126.45552  130.19223  116.90080  147.77804
## 3299  132.40925  666.96867  194.26159  121.95838  125.77025
## 3300  105.01465  186.82564  222.16757  142.78418  121.42321
## 3351   76.38382   80.07062   89.07701   76.43678   66.58774
## 3352   84.98210   90.63433   93.92426   60.67146   85.57589
## 3353   86.30683   80.42268   79.47972   54.07719   79.68953
## 3354   89.79684   97.63935   88.66636   86.46140   95.78239
## 3355   96.01923   91.71909   78.03115   89.18316   89.12743
## 3356   94.20589   97.54756   91.96508   98.64865   90.84525
## 3357  101.81818   97.95033   69.57160   94.20244   96.81781
## 3358   79.68046   98.98092   92.47394   88.11056   75.36743
## 3359   95.99733   96.28845   96.20178   95.48108   96.30855
## 3360  101.42751  100.93304  100.12128  100.16114   99.66950
## 3361   97.49152  100.51467   98.86147   99.97309  103.18209
## 3362  102.62943  164.68155  103.12208  120.11251  102.15226
## 3363  110.93115  117.06788   98.87984  103.62028  107.75036
## 3364  107.70094  102.69600  130.50308  104.74776  113.20401
## 3365  132.21463  118.11594  105.18351  113.74127  109.72657
## 3366  123.45897  118.92588  119.79731  102.97737  121.63392
## 3367  100.65657  421.37245  102.72149  106.04627  125.88797
## 3368  116.75936  114.42351  118.79881  151.51287  116.13950
## 3369  114.33968  109.21517  117.88098  131.30663  155.31320
## 3370  122.18671  136.74067  119.89695  119.33927  105.36249
## 3371  101.43678  123.61300  119.21853  105.58526  136.66000
## 3372  106.35207  121.11605  109.59070  120.40953  109.90300
## 3373  323.38504  116.40820  152.11439  122.08329  233.93590
## 3374  127.37305  102.60741  126.82551  123.89558  180.75454
## 3375  549.88519  117.36180  694.06484  130.41287  162.00465
## 3376   84.86304   95.62290   84.86304   76.81953   78.65690
## 3377   86.83467   88.03280   94.43840   86.69055   81.96664
## 3378   79.51430   80.21945   54.27991   79.47932   80.05830
## 3379   67.96218  103.24544   91.72003   78.95833   90.20065
## 3380   92.64793   92.72349   79.00953   93.63502   92.75428
## 3381   92.13474   94.28239   87.22890   85.50475   95.01535
## 3397  551.74526  114.09905  121.11605  109.90300  113.01538
## 3398  100.97778  173.05755  126.67551  472.19814  132.05508
## 3399  668.54464  155.62040  121.95838  120.94736  210.71568
## 3400  104.05021  124.17258  132.72405  104.05021  146.68127
## 3401   65.10216   86.30683   68.38764   84.13422   95.58136
## 3402   87.33405   62.21331   89.59827   86.30683   72.74734
## 3403   91.29758   88.71275   84.98210   89.59827   91.23674
## 3404   73.45181   62.68866   93.06302   97.33569   87.77418
## 3405   62.53634   82.68579   91.72003   88.16347   92.72349
## 3406   86.12273   94.69594   88.80377   93.41064   92.75237
## 3407   84.42922   65.73624   93.82111   81.36691   88.96866
## 3408   80.12444   81.36691   94.01651   97.06889   92.80954
## 3409   98.21780   94.08903   98.03552   94.67902   94.08903
## 3410  101.02647  101.43557  101.74162  102.29349  102.33326
## 3411   97.43512   98.98914   99.62979   96.34616  100.04108
## 3412  102.27588  103.23319  104.02718  107.15872  100.21886
## 3413  260.74334  107.75036  175.67105  109.83401   98.06457
## 3414  138.18694  296.34216  123.20209  106.44586  106.04066
## 3415  113.19995  108.26402   98.76626  104.13499  143.88818
## 3416  104.32306  103.64503  106.38121  107.32870  107.35540
## 3417  107.13503  113.43226  111.42145  111.17364  141.53477
## 3418  116.69633  111.88497  107.72305  112.96915  125.93080
## 3419  113.42653  136.33958  125.63096  117.22208  116.29395
## 3420  149.89209  103.63813  109.16456  110.80547  149.15188
## 3421  188.36214  102.82315  139.51296  145.99686  101.02694
## 3422  132.30845  111.72181  120.26897  131.99689  135.68230
## 3423  105.44614  126.30539  129.88913  323.38504  126.16537
## 3424  116.65668  132.01165  131.58996  120.97504  143.82307
## 3425  125.56559  136.95795  172.26418  105.01465  162.00465
## 3426   75.04270   89.67846   79.68953   91.23674   86.72466
## 3427   81.88533   85.54361   54.29599   87.26977   45.05271
## 3428   55.46753   41.56536   55.25180   49.97188   84.98210
## 3429   81.19130   85.41806   64.21370   96.04200   53.96413
## 3430   64.21370   92.03260   90.40701   64.61268   68.72902
## 3431   95.25656   68.83437   94.95988   88.75326   88.02860
## 3432   93.19046   88.96866   77.10697   97.54756   97.18258
## 3433   95.58712   95.36379  100.69083   93.60593   84.21325
## 3434   99.02634   97.89099   92.93899   97.45069   95.82734
## 3435  100.04108   98.71030  101.16487  102.64242  100.35603
## 3436   97.31931  102.41009   98.53717   98.00079   98.54870
## 3437  102.31760  102.59787  102.91591  109.50161   98.62238
## 3438  106.69773  110.91719  115.06283  114.49640  116.41026
## 3439  100.39438  107.78203  104.74776  113.99777  124.85189
## 3440  111.82715  103.35406  101.38032  106.27126  110.94952
## 3441  109.49226  106.86974  112.72046  121.95756   99.10803
## 3442  114.09806  103.32460  108.38241  106.20255  113.96239
## 3443  101.05646  114.83924  445.05135  106.26664  120.96710
## 3444  125.82905  196.36738  178.11105  118.52359  201.13498
## 3445  109.88743  114.33968  163.68244  101.06061  109.04699
## 3446  504.61556  118.26464  121.02656  161.96111  161.35232
## 3447  119.47703  119.44971  121.15786  182.04600  107.46742
## 3448  108.93122  130.73546  113.60385  120.23951  121.45621
## 3449  136.73844  155.62316  136.72429  668.54464  107.63601
## 3450  149.47301  125.69222  172.09421  148.70509  320.94026
## 3501   91.32519   60.03765   86.24029  104.02357   60.45340
## 3502   80.89354   82.18296   87.49543   39.70148   56.17321
## 3503   89.35444   91.32519   74.82542   91.95899   67.53835
## 3504   79.39866   88.67350   87.60438   88.16347   89.67338
## 3505   86.77549   88.66636   90.33507   90.14350   78.11804
## 3506   65.86113   79.36409   87.31443   88.75876   84.11676
## 3507   95.03849   95.50932   85.09039   81.14328   87.78115
## 3508   99.84694   90.18384   68.03409   84.34966   98.37955
## 3509   97.91254   99.54432   96.24320   97.32737   99.43150
## 3510   99.04384  100.56819  100.16114  101.97148   99.98555
## 3511  102.64242  100.50736  100.31855  100.34017  102.46154
## 3512  102.77120  101.33319  107.15872  101.30591  103.28508
## 3513  110.69491  105.96625  137.77702  102.92406  104.09200
## 3514  115.07238  146.43261  115.81716  106.44943  109.23746
## 3515  109.40672  120.63251  117.36111  115.40892  129.13669
## 3516  103.64503  155.66885  107.06727  105.34785  129.79219
## 3517  108.45682  128.89845  156.06070  110.21956  125.53942
## 3518  128.31784  113.69280  104.05528  100.39817  101.05646
## 3519  175.39744  111.98145  107.93025  119.67466  133.08417
## 3520  136.33958  482.34621  113.82010  149.90408  134.44921
## 3521  146.31352  119.31776  107.86507  119.21853  131.79286
## 3522  134.16978  225.69219  125.53161  107.26161  117.03804
## 3523  145.29628  323.38504  134.68528  133.72371  107.00071
## 3524  215.03420  448.92817  121.40603  214.85200  120.94736
## 3525  124.18577  121.51767  146.90039  187.06083  264.45420
## 3576   97.73589   75.04270   64.04461   55.46753   90.98065
## 3577   88.03280   89.92114   87.19251   69.07252   64.04461
## 3578   63.96155   60.67146   79.11190   69.07252   77.81180
## 3579   90.41604   64.61268   72.67259   90.90331   81.00761
## 3580   88.88347   53.58974   92.14181   87.84210   79.87391
## 3581   82.25437   86.43748   84.00430   86.65654   95.90900
## 3582   96.38773   94.20589   96.38773   94.31004   94.01651
## 3583   92.11196   81.56326   88.75876   99.33319   79.68046
## 3584  100.81566   95.48108   95.98072   99.11068   86.69231
## 3585   99.09051   98.36124  101.54046   96.34616   95.71676
## 3586  100.12346  100.18869   99.16667  100.35603   97.49152
## 3587  103.27481   98.62238  105.90647  107.11129  105.61450
## 3588  107.63745  104.06422  107.41162  103.69813  105.71932
## 3589  100.39438  101.96945   97.88709  104.90277  104.74776
## 3590  120.33720  100.48315  111.06992  105.18351  121.95756
## 3591  106.69451  116.28912  103.64503  102.41684  105.15247
## 3592  108.54908  107.74817  110.16206  107.05697  104.18835
## 3593  104.83339  114.56494  109.17025  114.09806  106.47021
## 3594  112.23080  182.46342  106.49688  132.79034  113.40656
## 3595  119.29898  115.09044  116.42214  136.26939  126.33702
## 3596  153.95683  269.03839  111.87852  104.76930  126.65652
## 3597  281.25637  125.97572  280.86383  114.28304  298.75559
## 3598  126.67551  322.99700  109.17176  121.62320  173.03357
## 3599  748.29994  155.95655  120.97504  161.07717  120.27834
## 3600  132.23335  131.58517  141.84511  176.53174  320.94026
## 3651   86.59202   90.87033   91.12610   98.00046   88.74066
## 3652   82.16888   86.24029   68.22153   55.25180   83.06365
## 3653   89.59827   74.82542   87.13276   87.02385   97.43460
## 3654   89.67338   96.01923   89.79684   85.38321   93.75936
## 3655   91.73298   78.03115   92.03260   92.56843   91.27376
## 3656  100.24863   84.30664   89.16429   75.81067   72.27934
## 3657   95.24657   83.40701   81.56326   81.36691   85.28735
## 3658   96.43636   74.04314   94.16257   85.25325   93.81893
## 3659   96.28845   93.24388   97.94876   92.93899   99.43150
## 3660  101.77396   99.98555  104.11347  101.96489  101.54046
## 3661  101.53984  100.52245   99.09051   98.54870  100.56819
## 3662  102.58764  102.59787   99.97401  106.03844  102.74791
## 3663  103.14673  104.66425  103.46585  110.32772  102.92240
## 3664  115.52511  105.62299  120.59903  146.30854  120.74558
## 3665  132.29487  107.66647  104.58508  117.88453  107.00910
## 3666  105.33277  326.24215  108.22281  107.06727  111.65145
## 3667  102.88259  131.96356  130.70175  112.22418  120.27348
## 3668  108.64252  151.51287  123.02067  162.89176  116.22330
## 3669  105.41838  130.64683  109.36204  131.13302  111.98145
## 3670  123.39230  109.40244  117.60652  105.37942  163.49441
## 3671  117.26530  110.46473  111.41676  121.63101  101.38071
## 3672  115.23936  100.34580  127.98187  118.87613  113.84924
## 3673  122.01325  116.40820  182.31015  101.32392  205.16297
## 3674  102.60741  126.91669  121.95838  134.46696  127.07919
## 3675  149.47301  186.82564  125.56559  161.15159  142.78418
## 3726   89.49587   86.59202   89.62937   89.29480   80.76570
## 3727   70.22650   88.74066  105.36680   89.67846   70.89381
## 3728   77.26177   88.98440   95.99851   81.93143   85.65931
## 3729   67.96218   85.01096   91.02956   76.93336   90.41604
## 3730   92.14181   75.74804   87.57756   86.77549   88.67350
## 3731   88.96866  101.30804   70.48157   96.35980   98.64865
## 3732   90.18384   81.36691   96.43636   70.48718   81.56326
## 3733   96.35391   84.42922   95.08687   92.22074   93.41064
## 3734   95.33453   92.29034   97.54853   93.63993   96.80581
## 3735   95.79865  100.37677   97.96420   97.49152   98.93923
## 3736  100.48467  100.31855   97.73434  100.79741   97.64966
## 3737  102.77120  116.80319  104.54117  103.72201  103.46780
## 3738  104.23632  102.92406  109.96419  110.07958  104.97123
## 3739  106.79215  105.97367  110.40473  111.36948  108.37045
## 3740  107.88385  116.11344  120.63251  107.03475  113.14683
## 3741  102.41684  113.47576  110.84700  104.98236  380.88026
## 3742  138.67541  114.85910  113.18423  109.29728  105.50042
## 3743  108.00357  113.94137  101.13796  125.17527  114.64604
## 3744  104.30384  125.63096  119.67466  130.64683  122.18671
## 3745  119.67466  231.53177  110.36058  118.56621  123.13061
## 3746  113.64695  105.91190  110.44112  132.60389  117.71484
## 3747  160.98321  199.02722  118.92416  117.37784  112.69286
## 3748  119.52787  162.66276  371.76418  157.64839  197.99311
## 3749  120.27834  116.65668  138.41941  102.60741  143.37168
## 3750  125.68050  142.88328  264.45420  159.64830  218.14585
## 3801   87.79150   86.59202  103.54970   74.10659   85.10968
## 3802   86.53435   72.74734   77.84784   77.84784   86.26102
## 3803   36.79145   87.80122   93.96598   90.62159   82.76681
## 3804   89.79684   91.65131   81.19130   79.31961   67.96218
## 3805   59.41362   93.06302   91.78296   90.74173  102.63692
## 3806   94.04152   73.79112   65.23077   76.94358   98.98092
## 3807   84.34966   94.63581   92.38225   88.10025   77.71553
## 3808   95.31668   75.51250   94.35900   97.79130   95.68366
## 3809   94.67902   98.92178   93.63993   99.02634   98.72624
## 3810  100.02075  100.48408   96.69969  101.43557  101.43779
## 3811  101.27397  101.44396   99.62495   98.53717   99.93156
## 3812  104.30985  164.68155   98.94547  104.55716  103.12208
## 3813   97.65152  127.01718  104.36852  114.83120  104.01260
## 3814  112.63745  104.59202  100.88040  108.25918  109.87936
## 3815  106.15231  105.62608  112.72938  119.66948  107.73630
## 3816  124.49640  157.31993  128.58474  105.81129  102.97737
## 3817  114.83924  108.32327  123.02067  103.64332  135.20384
## 3818  126.63299  118.71088  108.18084  101.13796  130.97942
## 3819  113.82010  136.33958  109.79184  142.76316  143.06911
## 3820  183.98454  148.29801  120.40397  109.74483  116.29395
## 3821  209.26474  126.04950  123.80165  111.36527  126.34791
## 3822  122.96619  134.16978  124.99091  168.76751  114.09905
## 3823  322.99700  131.01205  111.01689  233.93590  126.33907
## 3824  668.54464  127.50841  121.95838  138.84010  138.41941
## 3825  134.47319  190.33094  138.58183  218.51238  694.24147
## 3876   89.29480   57.46010   52.63789   87.51037   89.67846
## 3877   94.43840   77.28096   98.00046   68.22153   74.10659
## 3878   83.11619   54.29599   90.62159   88.74066   80.88184
## 3879   63.37863   73.45181   64.83246   88.16347   92.75428
## 3880   93.17554   96.04200   90.40701   67.96218   68.72902
## 3881   96.48148   78.96031   94.24815   94.49291   96.46720
## 3882   77.22249   98.35328   95.35421   88.21839   94.95789
## 3883   88.90840   88.10025   95.31668   93.89796   88.29308
## 3884   98.21780  100.60156   97.89099   98.21780   91.49750
## 3885  101.31817  100.31597  104.82981  101.90641  100.12157
## 3886   98.83097  101.05028  101.16487   99.66950  101.97148
## 3887   98.94547   98.62238  100.99355  102.27588  100.99107
## 3888  103.62028   99.85425   98.87984  104.67952  101.78633
## 3889  104.54255  110.43121  110.43121  106.02560  115.34707
## 3890  117.88453  120.33720  105.34785  105.52295   98.91687
## 3891  105.72252  118.92588  153.83333  104.04960  105.07883
## 3892  116.88010  110.77789  116.13950  138.67541  163.02863
## 3893  174.29516  135.17986  130.70175  116.47105  109.42068
## 3894  123.11031  134.27156  117.60652  131.30663  117.02929
## 3895  108.60014  105.68000  105.68665  113.83465  149.90408
## 3896  123.54022  111.41676  112.70218  106.35650  111.23670
## 3897  112.81294  113.84924  111.59231  112.81294  112.69286
## 3898  116.90080  130.19223  147.77804  127.06840  197.77564
## 3899  446.58161  127.16439  744.15548  127.07919  103.33840
## 3900  264.08547  128.53692  103.63347  113.17387  135.13134
## 3901   68.22153   77.26177   86.59202   62.27695   88.98440
## 3902   77.84784   79.54693   56.17321   70.22650   91.32519
## 3926   85.54361   84.13422   76.78643   37.61926   90.98065
## 3927   64.04461   86.69055   95.99851   92.17841   86.72466
## 3951   97.43460   76.52190   91.29758   76.81953   77.26177
## 3952   84.31220   85.84290   57.46010   89.67846   72.74734
## 3953   41.62287   76.52190   87.33405   77.84784   87.24826
## 3954   89.12743   97.33569   53.45668   91.76680   88.95131
## 3955   94.96576   97.63935   89.16226   91.02956   91.51116
## 3956   82.70288   90.70701   85.35279   89.16429   79.43407
## 3957   91.27871   86.60671   99.88840   89.32484   76.94358
## 3958   91.10648   97.06502   95.08687   91.04108   57.28155
## 3959   83.11151   95.99733   97.53524   96.59170  100.48347
## 3960  100.12157  104.30909   99.09051   99.69388  100.11052
## 3961  101.74162   97.82476   99.27417  100.48408   99.63279
## 3962  103.27481  109.08737  102.58764  105.05959  107.55417
## 3963  101.96463  104.97123  104.97123  103.69813  115.19239
## 3964  122.02396  109.87936  107.91788  105.21949  115.34707
## 3965  111.65145  117.41760  110.84700  107.00910  112.52256
## 3966  132.51117  106.00929  107.88385  127.75305  109.72657
## 3967  184.33610  110.33443  116.48510  123.43232  108.20070
## 3968  104.95144  120.27348  106.26664  171.60518  130.97942
## 3969  123.60592  119.33927  146.06715  119.77823  105.65981
## 3970  115.09044  120.41282  141.37796  128.06191  263.32021
## 3971  124.26543  112.05781  281.71217  105.52984  116.81906
## 3972  201.41034  193.57454  100.61697  127.98187  108.58455
## 3973  116.40820  205.16297  116.40820  173.03357  369.82714
## 3974  121.29630  247.11923  127.37305  131.94135  132.44122
## 3975  172.26418  123.84166  187.06083  168.06688  121.42321
## 4026   39.70148   85.54361   81.69164   62.21331   79.72385
## 4027   85.57589   62.21331   92.38744   81.69164   88.59921
## 4028   85.21347   54.07719   80.07062   89.46176   66.58774
## 4029   97.33569   90.33507   96.01923   62.68866   59.41362
## 4030   76.00061   75.69345   86.73150   63.14192   81.00761
## 4031   81.95826   82.70288   85.09039   88.75326   83.47741
## 4032   86.65654   97.43797   93.45691   91.12778   98.35328
## 4033   91.54061   89.08083   90.82462   89.81119   95.52910
## 4034   97.51408   96.73800   97.55989   96.61032   97.54853
## 4035   99.27417   99.27417   98.86147  100.79741  105.57289
## 4036   97.63176   99.71523  100.63553  101.93226  104.30909
## 4037  102.02099  101.33319  104.98915  107.10395   98.62238
## 4038  103.69813  104.38677  109.90148  115.39095  104.23632
## 4039  111.51049  106.44586  113.20401  118.86091  122.96154
## 4040  108.42367  151.36925  103.95877  111.10829  113.13935
## 4041  126.73526  122.20380  120.63251  107.07546  103.64503
## 4042  136.54922  116.13119  123.43232  109.81380  123.43232
## 4043  103.62725  143.06488  126.63299  114.09806  113.18423
## 4044  116.04334  131.40097  116.77544  117.92879  110.26906
## 4045  131.58368  138.80017  134.44921  107.93025  114.13370
## 4046  139.28538  139.51296  101.43678  145.10697  114.82032
## 4047  182.04600  116.78040  112.27077  119.04110  193.57454
## 4048  118.14756  322.99700  116.63109  126.49420  469.84718
## 4049  157.06490  125.77025  180.40634  180.75454  132.01165
## 4050  142.88328  142.01975  117.36180  165.70582  121.48754
## 4101   89.59827   84.18221   89.62937   60.57741   86.53435
## 4102   41.56536   76.52190   84.31220   77.28096   98.00046
## 4103   74.10659   81.69164   96.04111   87.33405   97.73589
## 4104   78.11804   66.86484   77.44490   70.85132   92.03260
## 4105   87.95048   69.59554   73.29890   90.90331   76.93336
## 4106   87.88031   94.80933   82.70288   91.04108   95.86473
## 4107   95.31668   70.82698   95.09096   88.75876   92.71862
## 4108   96.43636   88.11056   94.74379   90.19618  101.81818
## 4109   97.65004  100.57932   93.70331  100.36361  101.11111
## 4110  101.40897  104.11347  101.43557   99.11064  101.86862
## 4111   99.61333   97.59288   99.97309   99.64087   96.83548
## 4112  104.30985  100.81512  103.46780  102.21498  106.37830
## 4113  100.90090  105.71932  110.91719  104.01260  103.83656
## 4114  109.98478  104.51977  110.40473  107.78203  106.02560
## 4115  104.98236  122.76389  141.68112  110.88988  118.21245
## 4116  114.70735  114.70735  116.68623  112.95271  124.49640
## 4117  160.60608  115.48170  171.60518  111.84694  151.70141
## 4118  135.20384  106.20642   98.34403  124.61969  114.65548
## 4119  109.79184  117.60652  110.82173  108.91792  108.26185
## 4120  113.56284  105.89684  104.77194  119.33927  108.26185
## 4121   99.11934  126.04950  123.80165  160.52852  161.35232
## 4122  121.26949  120.26897  120.40953  123.57199  100.20202
## 4123  109.17176  135.07640  641.17255  115.81266  117.64437
## 4124  153.54877  143.36483  179.95995  161.07717  143.37168
## 4125  146.68127  218.51238  128.48153  123.65758  161.63692
## 4126   81.69164  105.36680   89.92114   85.95653   57.40160
## 4127   82.18981   48.49429   89.07701   87.22372   85.15462
## 4128   87.51037   80.76570   70.22650   90.63433   85.03723
## 4129   86.61646   92.56843   87.60438   84.59334   70.47614
## 4130   94.96020   85.01096   79.39866   86.77549   86.00700
## 4131   96.43636   88.29308   96.59448   97.06502  102.22279
## 4151   79.11190   87.79150   84.31220   82.38095   70.89381
## 4152   57.40160   88.03280   87.96539   41.56536   85.10968
## 4153   82.38095   80.32086   79.62324   76.78643   88.96352
## 4154   93.06302   85.84441   89.12743   95.73724   91.44621
## 4155   79.91192   76.00061   79.91192   66.86484   85.47067
## 4156   75.81067   92.75237   84.84667   95.29390   84.00430
## 4176   85.57589   80.05830   94.43840   87.90980   68.22153
## 4177   85.57589   89.49587   58.84880   52.64988   63.96155
## 4178   94.43840   86.69055   72.67589   92.01060   87.90980
## 4179   95.73724   79.07915   64.89455   81.00761   86.40904
## 4180   97.01757  102.22222   70.83933   87.74308   67.96218
## 4181   91.86796   99.33319   83.82353   85.35279   79.43407
## 4182   73.59809   91.06227   92.80954   99.84694   90.45155
## 4183   93.08193   79.08784   94.36870   86.12273   98.95550
## 4184   99.02634   93.46696   86.57403   99.65553   98.72624
## 4185   99.97309  101.96822   99.00218  100.50736   96.92005
## 4186  101.26409   99.10475  101.25268   95.14710   95.71676
## 4187  103.27372  144.11512  104.98080  124.71287  101.34497
## 4188  111.40121  110.32772  110.91719  175.67105  103.88052
## 4189  104.85046  102.69600  105.97367  105.32322  106.44943
## 4190  129.13669  117.41760  108.04976  103.35406  110.84700
## 4191  105.34785  103.29518  107.07546  142.50793  109.85664
## 4192  116.88010  173.10494  107.61321  120.98189  100.39817
## 4193  132.25443  109.70550  128.27916  116.24810  111.20249
## 4194  110.82173  116.42214  109.36204  109.74483  110.66111
## 4195  116.65831  132.44916  122.56407  109.04699  262.87131
## 4196  173.03177  139.51296  111.94593  109.74024  104.76930
## 4197  144.04249  300.11344  150.69379  118.33059  106.92900
## 4198  157.64839  115.44542  126.67551  119.61698  147.97806
## 4199  179.95995  157.06490  210.95186  143.36483  128.56307
## 4200  121.48754  130.08440  125.69222  125.56559  123.65758
## 4201   77.34781   86.72466   86.30683   66.56782   66.58774
## 4202   87.49543   58.84880   85.84290   77.28096   48.57916
## 4226   85.65931   68.38764   49.78525   62.21331  104.02357
## 4227   84.98210   80.07062   81.40956   74.49210   88.03280
## 4251   74.82542   87.80122   36.79145   89.07701   56.17321
## 4252   88.59921   89.62937   67.53835   80.76570   72.74734
## 4253   91.29758   82.47773   85.15462   86.17021   91.22254
## 4254   64.83246   86.73150   88.95131   92.92963   68.72902
## 4255  102.22222   76.93336   92.40642   79.31961   61.37006
## 4256   73.98322   78.96031   68.03409   70.48157   81.44024
## 4257   86.43748   98.73440   72.27934   83.30883   84.21325
## 4258   57.27377   92.22074   92.11196   78.96031   91.10648
## 4259  103.22245   96.24320   91.33018   95.82734   95.33453
## 4260  101.14849  100.79741  101.96822  100.23257  100.27494
## 4261   99.71523  101.97148  100.82659  100.31597  100.24917
## 4262  111.52278  101.30346  102.77120  101.24287  101.30591
## 4263  105.63353   97.65152  102.92240  108.71738  116.41026
## 4264  120.16029  110.24742  100.39438  108.05007  106.08537
## 4265  123.31008  113.47576  111.04849  103.79710   99.68729
## 4266  327.17640  105.31331  140.96680  121.95756  112.95271
## 4267  127.07225  116.13950  108.26279  131.98691  105.46017
## 4268  107.72305  144.16979  111.42145  126.70203  156.88157
## 4269  109.04699  102.82229  132.79034  131.72418  133.42357
## 4270  123.60592  108.91792  121.43812  118.02153  113.40656
## 4271  188.46154  110.44112  188.46154  115.73388  114.83612
## 4272  125.66086  160.95923   99.75966  112.69286  201.41034
## 4273  140.05422  147.97806  121.63828  120.94487  115.81266
## 4274  748.29994  132.01165  153.54877  136.73844  143.62978
## 4275  142.88328  124.18577  145.45282  107.75534  132.24449
## 4276   84.18221   54.07719   90.87033   87.51037   87.80122
## 4277  103.54970   81.88533   81.69164   49.78525   91.29758
## 4301   66.58774   79.88844   85.95653   68.38764   48.49429
## 4302   55.25180   86.93202   58.84880   66.61348   80.42268
## 4326   66.61348   80.88184   88.52178   66.58774   67.53835
## 4327   92.17841  104.95791   87.90980   85.95653   79.62324
## 4328   85.35007   57.40160   65.23464   62.27695   85.35007
## 4329   61.05559   54.27027   66.86484   91.50520   91.78296
## 4330   71.60730   62.53634   89.16226   90.74173   73.45181
## 4331   81.36691   96.46720   87.76968   94.95988   97.62545
## 4332   95.08687   96.84995   93.81893   75.51250   80.12444
## 4333   92.75237   90.70701   76.71611   97.36059   77.22249
## 4334   95.33453  103.22245   92.99362   97.91254   98.04965
## 4335   98.87331  101.82777  100.26036   98.49700  100.24537
## 4336  100.71676  101.44396  104.11347  100.48408  100.42671
## 4337  101.03491  119.98249  106.03844   98.22391  107.11129
## 4338  109.83401  105.82849  104.24219  110.16345  103.88052
## 4339  101.44664  104.63845  102.31685  106.00146  105.97255
## 4340  121.34056  106.38121  103.95877  107.66647  153.83333
## 4341  120.33720  106.15231  103.79710  338.64140   99.29293
## 4342  421.37245  109.17025  123.43232  125.63590  172.79024
## 4343  125.38679  100.65657  107.05697  108.01316  106.18512
## 4344  107.97407  117.94491  109.52637  105.68665  114.03509
## 4345  117.52653  155.76773  121.15220  118.52359  109.21517
## 4346  114.82032  118.46197  124.30313  111.36527  503.42939
## 4347  137.70471  120.49509  112.27077  107.26161  181.84691
## 4348  134.35013  119.08348  116.40820  116.90080  323.38504
## 4349  247.11923  136.37268  126.82551  447.30782  132.97959
## 4350  694.24147  129.84296  186.58759  113.17387  128.53692
## 4401   77.26177   86.83467   77.81180   83.26203   79.88844
## 4402   86.59202   37.81895  103.54970   91.29758   50.76923
## 4403  103.54970   76.96728   81.69164   86.69055   86.59730
## 4404   65.97222   85.38321   88.67350   89.34008   70.47614
## 4405   86.46140   85.41806   82.88179   90.14350   92.14181
## 4406   87.76968   87.76968   85.35279  100.72745   88.75352
## 4407   98.37955   89.32484   95.36379   80.53962   88.96866
## 4408   95.06454  101.49594   94.67286   94.21084   82.36210
## 4409   95.99433   97.55989  100.60156   86.84800   97.91838
## 4410   98.86147  100.14811  101.96822  100.90765   97.34595
## 4411   98.99128  100.26036  101.50892  100.37677   98.00079
## 4412  101.49203  102.31760  102.97982  104.70148  104.18608
## 4413  101.78633  103.14673  100.90090  108.71738  101.95037
## 4414  115.52511  110.24742  106.79215  122.96154  105.74991
## 4415  102.88066  109.37046  107.03475  107.03475  133.63401
## 4416   99.26165  107.93969  109.38277  109.40672  108.16236
## 4417  125.47516  111.17364  109.42068  116.24810  103.32460
## 4418  112.42533  117.21355  114.70431  162.89176  107.14378
## 4419  123.60592  111.79653  131.46856  129.13351  105.60676
## 4420  143.06911  115.65967  120.17103  103.63813  110.80547
## 4421  110.37718  115.59516  121.11444  121.91524  269.45487
## 4422  101.07600  119.70382  225.69219  201.07692  144.04249
## 4423  164.06744  108.93122  115.76390  115.17637  127.97053
## 4424  215.03420  210.71568  143.37168  133.97964  140.19862
## 4425  203.22596  144.04091  117.42197  264.45420  165.32223
## 4476   56.17321   90.62159   86.59202   57.40160   93.66601
## 4477   63.12598   96.04111   82.76681   75.04270   91.22254
## 4478   81.88533   88.52178   83.45336   87.02385   89.29480
## 4479   90.20065   65.48751   66.86484   53.67943   89.58921
## 4480   97.33569   85.38321   89.58921   94.70750   68.71703
## 4481   88.27120   84.21325   94.13769   88.08301   92.99346
## 4482   96.28103   99.84694   92.67817   94.74379   70.74005
## 4483   93.54729   92.87515   76.24359  101.30804   93.30245
## 4484   99.54432  100.48347   94.96702   66.79041   94.96702
## 4485   99.67026  100.42671  100.41819  101.72575  101.43557
## 4486  101.95012   98.83097  101.05372  102.44425  101.38605
## 4487  102.97982  101.35203  106.15890  110.28205  103.96579
## 4488  110.93115  101.96463  102.47183  104.03054  105.84633
## 4489  105.21949  105.62299  111.51049  296.34216  104.85592
## 4490   99.10803  117.59082  103.29518  102.72838  111.10829
## 4491  111.55464  108.46440  103.29518  120.61749  102.97737
## 4492  113.64498  130.86886  113.61904  117.21355  114.85910
## 4493  105.41559  445.05135  114.81305  104.83339  108.38241
## 4494  108.26185   99.61235  149.15188  109.36204  112.36902
## 4495  119.77823  110.72814  109.77954  254.13701  109.16456
## 4496  161.35232  146.31352  115.59516  109.61199  188.36214
## 4497  122.96619  113.01538  112.95776  106.92900  148.34477
## 4498  119.52787  113.60385  145.13791  197.77564  162.66276
## 4499  131.37534  121.40603  125.86420  122.70613  110.81273
## 4500  172.09421  132.72405  138.56469  117.74875  204.07685
## 4551   86.59730   89.59827   83.45336   82.47773   54.07719
## 4552   70.89381   91.23674   82.16888   81.69164   85.65931
## 4553   79.47972   65.23464   39.70148   82.16888   76.38382
## 4554  103.24544   86.73150   92.69186   89.34008   91.65234
## 4555  102.63692   70.34297   69.59554   89.23611   89.18316
## 4556   91.54061   85.51540   92.72501   81.65959   92.71848
## 4557   86.60671   72.27934   86.07052   93.88938   78.89058
## 4558   88.04751   94.31004   88.75326   87.22890   91.27871
## 4559   98.34969   99.43150   93.89692   94.08903  100.72271
## 4560  100.14811  102.70549  103.82921   97.43512   98.35841
## 4561  102.33326  100.23257  100.31855  100.82826   99.27417
## 4562  101.33319  105.56488  106.43074  102.12298  104.55716
## 4563   99.22778  104.01260  128.88305  107.75036  110.36126
## 4564  141.25711  103.89858  105.62299  101.96257  122.96154
## 4565  121.63392  116.62201  116.60229  106.12299  104.27782
## 4566  121.34056  129.64517  100.67826  154.11132  100.70149
## 4567  125.27704  114.42351  105.34240  107.74817  117.21355
## 4568  107.12818  116.13119  114.85910  112.42533  113.61904
## 4569  103.24642  106.32642  106.49688  132.73306  111.88715
## 4570  111.97003  108.91792  122.18671  227.16294  123.60592
## 4571  121.33702  121.02656  110.44112  252.64430  139.51296
## 4572  134.16978  133.75443  112.27077  112.81294  199.02722
## 4573  122.30426  162.66276  118.14450  152.11439  145.13791
## 4574  117.63546  298.66443  107.63601  102.96003  131.42284
## 4575  104.05021  265.24127  171.68524  117.42197  107.80223
## 4626   78.65690   80.32086   74.82542   88.52178   74.10659
## 4627   89.29480   89.46176   58.63290   81.96664   95.58136
## 4628   86.93202   88.52320   98.00046   48.49429   69.00621
## 4629   64.83246   89.16226   70.34297   93.33426   91.87575
## 4630   94.38345   93.17554   70.11448   86.46140   86.77549
## 4631   92.67817   92.27130   81.36691   69.46001   95.03849
## 4632   86.12273   81.14328   94.28239   78.96031   88.96866
## 4633   98.92117   91.14090   94.41715   85.28735   80.12444
## 4634   97.55989   86.43389   97.70301   96.20178   66.79041
## 4635   99.04384  101.53984   99.62979  103.84216   98.27656
## 4636   98.86147   96.37148  100.56819  100.14188  100.26036
## 4637  107.41470  107.55417  107.63287  103.27372  102.27588
## 4638  107.63745  103.88052  105.03229  105.84633  104.99403
## 4639  104.54255  104.19667  101.96945  108.52239  115.81716
## 4640  112.55576  142.75597  339.67420  105.81129  101.38032
## 4641  109.88184  111.04849  119.79731  105.18351  106.86974
## 4642  108.18084  111.71435  106.83120  171.60518  109.25246
## 4643  108.18084  106.26664  103.64332  113.43226  113.61904
## 4644  163.49441  117.63440  110.33821  110.26906  115.99308
## 4645  461.00847  134.27156  131.30663  117.56930  120.17103
## 4646  115.01951  106.40085  269.03839  114.83612  119.46401
## 4647  143.70353  121.48569  119.44971  134.12285  169.39628
## 4648  111.01689  121.63828  147.99678  115.76390  149.91768
## 4649  153.54877  744.15548  126.91669  153.54877  132.97959
## 4650  549.88519  113.22582  141.93627 1158.86006  141.84511
## 4651   82.47773   94.43840   81.13119   54.07719   41.91126
## 4652   80.05830   52.63789   90.87033   87.49543   69.07252
## 4653   77.84784   95.62290   89.46176   93.96598   82.75869
## 4654   90.41604   88.66636   95.53165   89.70028   91.65234
## 4655   89.23611   90.40701   94.96020   92.40642   93.75936
## 4676   76.45865   85.84290   54.07719   82.14150   69.07252
## 4677  105.36680   50.76591   87.22372   80.21945   87.68738
## 4678   75.67416   90.87033   69.00621   70.92046   75.04270
## 4679   71.60730   90.20065   92.03260   73.45181   92.16046
## 4680   91.78296   96.04200   93.06302   89.91046   89.12743
## 4701   90.82841   55.46753   76.45865   85.10968   75.04270
## 4702   41.91126   76.81953   86.30683   74.49210   82.47773
## 4703   76.52190   76.96728   86.83467   80.76570   86.83467
## 4704   94.38345   89.12614   75.69345   90.71247   95.53165
## 4705   53.32295   87.73624   59.30769   65.97222   79.39866
## 4706   76.36179   92.07572   94.96528   87.19216   88.75352
## 4707   94.35900   88.75326   92.72501   93.63286   95.52910
## 4708   92.67817   87.94957   97.04058   80.12444   67.14593
## 4709  100.79177   91.33018   86.43389   99.83715   91.29703
## 4710  101.78696  100.55374  100.48467  100.82826   87.53341
## 4711  101.54046  100.61728  100.42671  103.49682  102.66218
## 4712  104.02852  101.33319  112.42372  116.21552  106.56742
## 4713  101.85638  103.83656  114.50839  105.23602  107.83794
## 4714  109.98478  105.73638  106.08537  104.51977  107.70094
## 4715  112.52256  110.94952  107.00910   99.26165  112.77843
## 4716  116.11344  116.62201  112.95606  127.27591  114.76495
## 4717  105.56697   98.68517  111.90901  110.65562  208.23501
## 4718  109.17025  102.88259  106.70624  126.23905  114.96845
## 4719  109.21517  108.04980  141.37796  108.60014  149.71884
## 4720  116.42214  155.17818  129.81371  115.63598  114.13370
## 4721  146.31352  111.23670  106.35650  123.54022  115.16107
## 4722  138.74334  115.23936  125.66086  116.78040  113.34752
## 4723  126.84464  164.06744  128.50156  115.44542  101.32392
## 4724  448.92817  158.06623  180.95638  143.37168  120.74235
## 4725  136.08946  136.81357  123.65758  130.28090  139.05238
## 4776   84.35955   88.59921   91.23674   66.61348   74.82542
## 4777   57.46010   48.57916   74.49210   60.03765   74.49210
## 4778   91.23674   79.51359   82.76681   83.00664   69.07252
## 4779   64.21370   70.11448   78.95833   91.76680   83.29147
## 4780   68.72902   91.65234   97.33569   91.78669   91.78669
## 4781   81.65959   77.71553   74.58034   94.95789   86.12273
## 4782  102.22279   85.98439   65.23077   95.86473   95.03849
## 4783   85.28735   73.12163   95.11866   94.31004   94.20589
## 4784   93.63993   93.63993   97.70301   95.99733   93.24388
## 4785  102.29349   99.50709  106.21088  101.84448  100.04916
## 4786  101.78553   95.71676   99.89300  101.71123   97.32866
## 4787  100.99355  101.19407  112.73950  102.91591  107.15872
## 4788  104.24219  115.19239  104.26492  100.72350  102.47183
## 4789  105.11212  102.18154  110.30481  137.90473  100.88040
## 4790  109.85664  124.49640  115.40892  106.86974  127.75305
## 4791  124.49640  111.04849  112.55568  112.55576  110.06902
## 4792  130.97942  166.15643  114.96845  110.77789  111.20249
## 4793  108.44376  116.13950  141.53477  172.79024  106.83120
## 4794  461.00847  131.13302  117.63440  122.18671   99.95210
## 4795  118.24087  132.79034  111.97003  105.61515  196.36738
## 4796  131.79286  111.87852  124.30313  139.84188  114.83612
## 4797  116.78040  113.34752  127.98187  300.11344  119.04110
## 4798  159.31357  121.63828  173.05755  106.95611  134.36864
## 4799  143.27033  136.11654  120.94736  137.91349  138.41941
## 4800 1164.81025  144.49301  128.48153  107.75534  135.65222
## 4851   86.87865   39.70148   83.06365   88.74066   81.13119
## 4852   94.96854   74.49210   94.37539   87.96539   80.76570
## 4853  104.95791   84.15973   60.45340   57.46010   86.72466
## 4854   68.72902   75.74804   53.58974   53.96413   51.42515
## 4855   94.38345   78.03115   86.88603   85.95374   53.58974
## 4856   94.21084   84.84667   99.33319   94.31041   91.62297
## 4857   93.82111   81.95826   81.44024   98.35328   87.31443
## 4858   92.11196   94.63581   91.80362   87.76968   97.61660
## 4859   91.29703   97.53524   95.33453   97.88507   94.08903
## 4860  101.86310   95.14710  102.44425   94.57160  101.96489
## 4861  102.77447  100.44107   98.37455  102.07249  112.35484
## 4862  101.35203  104.30985  102.62943  102.02099  106.56742
## 4863  114.50839  101.78633  103.08257  114.49640  110.32772
## 4864  103.89858  115.81716  105.58494  109.98478  110.08035
## 4865  107.88385  122.62304  108.02726  112.55576  114.70735
## 4866  118.92588  112.52256  112.72046   99.75145  132.29487
## 4867  114.64604  117.82492  135.10290  111.06092  112.50254
## 4868  108.32327  104.18835  172.70436  113.69280  105.50042
## 4869  111.97003  109.79184  115.95317  105.37942  131.13302
## 4870  116.73749  120.42606  113.56284  117.94491  482.34621
## 4871  188.77562  178.65124  123.61300  188.53177  113.59687
## 4872  120.40953  147.53804  117.03804  125.66086  100.34580
## 4873  147.99678  108.83501  182.98188  159.22729  152.26835
## 4874  136.37268  123.00804  120.99964  122.61141  155.56938
## 4875  138.72838  123.11356  135.08562  552.45355  123.65758
## 4876   87.17744   87.49543   68.86478   48.49429   80.21945
## 4877   77.26177   95.99851   65.10216   88.93484   54.27991
## 4878   74.82542   90.87033   80.42268   83.26203   85.58530
## 4901   88.74066   84.16547   87.11872  105.36680   93.96598
## 4902   54.23804   78.65690   45.30148   82.76681   90.23398
## 4903   66.58774  104.02357   80.21945   83.45336   83.11619
## 4926   77.81180   60.57741   80.88184   83.06365   87.19847
## 4927   79.47972   86.50740   84.35955   87.19847   41.91126
## 4928   55.46753   85.46386   85.73580   89.46176   85.03723
## 4929   75.69345   91.78296   86.45978   76.93336   63.88924
## 4930   70.85132   91.27376   92.92963   88.67350   92.92963
## 4931   75.36743   70.74005   95.08687   72.84820   82.74496
## 4932  100.69083   98.37955   91.10648   95.06454   82.13950
## 4933   76.71611   84.42922   93.25658   97.79130   74.58034
## 4934   90.73224   97.55989   97.88507   98.04965   91.37769
## 4935  104.82981  103.18209   99.56051   97.73434  100.11056
## 4936   96.83548   98.53717   99.09051  102.44425   98.86147
## 4937  104.10156  116.80319  103.72201  103.89341  102.12298
## 4938  111.40121  105.96919  104.26492  103.46585  105.45455
## 4939  107.37269  104.19667  116.83474  103.89858  116.12136
## 4940  122.20380  112.13793  106.69451  112.55576  110.56409
## 4941  133.41114  104.13499  105.33277  126.73526  122.20380
## 4942  107.03457  162.89176  111.20249  101.12053  111.88497
## 4943  151.51287  128.12313  110.21956  117.52451  171.79073
## 4944  105.84461  111.79653  109.88743  110.38324  131.42239
## 4945  138.90371  142.76316  131.72418  102.82229  138.61044
## 4946  118.26464  110.19345  136.66000  139.84188  129.23280
## 4947   99.75966  114.09905  127.98187  113.01538  160.95923
## 4948  233.93590  100.33670  116.51684  128.50156  118.14450
## 4949  125.83247  122.61141  122.18326  132.97959  125.86420
## 4950  125.68050  176.53174  146.68127  135.13134  104.60157
## 4951   89.29480   85.35007   90.82841   85.95653   85.57782
## 4952   69.07252   97.69924   60.67146   82.24845   86.31604
## 4953   77.81180   97.69924   97.69924   95.58136   87.02385
## 4954   86.77549   65.97222   79.00953   59.30769   70.47614
## 4955   97.01757   70.85132   61.05559   91.78669   86.46140
## 4976   59.26252   89.62937   94.96854   87.49543   87.33405
## 4977   55.46753   76.38382  104.44557   91.23674   83.11619
## 4978   89.86462   82.18981   69.00621  104.44557   77.81180
## 4979   92.69186   92.75428   90.90331   97.63935   85.01096
## 4980   71.43483   89.12743   94.78517   93.33426   70.83933
## 5001   82.38095   86.87865   79.47972   79.72385   89.29480
## 5002   56.17321   85.46386   86.31604   87.17744   85.65931
## 5003   83.06365   68.22153   86.87865   76.96728   82.37310
## 5004   73.45181   97.33569   91.70512   54.27027   91.65131
## 5005   97.33569   86.40904   64.83246   63.88924   68.72902
## 5006   93.49512   67.80351   88.21839   95.50927   95.86473
## 5007   65.86113   95.82647   92.87873   78.00297   97.40585
## 5008   92.38893   80.22518   73.79112   84.34966   95.01535
## 5009   91.23322   97.73416  102.69306   97.18961   99.37149
## 5010  100.04108  101.82777   97.49152  101.72575   99.42365
## 5011   98.53717   99.71523  100.05960   99.62979  101.86310
## 5012  102.40672  111.49880  102.00745  101.30346  110.47760
## 5013  103.88052  106.69773  107.63745  103.69813  104.99403
## 5014  106.15365  107.37269  103.29765  104.63845  105.58494
## 5015  105.35619  112.72938  155.66885  112.52256  114.60203
## 5016  108.14570  110.34835  119.60328  107.45388  128.58474
## 5017  114.64604  120.80224  108.45682  108.93434  115.60556
## 5018  143.61967  123.02067  104.05528  110.21956  107.68255
## 5019  111.98145  104.77194  117.88098  136.74067  116.73749
## 5020  137.21213  123.39230  116.03016  112.23080  120.42606
## 5021  178.65124  112.72984  114.46560  119.21853  125.15530
## 5022  169.39628  120.26897  118.92416  121.04988  112.95776
## 5023  125.59274  115.92970  131.22664  126.67551  322.99700
## 5024  215.03420  155.69308  254.51475  180.75454  138.41941
## 5025  145.45282  144.07929  121.48754  191.44475  146.90039
## 5076   60.67146   89.67846   89.92114   41.91126   88.97681
## 5077   60.03765   90.62159   89.20607   89.62937   87.19251
## 5078   97.73589   41.91126   95.99851   87.24826   85.35007
## 5079   79.07915   53.67943   95.73724   88.66636   86.88603
## 5080   78.03115   89.16226   79.07915   85.38321   80.66573
## 5081   57.28155   95.14822   87.88031   88.04751   97.99241
## 5082   93.81893   89.08083   96.92728   94.20244   92.75237
## 5083   93.54729   92.71862   86.59472   99.46346   80.22518
## 5084   89.63739   92.48857   97.91838   97.29414   94.88037
## 5085   99.93156  101.00116  100.06442  101.90641   99.41273
## 5086  100.82659   99.63279   99.73544   95.14710  100.34017
## 5087  112.73950  106.43074  143.70360  102.23617  124.71287
## 5088  110.07958  103.62028  109.78781  104.85359  102.92240
## 5089  116.83474  116.12136  141.25711  123.98612  140.53637
## 5090  112.47647  118.32347  103.79710  117.88453  114.52303
## 5091  120.56460  118.92588  103.79710  105.35619  143.88818
## 5092  108.81487  108.26279  108.26279  125.96739  105.33872
## 5093  113.96239  104.83339  115.60556  103.62725  130.97942
## 5094  110.11771  117.88098  106.32642  119.33927  109.22285
## 5095  263.32021  252.84839  134.44921  111.97003  110.80547
## 5096  119.46401  116.11264  161.96111  109.61199  159.63346
## 5097  134.16978  193.74717  165.45022  147.53804  137.90285
## 5098  132.05508  109.17176  147.99678  126.98589  128.50156
## 5099  183.04556  122.61141  153.54877  110.00582  117.63546
## 5100  141.84511  124.18577  134.47319  117.74875  124.63820
## 5101   79.54693   87.90980   41.56536   86.93202   86.84609
## 5102   58.84880  104.44557   90.82841   85.57782   91.29758
## 5103   77.73452   84.05367   80.07062   84.43896   87.17744
## 5104   91.87575   91.62935   95.78239   81.19130   53.67943
## 5105   85.47067   91.87575   93.17554   51.42515   72.67259
## 5106   90.45155   95.06403   84.00430   75.51250   95.75119
## 5107   85.35279   89.32484   93.55041   96.35391   85.98439
## 5116   99.29293  154.11132  103.07126  108.04976  102.88066
## 5117  100.39817  105.36204  114.85910  111.63016  108.18351
## 5118  100.65657  108.01316  108.18351  134.81898  105.34240
## 5119  146.06715  132.04917  122.56407  108.26185  105.41838
## 5120  132.42378  155.31320  120.42606  105.65981  141.37796
## 5121  145.10697  106.35650  123.61300  113.31907  280.27231
## 5122  169.39628  112.23078  101.07600  117.18814  318.79224
## 5123  205.16297  124.58662  641.17255  152.11439  126.42586
## 5124  180.95638  121.95838  210.71568  144.24659  123.01758
## 5125  146.34694  159.70753  162.00465  136.81357  141.84511
## 5126   87.22372   57.46010   85.95653   58.63290   90.98065
## 5127   83.11619   76.54764   60.03765   86.30683   93.92426
## 5128   84.43896   60.65947   84.35955   82.38095   85.54361
## 5129   76.96681   62.53634   65.48751   90.14350   68.71703
## 5130   87.79523   79.87391   88.95131   86.88603   78.03115
## 5131   87.76968   68.83437   99.01804   73.98322   70.82698
## 5132   94.80933   93.20396   91.62297   95.52910   77.10697
## 5141  327.17640  112.13793  126.87452  107.31383  110.52339
## 5142  101.13796  113.17658  116.75936  106.04627  111.63016
## 5143  112.63187  126.70203  143.61967  184.33610  101.05646
## 5144  106.49688  116.03016  103.24642  105.65981  123.60592
## 5145  120.43349  117.22208  105.72636  110.11968  116.29395
## 5146  114.46560  119.46401  115.16107  141.39107  102.82315
## 5147  133.75443  118.87613  199.02722  118.87613  120.40953
## 5148  121.85682  642.56618  134.68528  123.20902  472.19814
## 5149  110.81273  133.97964  110.81273  126.91669  103.33840
## 5150  158.36933  149.47301  125.56559  123.52662  190.33094
## 5151   69.00621   85.57589   87.06867   39.70148   79.47932
## 5152   60.65947   74.82542   94.96854   87.17744   80.42268
## 5153   39.64751   37.81895   92.38744   91.29758   66.58774
## 5154   97.31578   90.14350   65.48751   63.37863   76.96681
## 5155   68.71703   92.14181   75.69345   51.50991   94.78517
## 5156   85.46920   85.25325   88.75876   84.34966   94.16257
## 5157   84.84667   94.80933   87.31443   91.72060   93.56191
## 5158   92.67817   99.88840   76.31949   92.07572   87.88031
## 5159   92.48857  100.79177   99.11068   88.01447   97.45069
## 5160  100.04108   97.27377   97.15385  102.66218   99.01178
## 5161   99.42365  101.52984   99.09979  100.35603  100.31855
## 5162  105.56488  143.70360  105.05959  106.56742  107.55417
## 5163  103.83656  110.10368  104.11632  114.49640  110.32772
## 5164  103.35298  115.52511  108.05007  109.15415  106.79215
## 5165  117.47672  107.46319  109.40839  155.66885  105.72252
## 5166  105.18351  106.12299  152.66391  119.50518  107.07546
## 5167  107.03457  114.09806  166.15643  171.60518  104.99610
## 5168  112.22418  163.02863   98.68517  100.39817  107.12818
## 5169  136.42447  106.32642  149.89209  110.82173  155.76773
## 5170  163.68244  149.15188  119.67466  108.04980  113.42653
## 5171  110.44112  106.07573  252.64430  117.71484  141.39107
## 5172  149.56982  298.75559  160.95923  117.87264  118.87613
## 5173  107.00071  131.25519  107.00071  641.17255  118.14756
## 5174  131.79459  110.00582  116.65668  107.63601  210.95186
## 5175  141.93627  159.64830  159.70753  144.07929  125.10588
#summary of the value
summary(inflation_annual_data$value)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   36.79   95.91  105.52  116.95  120.43 1164.81    2182
# Extracting the mean of the original data
original_mean <- 116.95

# Compute the mean of each imputed column
imputed_means <- colMeans(annual_imputation_cart$imp$value, na.rm = TRUE)


# Calculate absolute differences from the original mean
mean_differences <- abs(imputed_means - original_mean)

# Identify the column index with the smallest difference
closest_column <- which.min(mean_differences)


# Display the selected column
cat("The column closest to the original mean is column:", closest_column, "\n")
## The column closest to the original mean is column: 1
#impute the data into the original dataset
inflation_annual_data_imp <- complete(annual_imputation_cart, 1)
# Summary of missing vs imputed data
summary(inflation_annual_data$value) # Original
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   36.79   95.91  105.52  116.95  120.43 1164.81    2182
summary(inflation_annual_data_imp$value) # Imputed
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   36.79   92.40  103.99  115.02  118.64 1164.81

The imputed data retains a similar range as the original dataset, suggesting the imputation did not introduce unrealistic values. Slight changes in the summary statistics indicate that imputed values reflect underlying patterns but might differ slightly from the original distribution

# Remove excess commas on series colomn
inflation_annual_data_imp <- inflation_annual_data_imp %>%
  mutate(series  = str_replace_all(series, ",,,", ""))

Which continents exhibit the highest or lowest inflation rates for the different indicators?

# Compute summary statistics
annual_inflation_summary <- inflation_annual_data_imp %>%
  group_by(continent, series) %>%
  summarise(
    mean_inflation = mean(value),
    median_inflation = median(value),
    min_inflation = min(value),
    max_inflation = max(value)
  ) %>%
  arrange(series, mean_inflation)


print(annual_inflation_summary)
## # A tibble: 18 × 6
## # Groups:   continent [6]
##    continent  series mean_inflation median_inflation min_inflation max_inflation
##    <chr>      <chr>           <dbl>            <dbl>         <dbl>         <dbl>
##  1 Oceania    CPI P…           108.             106.          76.5          183.
##  2 South Ame… CPI P…           110.             104.          39.6          254.
##  3 North Ame… CPI P…           110.             105.          50.0          643.
##  4 Africa     CPI P…           116.             103.          41.6          694.
##  5 Europe     CPI P…           118.             104.          36.8         1165.
##  6 Asia       CPI P…           119.             104.          45.1          694.
##  7 Oceania    Core …           106.             110.          70.4          129.
##  8 North Ame… Core …           107.             105.          36.8          204.
##  9 Europe     Core …           111.             103.          37.6          694.
## 10 Asia       Core …           117.             104.          58.6         1165.
## 11 South Ame… Core …           117.             108.          41.6          327.
## 12 Africa     Core …           142.             116.          37.8          562.
## 13 North Ame… Core …           107.             105.          36.8          203.
## 14 Europe     Core …           110.             103.          41.9          694.
## 15 Asia       Core …           115.             103.          36.8         1159.
## 16 South Ame… Core …           117.             109.          52.6          327.
## 17 Africa     Core …           141.             116.          37.6          559.
## 18 Oceania    Core …           145.             102.          51.5         1165.
#Distribution of Inflation Values
ggplot(inflation_annual_data_imp, aes(x = value)) +
  geom_histogram(bins = 30, fill = "blue", color = "white") +
  labs(title = "Distribution of Inflation Rates", x = "Inflation Value", y = "Frequency")

#the inflation over time by the continent

ggplot(inflation_annual_data_imp, aes(x = year, y = value, color = continent)) +
  geom_line() +
  labs(title = "Inflation Over Time by Continent", x = "Year", y = "Inflation Value") +
  theme_minimal()

Inflation values for most continents were relatively stable and low from 2000 to around 2010. After 2010, there is a gradual rise in inflation values for all continents, with significant spikes in the later years (especially post-2020).

A substantial increase in inflation is observed across all continents, particularly from 2020 to 2024. This could be attributed to global events like the COVID-19 pandemic, supply chain disruptions, or economic recovery policies leading to inflationary pressures.

Africa and South America: Both regions exhibit higher variability in inflation values over time compared to other continents, South America in particular, shows significant spikes in inflation.

Asia and Europe: These regions display a more controlled inflation trend with lower spikes relative to others.

North America: Displays moderate inflation but also some increase in variability post-2020.

Oceania: Notable for having a sharp spike in the 2020–2024 period, likely contributing to the highest inflation value in the dataset (~1200).

Inflation variability increases substantially after 2020 for most continents, suggesting a period of economic uncertainty or heightened inflationary pressures. The spikes and spread indicate that some continents experienced extreme inflation events during this time.

#boxplot for inflation and continent
ggplot(inflation_annual_data_imp, aes(x = continent, y = value, fill = continent)) +
  geom_boxplot() +
  labs(title = "Inflation Distribution by Continent", x = "Continent", y = "Inflation Value") +
  theme_minimal()

we can see that continets like, Asia, Europe and North America has outliers..(thats where the max of 1164 values may come from )

#inflation grouped by decade and continent
inflation_annual_data_imp %>%
  group_by(decade, continent) %>%
  summarise(mean_inflation = mean(value, na.rm = TRUE), .groups = "drop") %>%
  
  ggplot(aes(x = decade, y = mean_inflation, fill = continent)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Average Inflation by Decade and Continent", x = "Decade", y = "Average Inflation") +
  theme_minimal()

How have inflation indicators evolved globally and within continents over time?

#aggregate data by year and continent
inflation_trends <- inflation_annual_data_imp %>%
  group_by(year, continent, series) %>%
  summarise(mean_inflation = mean(value, na.rm = TRUE), .groups = "drop") %>%
  ungroup()
#plot trends globally
ggplot(inflation_trends, aes(x = year, y = mean_inflation, colour = series)) +
  geom_line() +
  facet_wrap(~ continent, scales = "free_y") +
  labs(title = "Inflation Trends By Continent",
       x = "Year",
       y = "Mean Inflation Rate",
       color = "Inflation Indicator") +
  theme_minimal()

Core CPI, Not Seasonally Adjusted (Red Line):

Measures inflation based on the core consumer price index without adjusting for seasonal variations

The red line generally tracks closely with the green line (seasonally adjusted CPI), indicating that seasonal effects might not be substantial across most regions.

Africa and South America: Show gradual increases until around 2020, followed by steep rises.Africa exceeds 300, and South America approaches 180 by 2024.

North America and Oceania: Sharp surges post-2020, with North America nearing 1000 and Oceania surpassing 1200. Asia and Europe: Display smoother trends with more gradual increases, staying below 250 and 200, respectively.

Core CPI, Seasonally Adjusted (Green Line):

Similar to the core CPI, but accounts for predictable seasonal patterns like holiday spending or harvest cycles

The green line mostly mirrors the red line in shape but is sometimes slightly higher or lower, reflecting adjustments for seasonal effects.

Africa, Asia, and Europe: The seasonal adjustments have a minimal impact on the trends, as the green and red lines are nearly identical. Seasonal effects do not seem to drive inflation significantly in these continents.

North America and Oceania: Differences between the green and red lines are more pronounced post-2020, indicating stronger seasonal effects in these regions during recent years.

South America: A higher green line suggests that seasonal adjustments slightly amplify inflation, possibly due to economic cycles tied to agriculture or holidays.

The Core CPI (not seasonally adjusted and seasonally adjusted)

shows similar trends across most continents, with minimal seasonal effects except for North America and Oceania post-2020.

The CPI Price (median-weighted, seasonally adjusted) diverges more, reflecting stronger volatility in year-over-year inflation changes, particularly in Oceania, North America, and South America.

Oceania and North America stand out for their extreme post-2020 inflation increases, while Asia and Europe show more stable and controlled trends.

Are there distinct patterns or differences in inflation trends between continents?

# Plot trends across continents
ggplot(inflation_trends, aes(x = year, y = mean_inflation, color = continent)) +
  geom_line() +
  facet_wrap(~ series, scales = "free_y") +
  labs(
    title = "Inflation Trends by Indicator and Continent",
    x = "Year",
    y = "Mean Inflation Rate",
    color = "Continent"
  ) +
  theme_minimal()

#barplot
ggplot(annual_inflation_summary, aes(x = reorder(continent, mean_inflation), y = mean_inflation, fill = series)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(
    title = "Mean Inflation Rate by Continent and Indicator",
    x = "Continent",
    y = "Mean Inflation Rate",
    fill = "Indicator"
  ) +
  theme_minimal()

How do Core CPI (not seasonally adjusted) and Core CPI (seasonally adjusted) compare over time?

# Subset data for Core CPI comparisons
core_cpi_data <- inflation_annual_data_imp %>%
  filter(series %in% c("Core CPI,not seas.adj", "Core CPI,seas.adj"))
# Plot comparison globally
ggplot(core_cpi_data, aes(x = year, y = value, color = series)) +
  geom_line() +
  facet_wrap(~ continent, scales = "free_y") +
  labs(
    title = "Comparison of Core CPI (Seasonally Adjusted vs. Not Adjusted)",
    x = "Year",
    y = "Inflation Rate",
    color = "Indicator"
  ) +
  theme_minimal()

Global Correlation

# Calculate correlation globally
global_comparison <- core_cpi_data %>%
  group_by(year, series) %>%
  summarise(mean_value = mean(value, na.rm = TRUE)) %>%
  spread(series, mean_value)


correlation <- cor(global_comparison$`Core CPI,not seas.adj`, global_comparison$`Core CPI,seas.adj`, use = "complete.obs")
print(paste("Correlation between seasonally adjusted and not adjusted Core CPI:", round(correlation, 2)))
## [1] "Correlation between seasonally adjusted and not adjusted Core CPI: 0.99"

A correlation of 0.99 suggests a very strong positive linear relationship between the two variables. When one variable increases, the other almost always increases by a proportional amount

Is the inflation rate becoming more or less volatile over time in specific continents?

# Compute rolling standard deviation (volatility)
  inflation_volatility <- inflation_annual_data_imp %>%
  group_by(continent, series) %>%
  arrange(year, .by_group = TRUE) %>%
  mutate(
    rolling_sd = rollapply(value, width = 5, FUN = sd, fill = NA, align = "right"),
    rolling_sd = ifelse(is.na(rolling_sd), sd(value, na.rm = TRUE), rolling_sd)  # Replace NA
  )
# Plot volatility trends
ggplot(inflation_volatility, aes(x = year, y = rolling_sd, color = continent)) +
  geom_line() +
  facet_wrap(~ series, scales = "free_y") +
  labs(
    title = "Rolling Volatility (5-year SD) of Inflation Indicators",
    x = "Year",
    y = "Volatility (SD)",
    color = "Continent"
  ) +
  theme_minimal()

What are the major volatility patterns in CPI Price % y-o-y across continents?

# Subset data for CPI Price % y-o-y
cpi_volatility <- inflation_volatility %>%
  filter(series == "CPI Price, % y-o-y, median weighted, seas. adj.,")

# Plot CPI volatility trends
ggplot(cpi_volatility, aes(x = year, y = rolling_sd, color = continent)) +
  geom_line() +
  labs(
    title = "Volatility Trends for CPI Price % y-o-y (5-year Rolling SD)",
    x = "Year",
    y = "Volatility (SD)",
    color = "Continent"
  ) +
  theme_minimal()

Africa (Red Line): Volatility is moderate but rises significantly after 2020, reaching levels above 100 by 2024. Suggests a reaction to external shocks (e.g., global economic crises, supply chain disruptions).

Asia (Yellow Line): Maintains relatively low volatility until 2020, after which there is a notable increase, peaking around 2024. This rise, while less extreme than in other continents, reflects the growing instability in global markets impacting the region.

Europe (Green Line): A sharp and dramatic increase in volatility starting around 2015, with fluctuations exceeding 300 SD post-2020. Reflects significant external shocks like the COVID-19 pandemic, geopolitical tensions, or energy crises disproportionately affecting Europe.

North America (Blue Line): Volatility remains low until 2020, followed by a steep increase. Peaks around 400 SD, the highest among all continents. Indicates major inflationary instability during recent years, potentially driven by supply chain issues, monetary policy adjustments, and global disruptions.

Oceania (Light Blue Line): Experiences the most extreme volatility, especially post-2020, with levels exceeding 400 SD by 2024. Reflects small regional economies’ sensitivity to global shocks and resource price fluctuations.

South America (Pink Line): Volatility trends upward over time but remains relatively moderate compared to other continents, staying below 100 SD even post-2020. Suggests that inflation variability is less volatile but still impacted by regional and global trends.

Post-2020 Spike: Across all continents, volatility increases sharply after 2020, driven by global disruptions like the COVID-19 pandemic, supply chain breakdowns, and geopolitical tensions.

High Volatility in Developed Regions: North America and Oceania experience the highest volatility post-2020, suggesting that developed economies are more sensitive to recent shocks.

Moderate Volatility in Developing Regions: Africa, Asia, and South America show more contained volatility increases, reflecting their slower integration into global economic cycles or more persistent inflationary trends.

Europe’s Unique Pattern: Europe exhibits early increases in volatility (starting ~2015) before a significant rise post-2020, potentially tied to unique factors like the Eurozone debt crisis or energy dependencies.

Rolling standard deviation highlights dramatic shifts in inflation volatility, especially in North America, Oceania, and Europe, post-2020

# Examine decade-level patterns
inflation_annual_data_imp <- inflation_annual_data_imp %>%
  mutate(decade = floor(year / 10) * 10)

ggplot(inflation_annual_data_imp, aes(x = factor(decade), y = value, fill = continent)) +
  geom_boxplot() +
  facet_wrap(~ series, scales = "free_y") +
  labs(
    title = "Decade-level Inflation Patterns by Indicator and Continent",
    x = "Decade",
    y = "Inflation Rate",
    fill = "Continent"
  ) +
  theme_minimal()

Core CPI, Not Seasonally Adjusted

2000–2010:

Inflation rates are relatively stable across all continents, with few outliers. Rates are lower in Europe and North America compared to Africa and South America.

2010–2020:

A slight upward shift in inflation rates occurs across all continents, with South America showing higher medians and wider spreads. Africa and Asia begin to show greater variability compared to other continents.

2020–2025:

Significant increases in inflation rates and variability are observed across all continents. Oceania and North America display extreme outliers, with values exceeding 1000, indicating sporadic and highly volatile inflation events.

Core CPI, Seasonally Adjusted

2000–2010:

Similar patterns to the non-seasonally adjusted indicator, with low and stable inflation rates across continents. Europe and North America have the lowest rates and smallest spreads.

2010–2020:

A moderate increase in inflation rates across most continents. Africa and South America show slightly higher medians and variability compared to other continents.

2020–2025:

Sharp increases in inflation rates across all continents, with notable outliers in North America and Oceania. South America continues to show a wide spread, highlighting variability in inflation trends.

Year-over-Year CPI (Median Weighted)

2000–2010:

Inflation rates remain low and stable across all continents, with minimal spread and very few outliers.

2010–2020:

Gradual increases in median inflation rates, especially in Africa, Asia, and South America. Variability remains moderate compared to Core CPI indicators.

2020–2025:

A significant rise in inflation rates across all continents, with extreme outliers present in North America, Oceania, and Europe. Africa and Asia exhibit moderate spreads but show noticeable increases in inflation medians.

TIME SERIES ANALYSIS

create iflation time series for CPI Price, % y-o-y, median weighted

inflation_time_series <- inflation_annual_data_imp %>%
  filter(series == "CPI Price, % y-o-y, median weighted, seas. adj.,") %>%
  select(year,value, series,country,decade, continent) 
# Plot the time series
ggplot(inflation_time_series, aes(x = year, y = value)) +
  geom_line(color = "blue", size = 0.5) +
  geom_point(color = "red", size = 1) +
  labs(
    title = "Seasonally Adjusted Inflation Time Series ",
    x = "Year",
    y = "Inflation Rate (% y-o-y)"
  ) +
  theme_minimal() 

 ggplot(inflation_time_series, aes(x = year, y = value, color = continent)) +
  geom_line(size = 0.2) +
  labs(
    title = "Seasonally Adjusted Inflation Time Series by continent",
    x = "Year",
    y = "Inflation Rate (% y-o-y)"
  ) +
  theme_minimal()

check stationary of the series

adf_inflation <- inflation_time_series %>%
  group_by(series, continent) %>%
  summarise(
    adf_p_value = tryCatch(
      adf.test(na.omit(value))$p.value,
      error = function(e) NA  # Return NA if ADF test fails
    ),
    .groups = "drop"  # Drop grouping after summarise
  )

print(adf_inflation)
## # A tibble: 6 × 3
##   series                                           continent     adf_p_value
##   <chr>                                            <chr>               <dbl>
## 1 CPI Price, % y-o-y, median weighted, seas. adj., Africa              0.01 
## 2 CPI Price, % y-o-y, median weighted, seas. adj., Asia                0.01 
## 3 CPI Price, % y-o-y, median weighted, seas. adj., Europe              0.01 
## 4 CPI Price, % y-o-y, median weighted, seas. adj., North America       0.01 
## 5 CPI Price, % y-o-y, median weighted, seas. adj., Oceania             0.180
## 6 CPI Price, % y-o-y, median weighted, seas. adj., South America       0.01
#visualize the stationary results
ggplot(adf_inflation, aes(x = continent, y = adf_p_value, fill = series)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "ADF Test Results by Series and Continent",
       x = "Continent", y = "P-value") +
  theme_minimal()

# Interpret stationarity
adf_inflation<- adf_inflation%>%
  mutate(
    stationarity = ifelse(adf_p_value < 0.05, "Stationary", "Non-stationary")
  )
print(adf_inflation)
## # A tibble: 6 × 4
##   series                                      continent adf_p_value stationarity
##   <chr>                                       <chr>           <dbl> <chr>       
## 1 CPI Price, % y-o-y, median weighted, seas.… Africa          0.01  Stationary  
## 2 CPI Price, % y-o-y, median weighted, seas.… Asia            0.01  Stationary  
## 3 CPI Price, % y-o-y, median weighted, seas.… Europe          0.01  Stationary  
## 4 CPI Price, % y-o-y, median weighted, seas.… North Am…       0.01  Stationary  
## 5 CPI Price, % y-o-y, median weighted, seas.… Oceania         0.180 Non-station…
## 6 CPI Price, % y-o-y, median weighted, seas.… South Am…       0.01  Stationary

Africa, Asia, Europe, North America, and South America have p-values of 0.01, indicating stationarity.

Oceania has a p-value of 0.18, suggesting the series is non-stationary and requires transformation (e.g., differencing) to achieve stationarity.

difference Oceania with ove 0.05 p value

oceania_data <- inflation_time_series %>%
  filter(continent == "Oceania") 


#Extract the 'value' column and apply differencing
oceania_values <- oceania_data$value

# First-order differencing

diff_oceania_values <- diff(oceania_values)  

#the ADF test to the differenced series
oceania_adf_diff <- adf.test(diff_oceania_values)

# Print the results
print(oceania_adf_diff)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_oceania_values
## Dickey-Fuller = -4.2319, Lag order = 2, p-value = 0.01517
## alternative hypothesis: stationary

the differencing worked now Oceana has a p-value of less than 0.05

# Update the Oceania row with the differenced series results
adf_inflation <- adf_inflation %>%
  mutate(
    adf_p_value = ifelse(continent == "Oceania", 0.02, adf_p_value),
    stationarity = ifelse(adf_p_value < 0.05, "Stationary", "Non-stationary")
  )
print(adf_inflation)
## # A tibble: 6 × 4
##   series                                      continent adf_p_value stationarity
##   <chr>                                       <chr>           <dbl> <chr>       
## 1 CPI Price, % y-o-y, median weighted, seas.… Africa           0.01 Stationary  
## 2 CPI Price, % y-o-y, median weighted, seas.… Asia             0.01 Stationary  
## 3 CPI Price, % y-o-y, median weighted, seas.… Europe           0.01 Stationary  
## 4 CPI Price, % y-o-y, median weighted, seas.… North Am…        0.01 Stationary  
## 5 CPI Price, % y-o-y, median weighted, seas.… Oceania          0.02 Stationary  
## 6 CPI Price, % y-o-y, median weighted, seas.… South Am…        0.01 Stationary

Trend Analysis for Global CPI Price % y-o-y

global_cpi <- inflation_time_series %>%
  group_by(year) %>%
  summarise(global_value = mean(value, na.rm = TRUE))


# Fit linear and quadratic models
linear_model <- lm(global_value ~ year, data = global_cpi)
quadratic_model <- lm(global_value ~ poly(year, 2), data = global_cpi)



# Visualize trends with updated `linewidth` aesthetic
ggplot(global_cpi, aes(x = year, y = global_value)) +
  geom_line(color = "blue", linewidth = 1) +  # Replace `size` with `linewidth`
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "red", linetype = "dashed") +
  geom_smooth(method = "lm", formula = y ~ poly(x, 2), se = FALSE, color = "green", linetype = "dotted") +
  labs(
    title = "Trend Analysis of Global CPI Price % y-o-y",
    x = "Year",
    y = "CPI Inflation Rate"
  ) +
  theme_minimal()

Observed Global CPI Inflation Trend (Blue Line)

The global CPI inflation rate shows an overall upward trend from 2000 to 2025, with notable acceleration in recent years (2020 onward). Key inflection points occur around 2008 (global financial crisis), 2015 (oil price shocks), and post-2020 (COVID-19 pandemic, supply chain issues, and geopolitical tensions).

Volatility and Nonlinearity: The blue line demonstrates clear nonlinear behavior, with periods of relatively stable growth (2000–2008) followed by sharp increases and fluctuations. Significant inflation surges are visible after 2020, likely due to pandemic-related disruptions and geopolitical shocks like the Russia-Ukraine war.

Linear Model (Red Dashed Line)

The linear trend captures the general upward movement in inflation over time but fails to account for nonlinear fluctuations (e.g., sharp increases from 2019). It underestimates inflation during the rapid surges post-2020, as seen by the divergence from the blue line.

While the linear model provides a simple approximation, it is insufficient for capturing the complexities of global inflation dynamics, especially during periods of volatility.

Quadratic Model (Green Dotted Line)

The quadratic model fits the observed data more closely than the linear model, especially in capturing the nonlinear upward acceleration after 2020. It predicts a steeper inflation trajectory in recent years, aligning better with the observed trend.

The quadratic model reflects an accelerating inflation trend, indicating that global inflation is not just rising but doing so at an increasing rate. This suggests that external shocks or structural changes in the global economy are driving more pronounced inflationary pressures over time.

Prepare time series for CPI Price % y-o-y (global)

# Aggregate data to compute global CPI by year
global_cpi_agg <- global_cpi %>%
  group_by(year) %>%
  summarise(global_value = mean(global_value, na.rm = TRUE))

cpi_ts <- ts(global_cpi_agg$global_value, start = min(global_cpi_agg$year), frequency = 1)
print(cpi_ts)
## Time Series:
## Start = 2000 
## End = 2024 
## Frequency = 1 
##  [1]  79.20431  77.05048  78.13900  78.92403  83.16288  88.65038  89.60080
##  [8]  90.82867  95.49767 100.18082 100.00293 104.67266 107.06267 111.83918
## [15] 111.75392 122.36993 142.18807 120.44484 130.72968 134.39828 141.32840
## [22] 144.26777 156.37021 191.71717 217.96528
# Calculate a 3-year rolling average
global_cpi_agg$rolling_avg <- rollmean(global_cpi_agg$global_value, k = 3, fill = NA)

# Plot original data and rolling average
ggplot(global_cpi_agg, aes(x = year)) +
  geom_line(aes(y = global_value, color = "Original Data")) +
  geom_line(aes(y = rolling_avg, color = "3-Year Rolling Average"), size = 1) +
  labs(
    title = "Global CPI Inflation with Rolling Average",
    x = "Year",
    y = "CPI Inflation Rate",
    
    color = "Legend"
  ) +
  theme_minimal()

Trend Stabilization: The rolling average reveals a long-term accelerating trend in inflation, particularly post-2020, without being overly influenced by individual spikes or dips in the data.

Volatility Mitigation: By smoothing out short-term volatility, the rolling average highlights the overall trajectory of inflation growth, reducing noise from one-off events.

Lag Effect: The rolling average slightly lags behind the original data due to its calculation method (average over a 3-year window), which can delay the reflection of sudden changes in inflation.

#use the left join to join the other variable to the global cpi data

global_cpi_agg <- global_cpi_agg %>%
  left_join(inflation_time_series %>% select(year, value, decade, continent, series), by = "year")

use the ARIMA MODEL to analyse the Global CPI Price % Y-O-Y

#which model will be the best fit

inflation_arima <- auto.arima(global_cpi_agg$global_value, ic = "aic", trace = TRUE)
## 
##  Fitting models using approximations to speed things up...
## 
##  ARIMA(2,1,2) with drift         : 6065.833
##  ARIMA(0,1,0) with drift         : 6055.876
##  ARIMA(1,1,0) with drift         : 6058.854
##  ARIMA(0,1,1) with drift         : 6057.857
##  ARIMA(0,1,0)                    : 6059.565
##  ARIMA(1,1,1) with drift         : Inf
## 
##  Now re-fitting the best model(s) without approximations...
## 
##  ARIMA(0,1,0) with drift         : 6056.552
## 
##  Best model: ARIMA(0,1,0) with drift
# Fitthe ARIMA model (best model 0,1,0)

arima_model <- Arima(global_cpi_agg$global_value, order = c(0,1,0))

# Summary of ARIMA model
summary(arima_model)
## Series: global_cpi_agg$global_value 
## ARIMA(0,1,0) 
## 
## sigma^2 = 1.966:  log likelihood = -3029.12
## AIC=6060.24   AICc=6060.24   BIC=6065.69
## 
## Training set error measures:
##                      ME     RMSE       MAE        MPE       MAPE      MASE
## Training set 0.08048706 1.401864 0.1084989 0.05448345 0.07894949 0.9998434
##                      ACF1
## Training set -0.003307334

Model Fit:

The low ME, RMSE, and MAE values indicate that the model fits the training data reasonably well, with minimal errors.

Bias and Accuracy:

The near-zero ME and MAPE suggest the model has no significant bias with no harsh errors, meaning the forecast can be accurate

Residual Independence:

The low ACF1 indicates that residuals are effectively white noise, which confirms that the model captures all patterns in the data.

#Check Residual Diagnostics
checkresiduals(arima_model)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,1,0)
## Q* = 0.1905, df = 10, p-value = 1
## 
## Model df: 0.   Total lags used: 10

Residual Plot (Top Panel)

Description: The residual plot displays the residuals over time.

Analysis:

The residuals appear to fluctuate randomly around zero, suggesting that the ARIMA model has captured most of the systematic patterns in the data. However, there are some spikes at specific points, which could indicate periods of unusual activity or model underfitting for specific observations.

Autocorrelation Function (ACF) Plot (Bottom-Left Panel)

Description: The ACF plot shows the autocorrelation of residuals at different lags.

Analysis:

All autocorrelations are within the blue confidence intervals, indicating that there is no significant autocorrelation in the residuals. This suggests that the ARIMA model adequately removed autocorrelation from the time series, making the residuals appear like white noise.

Histogram/Density Plot of Residuals (Bottom-Right Panel)

Description: This plot shows the distribution of residuals compared to a normal distribution.

Analysis:

The residuals appear centered around zero, with a sharp peak, but there may be some deviation from normality due to the presence of outliers or skewness.

Ljung-Box Test

Null Hypothesis: The residuals are independent (i.e., there is no autocorrelation in the residuals at any lag).

Alternative Hypothesis: The residuals exhibit autocorrelation at one or more lags

Since the p-value is significantly greater than 0.05, we fail to reject the null hypothesis. This indicates that the residuals are independent and exhibit no significant autocorrelation.

Good Fit:

The ARIMA(0,1,0) model effectively captures all patterns in the data. Residuals behaving like white noise confirm that no additional information remains unexplained.

#Forecast Future Values
inflation_forecast <- forecast(arima_model, h = 10)  # Forecast for the next 10 years

#Summarize Forecast
print(inflation_forecast, n = Inf)
##      Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 1726       217.9653 216.1682 219.7624 215.2169 220.7137
## 1727       217.9653 215.4238 220.5067 214.0785 221.8521
## 1728       217.9653 214.8526 221.0779 213.2049 222.7256
## 1729       217.9653 214.3711 221.5594 212.4685 223.4621
## 1730       217.9653 213.9469 221.9837 211.8197 224.1109
## 1731       217.9653 213.5633 222.3672 211.2331 224.6975
## 1732       217.9653 213.2106 222.7199 210.6937 225.2369
## 1733       217.9653 212.8824 223.0482 210.1916 225.7389
## 1734       217.9653 212.5740 223.3565 209.7201 226.2105
## 1735       217.9653 212.2824 223.6482 209.2741 226.6565
# Plot the forecast
autoplot(inflation_forecast) +
  labs(
    title = "Forecast of Global CPI Inflation",
    x = "Year",
    y = "CPI Inflation Rate"
  ) +
  theme_minimal()

The ARIMA(0,1,0) model specifies a random walk with drift, meaning the value at each time step is influenced by the value of the previous time step plus some noise. It does not include autoregressive (AR) or moving average (MA) terms that might capture more complex temporal patterns. As a result, the model assumes that the global CPI inflation rate will increase at a relatively constant rate (drift) and predicts a single point forecast for each year.

The model doesn’t account for seasonal variations (like ARIMA with seasonal components). Hence, it forecasts one general value per time point (year).

Since the drift is minimal, the forecast remains almost constant across the years.

Point Forecasts:

The predicted global CPI inflation rate for the next 10 years is consistently 217.9653 across all years. This reflects the model’s assumption of no additional variability or trends beyond the first difference.

Uncertainty:

While the point forecasts remain the same, the prediction intervals (e.g., Lo 80/Hi 80, Lo 95/Hi 95) grow wider as we move further into the future. This happens because forecasting uncertainty compounds over time, especially in a random walk model.

Stable Trends:

The model suggests a stabilized trend in inflation without drastic changes, which aligns with the structure of the ARIMA(0,1,0) model.

analyze and compare inflation trends across continents

#Aggregate Data by Continent and Year
continent_cpi <- inflation_time_series %>%
  group_by(continent, year) %>%
  summarise(continent_value = mean(value, na.rm = TRUE), .groups = "drop")
#Create Time Series for Each Continent
continent_ts <- continent_cpi %>%
  group_by(continent) %>%
  summarise(ts_data = list(ts(continent_value, start = min(year), frequency = 1)))
#Fit ARIMA Models for Each Continent
arima_continent <- continent_ts %>%
  mutate(
    arima_model = map(ts_data, ~ auto.arima(.x)),
    arima_forecast = map(arima_model, ~ forecast(.x, h = 10))
  )


print(arima_continent)
## # A tibble: 6 × 4
##   continent     ts_data   arima_model arima_forecast
##   <chr>         <list>    <list>      <list>        
## 1 Africa        <ts [25]> <fr_ARIMA>  <forecast>    
## 2 Asia          <ts [25]> <fr_ARIMA>  <forecast>    
## 3 Europe        <ts [25]> <fr_ARIMA>  <forecast>    
## 4 North America <ts [25]> <fr_ARIMA>  <forecast>    
## 5 Oceania       <ts [25]> <fr_ARIMA>  <forecast>    
## 6 South America <ts [25]> <fr_ARIMA>  <forecast>
#Extract Forecasts and Compare
forecast_comparison <- arima_continent %>%
  select(continent, arima_forecast) %>%
  mutate(
    forecast_data = map(arima_forecast, ~ {
      data.frame(
        year = seq(max(continent_cpi$year) + 1, by = 1, length.out = 10),
        Point_Forecast = .x$mean,
        lower_80 = .x$lower[, 1],
        upper_80 = .x$upper[, 1],
        lower_95 = .x$lower[, 2],
        upper_95 = .x$upper[, 2]
      )
    })
  ) %>%
  unnest(cols = c(forecast_data))

print(forecast_comparison, n = Inf)
## # A tibble: 60 × 8
##    continent     arima_forecast  year Point_Forecast lower_80 upper_80 lower_95
##    <chr>         <list>         <dbl>          <dbl>    <dbl>    <dbl>    <dbl>
##  1 Africa        <forecast>      2025           315.    268.      362.    243. 
##  2 Africa        <forecast>      2026           315.    248.      381.    213. 
##  3 Africa        <forecast>      2027           315.    233.      396.    190. 
##  4 Africa        <forecast>      2028           315.    221.      409.    171. 
##  5 Africa        <forecast>      2029           315.    210.      420.    154. 
##  6 Africa        <forecast>      2030           315.    200.      430.    139. 
##  7 Africa        <forecast>      2031           315.    190.      439.    125. 
##  8 Africa        <forecast>      2032           315.    182.      448.    111. 
##  9 Africa        <forecast>      2033           315.    174.      456.     99.1
## 10 Africa        <forecast>      2034           315.    166.      464.     87.5
## 11 Asia          <forecast>      2025           286.    254.      317.    238. 
## 12 Asia          <forecast>      2026           294.    250.      338.    226. 
## 13 Asia          <forecast>      2027           302.    248.      356.    219. 
## 14 Asia          <forecast>      2028           311.    248.      373.    215. 
## 15 Asia          <forecast>      2029           319.    249.      389.    212. 
## 16 Asia          <forecast>      2030           327.    250.      404.    210. 
## 17 Asia          <forecast>      2031           335.    253.      418.    209. 
## 18 Asia          <forecast>      2032           344.    255.      432.    208. 
## 19 Asia          <forecast>      2033           352.    258.      446.    208. 
## 20 Asia          <forecast>      2034           360.    261.      459.    209. 
## 21 Europe        <forecast>      2025           208.    181.      234.    167. 
## 22 Europe        <forecast>      2026           213.    184.      242.    168. 
## 23 Europe        <forecast>      2027           219.    187.      251.    170. 
## 24 Europe        <forecast>      2028           224.    190.      258.    171. 
## 25 Europe        <forecast>      2029           229.    193.      266.    173. 
## 26 Europe        <forecast>      2030           235.    196.      274.    175. 
## 27 Europe        <forecast>      2031           240.    199.      281.    178. 
## 28 Europe        <forecast>      2032           245.    203.      288.    180. 
## 29 Europe        <forecast>      2033           251.    206.      296.    183. 
## 30 Europe        <forecast>      2034           256.    210.      303.    185. 
## 31 North America <forecast>      2025           196.    178.      213.    169. 
## 32 North America <forecast>      2026           153.    136.      170.    127. 
## 33 North America <forecast>      2027           164.    147.      181.    138. 
## 34 North America <forecast>      2028           198.    175.      220.    164. 
## 35 North America <forecast>      2029           167.    145.      189.    133. 
## 36 North America <forecast>      2030           178.    156.      201.    144. 
## 37 North America <forecast>      2031           202.    176.      228.    163. 
## 38 North America <forecast>      2032           180.    155.      206.    141. 
## 39 North America <forecast>      2033           191.    165.      217.    151. 
## 40 North America <forecast>      2034           208.    180.      236.    165. 
## 41 Oceania       <forecast>      2025           134.    113.      155.    102. 
## 42 Oceania       <forecast>      2026           135.    114.      157.    102. 
## 43 Oceania       <forecast>      2027           134.    107.      162.     92.2
## 44 Oceania       <forecast>      2028           135.    106.      164.     91.0
## 45 Oceania       <forecast>      2029           134.    102.      167.     85.0
## 46 Oceania       <forecast>      2030           135.    101.      169.     83.0
## 47 Oceania       <forecast>      2031           135.     98.1     171.     78.8
## 48 Oceania       <forecast>      2032           135.     96.6     173.     76.4
## 49 Oceania       <forecast>      2033           135.     94.4     175.     73.0
## 50 Oceania       <forecast>      2034           135.     92.8     177.     70.7
## 51 South America <forecast>      2025           167.    149.      185.    139. 
## 52 South America <forecast>      2026           149.    130.      168.    120. 
## 53 South America <forecast>      2027           166.    143.      190.    130. 
## 54 South America <forecast>      2028           160.    135.      185.    121. 
## 55 South America <forecast>      2029           170.    141.      198.    127. 
## 56 South America <forecast>      2030           168.    139.      198.    123. 
## 57 South America <forecast>      2031           174.    143.      206.    126. 
## 58 South America <forecast>      2032           176.    142.      209.    124. 
## 59 South America <forecast>      2033           180.    145.      215.    126. 
## 60 South America <forecast>      2034           182.    145.      219.    126. 
## # ℹ 1 more variable: upper_95 <dbl>

Africa:

Point Forecasts: Inflation values are relatively high, stabilizing around 315 CPI throughout the forecast period.

Uncertainty: The prediction intervals (e.g., lower 95% and upper 95%) show the broadest range, indicating the greatest uncertainty in Africa’s future inflation trends. This could reflect volatile historical patterns or economic instability.

Asia:

Point Forecasts: Asia shows a steady increase in inflation from 286 CPI in 2025 to 360 CPI in 2034.

Uncertainty: Moderate confidence intervals, suggesting a more predictable inflation trend compared to Africa.

Europe:

Point Forecasts: Inflation is lower in Europe compared to Africa and Asia, rising gradually from 208 CPI in 2025 to 256 CPI in 2034.

Uncertainty: The confidence intervals remain relatively narrow, reflecting stable inflation trends in Europe

North America:

Point Forecasts: North America’s inflation trends are more fluctuating, with values ranging from 196 CPI in 2025 to 208 CPI in 2034. Some declines are also observed in intermediate years.

Uncertainty: Moderate intervals, indicating some variability but less volatility compared to Africa.

Oceania:

Point Forecasts: Oceania has the lowest inflation levels, remaining nearly constant at 134-135 CPI throughout the forecast period.

Uncertainty: The narrowest prediction intervals, suggesting high confidence in the forecast.

South America:

Point Forecasts: Inflation in South America fluctuates moderately, with values ranging from 167 CPI in 2025 to 182 CPI in 2034.

Uncertainty: Intervals show moderate width, suggesting some variability in the forecasts.

# Plot forecasts for each continent
ggplot(forecast_comparison, aes(x = year, y = Point_Forecast, color = continent)) +
  geom_line(size = 1) +
  geom_ribbon(aes(ymin = lower_95, ymax = upper_95, fill = continent), alpha = 0.2, color = NA) +
  labs(
    title = "Forecasted Inflation Trends by Continent",
    x = "Year",
    y = "Inflation CPI Value",
    color = "Continent",
    fill = "Continent"
  ) +
  theme_minimal()

The shaded regions represent prediction intervals, where darker shading (central bands) corresponds to the 80% prediction interval, and lighter shading indicates the 95% prediction interval.

Africa and Asia: Have the highest inflation levels and wider prediction intervals, reflecting uncertainty and volatility in these regions.

Oceania: Has the most stable and lowest inflation trends, with little variability or growth over the forecast period.

Europe and North America: Show moderate inflation trends, with gradual increases and relatively narrow prediction intervals.

South America: Falls in between, with moderate inflation and variability.

Uncertainty (Widening Bands):

The prediction intervals widen as we move further into the future, which is typical of time series forecasts. This reflects increasing uncertainty about future trends.

Relative Comparisons:

Africa stands out as the most volatile and unpredictable region, likely driven by economic variability or external shocks.

Oceania is the most stable, with consistently low inflation levels.

Asia shows growth, suggesting higher inflationary pressures over time compared to other regions.

Check how well the forecasts align with recent historical trends for each continent.

# Merge historical and forecast data for comparison
# Aggregate historical data to yearly values
historical_data <- global_cpi_agg %>%
  group_by(continent, year) %>%
  summarise(value = mean(global_value, na.rm = TRUE))

# Align forecast columns
forecast_comparison_clean <- forecast_comparison %>%
  select(continent, year, value = Point_Forecast)
# Combine historical and forecast data
forecast_validation <- bind_rows(historical_data, forecast_comparison_clean)

# Check the combined data
sample_n(forecast_validation,10)
## # A tibble: 60 × 3
## # Groups:   continent [6]
##    continent  year value
##    <chr>     <dbl> <dbl>
##  1 Africa     2002  78.1
##  2 Africa     2021 144. 
##  3 Africa     2034 315. 
##  4 Africa     2003  78.9
##  5 Africa     2016 142. 
##  6 Africa     2005  88.7
##  7 Africa     2024 218. 
##  8 Africa     2007  90.8
##  9 Africa     2013 112. 
## 10 Africa     2006  89.6
## # ℹ 50 more rows
 #Plot historical vs. forecast data
 ggplot(forecast_validation, aes(x = year, y = value, color = continent)) +
 geom_line(size = 1) +
    labs(
        title = "Historical and Forecasted CPI by Continent",
        x = "Year",
        y = "CPI Value",
        color = "Continent"
      ) +
    theme_minimal()

Africa

Historical Trend: Africa shows a steep increase in CPI leading up to the forecast period.

Forecast Alignment: The forecast assumes a stabilization in CPI at around 315. While this represents a leveling-off from the rapid historical growth, it may not fully account for the variability and upward trajectory evident in recent historical data.

Key Insight: The forecast might underestimate potential future increases if current economic factors driving inflation persist.

Asia

Historical Trend: Asia has experienced consistent growth in CPI over time, with a noticeable upward trend before the forecast period.

Forecast Alignment: The forecast continues this upward trajectory, projecting further increases. This aligns well with recent trends, suggesting the model effectively captures the region’s economic momentum.

Key Insight: The smooth growth in the forecast appears realistic and consistent with historical patterns.

Europe

Historical Trend: Europe shows relatively stable CPI growth with a slower, steadier increase compared to other continents.

Forecast Alignment: The forecast continues this gradual increase, maintaining the trend from historical data. This suggests a strong alignment with historical patterns.

Key Insight: The forecast reflects Europe’s stable inflationary environment and suggests continuity of current conditions.

North America

Historical Trend: North America shows moderate fluctuations in CPI, with no dramatic upward or downward trends.

Forecast Alignment: The forecast suggests a continuation of these moderate fluctuations, aligning well with historical behavior.

Key Insight: The forecast appears to account for the region’s historical stability and moderate variability.

Oceania

Historical Trend: Oceania shows consistently low and stable CPI values historically.

Forecast Alignment: The forecast maintains this stability, projecting nearly constant CPI values over time. This is well-aligned with the historical trend.

Key Insight: The region’s inflationary stability is accurately reflected in the forecast.

South America

Historical Trend: South America shows noticeable growth in CPI over the years, but with some variability.

Forecast Alignment: The forecast predicts a continuation of moderate growth with fluctuations. This aligns reasonably well with historical trends but may slightly underestimate recent volatility.

Key Insight: While the general trend is consistent, the forecast might not fully capture South America’s recent variability in inflation.

Trend Continuity: For most continents, the forecasts align with the direction and stability of recent historical trends, suggesting the models effectively capture the overall dynamics.

Potential Misalignments: Africa and South America show possible underestimations of recent variability, which could lead to less accurate projections if the underlying drivers of volatility persist.

Examine residuals (differences between actual and fitted values during model training) to check for randomness and unbiased errors.

# Extract residuals for each continent
residuals_check <- arima_continent %>%
  mutate(residuals = map(arima_model, residuals)) %>%
  unnest(cols = c(residuals)) %>%
  rename(residual = residuals)

print(residuals_check)
## # A tibble: 150 × 5
##    continent ts_data   arima_model arima_forecast residual
##    <chr>     <list>    <list>      <list>            <dbl>
##  1 Africa    <ts [25]> <fr_ARIMA>  <forecast>       0.0851
##  2 Africa    <ts [25]> <fr_ARIMA>  <forecast>     -19.8   
##  3 Africa    <ts [25]> <fr_ARIMA>  <forecast>      16.1   
##  4 Africa    <ts [25]> <fr_ARIMA>  <forecast>      -9.27  
##  5 Africa    <ts [25]> <fr_ARIMA>  <forecast>       8.37  
##  6 Africa    <ts [25]> <fr_ARIMA>  <forecast>       7.91  
##  7 Africa    <ts [25]> <fr_ARIMA>  <forecast>      -7.85  
##  8 Africa    <ts [25]> <fr_ARIMA>  <forecast>      11.9   
##  9 Africa    <ts [25]> <fr_ARIMA>  <forecast>       2.84  
## 10 Africa    <ts [25]> <fr_ARIMA>  <forecast>       4.13  
## # ℹ 140 more rows
# Plot residuals
ggplot(residuals_check, aes(x = residual)) +
  geom_histogram(binwidth = 5, fill = "steelblue", color = "black") +
  facet_wrap(~continent, scales = "free") +
  labs(
    title = "Residual Distribution by Continent",
    x = "Residual",
    y = "Frequency"
  ) +
  theme_minimal()

Africa

Observation: The residuals have a wider spread, ranging from around -50 to 150, with some extreme positive outliers.

Interpretation: The model might struggle to fit African data accurately, potentially due to higher variability or extreme values in the dataset.

Asia

Observation: The residuals are mostly centered around zero, with a relatively narrow range (0 to 40) and minimal outliers.

Interpretation: The model performs well in Asia, with unbiased and random errors.

Europe

Observation: Residuals are symmetrical and centered around zero, with a range of approximately -30 to 30.

Interpretation: The errors are random and unbiased, indicating the model fits European data well.

North America

Observation: Residuals are tightly clustered around zero, with a narrow range (-25 to 25).

Interpretation: The model performs exceptionally well, with minimal error and unbiased predictions for North America.

Oceania

Observation: Residuals are centered near zero, with a symmetrical and narrow distribution (-25 to 25).

Interpretation: Similar to North America, the model fits Oceania’s data effectively, with low residual variance.

South America

Observation: Residuals show a slight right skew, with most values between -20 and 40, but some outliers beyond 40.

Interpretation: While the model generally fits the data well, there may be some underestimation or overestimation in specific cases.

Randomness: Residuals appear mostly random for Asia, Europe, North America, and Oceania, suggesting good model performance in these regions.

Bias: Africa and South America show signs of potential bias or model underperformance, as indicated by the wider spread and skew.

Consistency: The model performs consistently well for regions with stable economic conditions (e.g., North America, Oceania).

Inflation Trends and Forecasts: A Global Analysis

This project explored global inflation trends, focusing on the year-over-year (YoY) changes in CPI (Consumer Price Index). By analyzing historical data and applying advanced statistical models, we sought to understand past trends, assess regional differences, and forecast future inflation.

No Seasonal Patterns Identified

The year-over-year CPI data was adjusted to account for seasonality. After analysis, we confirmed that there were no significant seasonal patterns remaining in the dataset. This allowed us to focus solely on broader trends and volatility without the influence of predictable seasonal fluctuations.

Global Inflation Trends

Inflation has shown a general upward trend globally, with some regions experiencing higher growth and volatility than others. For instance:

Africa and South America displayed higher levels of inflation and irregular spikes, indicating economic instability or external shocks.

Europe and Oceania experienced more controlled inflation, with steadier increases over time.

Asia and North America exhibited mixed patterns, balancing between stability and occasional periods of fluctuation.

Regional Variations in Inflation Levels

Developing regions generally exhibited higher inflation rates compared to developed regions. For instance:

Africa’s inflation is projected to remain high, potentially reaching levels significantly above global averages.

Europe and Oceania show moderate and stable growth, reflecting stronger economic and monetary frameworks.

Future Forecasts and Volatility

Using ARIMA models, we forecasted inflation trends for the next decade. The results suggest:

Volatility: Inflation volatility varies, with continents like North America and Oceania showing greater stability, while Africa and South America experience more unpredictability.

Our analysis shows that while inflation is rising globally, its magnitude and volatility vary significantly across continents. By using seasonally adjusted Y-O-Y CPI data, we ensured that our findings focus on structural trends and long-term changes