## [1] 248
##
## custom man woman
## 3.278689 36.885246 59.836066
##
## asian black latin other white
## 10.245902 3.278689 6.557377 3.278689 76.639344
## Warning in describeBy(d$income): no grouping variable requested
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 240 12.67 5.43 16 13.57 1.48 1 17 16 -1.13 -0.19 0.35
## Warning in describeBy(d$age): no grouping variable requested
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 242 18.84 1.07 19 18.66 1.48 18 25 7 1.63 4.16 0.07
## Warning in describeBy(d$climateBelief.0): no grouping variable requested
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 244 2.47 1.06 3 2.73 0 -3 3 6 -3.07 10.96 0.07
## Warning in describeBy(d$NFC): no grouping variable requested
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 244 0.65 0.91 0.67 0.66 0.74 -2.67 3 5.67 -0.21 0.55 0.06
##
## Democrat Independent Republican
## 164 15 46
##
## -3 -2 -1 0 1 2 3
## 13 24 33 68 57 37 12
## [1] 0.192623
## [1] 1.504379
## [1] 0.192623
## [1] 1.504379
##
## -3 -2 -1 0 1 2 3
## 13 24 33 68 57 37 12
##
## -3 -2 -1 0 1 2 3
## 72 64 28 15 20 22 4
## [1] -1.315556
## [1] 1.750759
##
## -3 -2.66666666666667 -2.33333333333333 -2
## 11 9 12 32
## -1.66666666666667 -1.33333333333333 -1 -0.666666666666667
## 19 15 26 16
## -0.333333333333333 0 0.333333333333333 0.666666666666667
## 19 37 5 12
## 1 1.33333333333333 1.66666666666667 2
## 11 7 7 6
## [1] -0.7786885
## [1] 1.276291
##
## Pearson's product-moment correlation
##
## data: d$partyCont and d$ideology
## t = 20.456, df = 220, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7587967 0.8505828
## sample estimates:
## cor
## 0.809582
##
## control high low noMedia
## 160 31 24 33
## # A tibble: 4 × 7
## condition M_biasAvg SD_biasAvg M_biasSD SD_biasSD M_tally SD_tally
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 control -0.07 0.11 0.65 0.37 7.04 3.91
## 2 high -0.07 0.06 0.29 0.19 6.39 2.76
## 3 low -0.07 0.13 0.39 0.25 7.21 3.09
## 4 noMedia NaN NA NaN NA 0 0
## Warning: Removed 11 rows containing missing values or values outside the scale range
## (`geom_bar()`).
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_bar()`).
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_bar()`).
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'partyCont'. You can override using the
## `.groups` argument.
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'partyCont'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'partyCont'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'party_factor'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'partyCont'. You can override using the
## `.groups` argument.
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| trustSci | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.46 | 0.21 – 0.70 | <0.001 |
| txVcontrol | 0.31 | -0.08 – 0.71 | 0.120 |
| hiVlow | -0.31 | -0.80 – 0.19 | 0.224 |
| politics z | -0.30 | -0.50 – -0.11 | 0.002 |
| NFC z | 0.09 | -0.09 – 0.27 | 0.308 |
| income z | 0.06 | -0.10 – 0.22 | 0.441 |
| MvOther | -0.12 | -0.44 – 0.21 | 0.480 |
| white 5 | 0.31 | -0.18 – 0.80 | 0.214 |
| txVcontrol × politics z | 0.15 | -0.16 – 0.46 | 0.331 |
| txVcontrol × NFC z | 0.05 | -0.23 – 0.33 | 0.717 |
| txVcontrol × income z | -0.01 | -0.27 – 0.24 | 0.931 |
| txVcontrol × MvOther | 0.05 | -0.48 – 0.58 | 0.853 |
| txVcontrol × white 5 | -0.34 | -1.12 – 0.44 | 0.386 |
| hiVlow × politics z | -0.00 | -0.57 – 0.56 | 0.999 |
| hiVlow × NFC z | 0.30 | -0.22 – 0.82 | 0.260 |
| hiVlow × income z | -0.04 | -0.50 – 0.43 | 0.882 |
| hiVlow × MvOther | 0.90 | -0.05 – 1.84 | 0.062 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.182 / 0.104 | ||
| confPresident | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.31 | 3.02 – 3.60 | <0.001 |
| txVcontrol | 0.12 | -0.25 – 0.49 | 0.523 |
| hiVlow | 0.26 | -0.40 – 0.92 | 0.433 |
| politics z | 0.66 | 0.47 – 0.86 | <0.001 |
| NFC z | 0.10 | -0.06 – 0.25 | 0.232 |
| income z | 0.02 | -0.14 – 0.18 | 0.829 |
| MvOther | -0.15 | -0.49 – 0.19 | 0.377 |
| white 5 | -0.14 | -0.60 – 0.33 | 0.561 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.254 / 0.224 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| confCongress | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.81 | 3.36 – 4.26 | <0.001 |
| txVcontrol | -0.30 | -1.02 – 0.41 | 0.402 |
| hiVlow | 0.12 | -0.77 – 1.01 | 0.794 |
| politics z | 0.31 | -0.04 – 0.66 | 0.086 |
| NFC z | 0.09 | -0.24 – 0.41 | 0.600 |
| income z | -0.11 | -0.40 – 0.18 | 0.445 |
| MvOther | 0.02 | -0.57 – 0.60 | 0.953 |
| white 5 | -0.09 | -0.97 – 0.79 | 0.840 |
| txVcontrol × politics z | -0.20 | -0.76 – 0.37 | 0.492 |
| txVcontrol × NFC z | -0.18 | -0.69 – 0.33 | 0.487 |
| txVcontrol × income z | 0.30 | -0.16 – 0.77 | 0.197 |
| txVcontrol × MvOther | 0.11 | -0.84 – 1.07 | 0.817 |
| txVcontrol × white 5 | -0.01 | -1.42 – 1.40 | 0.989 |
| hiVlow × politics z | -1.19 | -2.22 – -0.17 | 0.022 |
| hiVlow × NFC z | -0.21 | -1.16 – 0.73 | 0.659 |
| hiVlow × income z | 0.60 | -0.24 – 1.45 | 0.159 |
| hiVlow × MvOther | -0.50 | -2.21 – 1.20 | 0.560 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.087 / 0.000 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| confSupremeCourt | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.91 | 3.52 – 4.30 | <0.001 |
| txVcontrol | -1.00 | -1.62 – -0.37 | 0.002 |
| hiVlow | 0.05 | -0.73 – 0.82 | 0.906 |
| politics z | 0.40 | 0.10 – 0.71 | 0.010 |
| NFC z | 0.11 | -0.17 – 0.39 | 0.442 |
| income z | -0.02 | -0.27 – 0.23 | 0.886 |
| MvOther | -0.18 | -0.68 – 0.33 | 0.498 |
| white 5 | -0.41 | -1.18 – 0.36 | 0.291 |
| txVcontrol × politics z | -0.22 | -0.71 – 0.27 | 0.377 |
| txVcontrol × NFC z | -0.28 | -0.72 – 0.17 | 0.218 |
| txVcontrol × income z | 0.23 | -0.18 – 0.63 | 0.271 |
| txVcontrol × MvOther | -0.27 | -1.10 – 0.56 | 0.527 |
| txVcontrol × white 5 | 1.73 | 0.51 – 2.96 | 0.006 |
| hiVlow × politics z | -1.22 | -2.11 – -0.33 | 0.008 |
| hiVlow × NFC z | -0.26 | -1.08 – 0.56 | 0.536 |
| hiVlow × income z | 0.37 | -0.37 – 1.10 | 0.326 |
| hiVlow × MvOther | -0.32 | -1.80 – 1.16 | 0.672 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.206 / 0.130 | ||
| confMilitary | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.24 | 3.91 – 4.56 | <0.001 |
| txVcontrol | 0.14 | -0.28 – 0.56 | 0.519 |
| hiVlow | 0.39 | -0.35 – 1.14 | 0.302 |
| politics z | 0.52 | 0.30 – 0.74 | <0.001 |
| NFC z | 0.16 | -0.01 – 0.34 | 0.072 |
| income z | 0.09 | -0.09 – 0.27 | 0.301 |
| MvOther | -0.16 | -0.54 – 0.23 | 0.418 |
| white 5 | 0.47 | -0.05 – 0.99 | 0.079 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.185 / 0.153 | ||
| confDOJ | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.60 | 3.30 – 3.90 | <0.001 |
| txVcontrol | -0.30 | -0.69 – 0.09 | 0.125 |
| hiVlow | -0.31 | -1.00 – 0.38 | 0.382 |
| politics z | -0.02 | -0.22 – 0.18 | 0.846 |
| NFC z | -0.07 | -0.23 – 0.10 | 0.432 |
| income z | 0.14 | -0.03 – 0.30 | 0.106 |
| MvOther | -0.09 | -0.44 – 0.27 | 0.630 |
| white 5 | 0.68 | 0.20 – 1.17 | 0.006 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.078 / 0.041 | ||
| confDOE | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.74 | 3.42 – 4.06 | <0.001 |
| txVcontrol | -0.24 | -0.65 – 0.18 | 0.265 |
| hiVlow | -0.67 | -1.40 – 0.07 | 0.076 |
| politics z | -0.27 | -0.48 – -0.05 | 0.017 |
| NFC z | 0.03 | -0.14 – 0.21 | 0.713 |
| income z | 0.01 | -0.17 – 0.19 | 0.930 |
| MvOther | 0.35 | -0.03 – 0.73 | 0.069 |
| white 5 | 0.55 | 0.03 – 1.06 | 0.039 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.124 / 0.089 | ||
| confFEMA | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.96 | 3.66 – 4.26 | <0.001 |
| txVcontrol | -0.10 | -0.48 – 0.28 | 0.609 |
| hiVlow | 0.00 | -0.68 – 0.68 | 0.997 |
| politics z | -0.08 | -0.28 – 0.12 | 0.448 |
| NFC z | 0.08 | -0.09 – 0.24 | 0.362 |
| income z | 0.07 | -0.10 – 0.23 | 0.413 |
| MvOther | -0.21 | -0.56 – 0.14 | 0.231 |
| white 5 | 0.33 | -0.14 – 0.81 | 0.167 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.031 / -0.007 | ||
| confICE | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.12 | 2.82 – 3.43 | <0.001 |
| txVcontrol | -0.24 | -0.64 – 0.16 | 0.229 |
| hiVlow | 0.19 | -0.51 – 0.90 | 0.590 |
| politics z | 0.40 | 0.19 – 0.61 | <0.001 |
| NFC z | 0.05 | -0.12 – 0.22 | 0.552 |
| income z | 0.23 | 0.06 – 0.40 | 0.009 |
| MvOther | -0.13 | -0.49 – 0.24 | 0.491 |
| white 5 | 0.56 | 0.06 – 1.05 | 0.028 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.173 / 0.140 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| bias_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.09 | 3.78 – 4.41 | <0.001 |
| txVcontrol | -0.12 | -0.61 – 0.38 | 0.638 |
| hiVlow | -0.70 | -1.40 – -0.01 | 0.047 |
| politics z | 0.22 | -0.02 – 0.47 | 0.073 |
| NFC z | -0.04 | -0.25 – 0.17 | 0.694 |
| white 5 | 0.45 | -0.20 – 1.11 | 0.172 |
| MvOther | -0.08 | -0.50 – 0.33 | 0.687 |
| txVcontrol × politics z | -0.39 | -0.78 – 0.00 | 0.051 |
| txVcontrol × NFC z | 0.00 | -0.33 – 0.34 | 0.995 |
| txVcontrol × white 5 | -0.31 | -1.33 – 0.72 | 0.558 |
| txVcontrol × MvOther | -0.22 | -0.89 – 0.44 | 0.509 |
| hiVlow × politics z | -0.27 | -0.99 – 0.45 | 0.461 |
| hiVlow × NFC z | -0.07 | -0.68 – 0.55 | 0.835 |
| hiVlow × MvOther | 0.99 | -0.22 – 2.20 | 0.107 |
| Observations | 177 | ||
| R2 / R2 adjusted | 0.071 / -0.004 | ||
| bias_self_in | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.55 | -0.72 – -0.37 | <0.001 |
| txVcontrol | 0.02 | -0.27 – 0.30 | 0.909 |
| hiVlow | 0.52 | 0.01 – 1.03 | 0.045 |
| politics z | -0.39 | -0.61 – -0.17 | 0.001 |
| txVcontrol × politics z | 0.49 | 0.14 – 0.84 | 0.006 |
| hiVlow × politics z | 0.63 | -0.02 – 1.28 | 0.057 |
| Observations | 195 | ||
| R2 / R2 adjusted | 0.078 / 0.053 | ||
| bias_self_out | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -1.26 | -1.65 – -0.87 | <0.001 |
| txVcontrol | -0.16 | -0.68 – 0.36 | 0.537 |
| hiVlow | -0.04 | -0.98 – 0.90 | 0.931 |
| politics z | 0.18 | -0.22 – 0.58 | 0.379 |
| NFC z | -0.27 | -0.47 – -0.08 | 0.006 |
| income z | -0.08 | -0.28 – 0.11 | 0.391 |
| white 5 | 0.03 | -0.54 – 0.60 | 0.918 |
| MvOther | -0.02 | -0.45 – 0.40 | 0.911 |
| txVcontrol × politics z | -0.06 | -0.68 – 0.57 | 0.859 |
| hiVlow × politics z | -0.80 | -1.96 – 0.37 | 0.177 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.085 / 0.034 | ||
##
## Pearson's product-moment correlation
##
## data: d$repPTcog and d$repPTemo
## t = 12.835, df = 220, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5719753 0.7236844
## sample estimates:
## cor
## 0.6543656
##
## Pearson's product-moment correlation
##
## data: d$demPTcog and d$demPTemo
## t = 18.655, df = 220, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7258715 0.8289684
## sample estimates:
## cor
## 0.7827327
##
## Pearson's product-moment correlation
##
## data: d$PTcog_ingroup and d$PTemo_ingroup
## t = 15.306, df = 205, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6596195 0.7881729
## sample estimates:
## cor
## 0.7302975
##
## Pearson's product-moment correlation
##
## data: d$PTcog_outgroup and d$PTemo_outgroup
## t = 10.449, df = 205, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4927586 0.6718715
## sample estimates:
## cor
## 0.5895147
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| repPTgen | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.40 | 3.03 – 3.77 | <0.001 |
| txVcontrol | 0.40 | -0.19 – 0.99 | 0.183 |
| hiVlow | 0.16 | -0.58 – 0.90 | 0.673 |
| politics z | 0.73 | 0.44 – 1.02 | <0.001 |
| NFC z | 0.12 | -0.14 – 0.39 | 0.360 |
| income z | 0.12 | -0.12 – 0.36 | 0.326 |
| white 5 | 0.26 | -0.47 – 0.99 | 0.481 |
| MvOther | -0.22 | -0.70 – 0.27 | 0.379 |
| txVcontrol × politics z | 0.11 | -0.36 – 0.57 | 0.652 |
| txVcontrol × NFC z | 0.42 | -0.01 – 0.84 | 0.054 |
| txVcontrol × income z | -0.06 | -0.44 – 0.33 | 0.772 |
| txVcontrol × white 5 | -0.32 | -1.49 – 0.85 | 0.585 |
| txVcontrol × MvOther | 0.21 | -0.58 – 1.00 | 0.606 |
| hiVlow × politics z | -0.01 | -0.86 – 0.84 | 0.986 |
| hiVlow × NFC z | -0.15 | -0.93 – 0.63 | 0.706 |
| hiVlow × income z | -0.10 | -0.80 – 0.60 | 0.778 |
| hiVlow × MvOther | 0.92 | -0.49 – 2.34 | 0.199 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.425 / 0.370 | ||
| demPTgen | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.16 | 4.92 – 5.39 | <0.001 |
| txVcontrol | -0.24 | -0.55 – 0.07 | 0.126 |
| hiVlow | -0.06 | -0.61 – 0.50 | 0.844 |
| politics z | -0.72 | -0.96 – -0.48 | <0.001 |
| NFC z | 0.21 | 0.09 – 0.34 | 0.001 |
| income z | -0.02 | -0.15 – 0.11 | 0.777 |
| white 5 | -0.02 | -0.39 – 0.36 | 0.934 |
| MvOther | 0.32 | 0.05 – 0.60 | 0.020 |
| txVcontrol × politics z | -0.20 | -0.58 – 0.18 | 0.304 |
| hiVlow × politics z | -0.29 | -0.98 – 0.40 | 0.410 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.513 / 0.488 | ||
| PTgen_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.94 | 4.67 – 5.20 | <0.001 |
| txVcontrol | 0.40 | 0.04 – 0.75 | 0.028 |
| hiVlow | 0.78 | 0.14 – 1.42 | 0.017 |
| politics z | -0.86 | -1.13 – -0.58 | <0.001 |
| NFC z | 0.30 | 0.17 – 0.43 | <0.001 |
| income z | 0.01 | -0.13 – 0.14 | 0.939 |
| white 5 | 0.10 | -0.29 – 0.49 | 0.615 |
| MvOther | 0.51 | 0.22 – 0.80 | 0.001 |
| txVcontrol × politics z | 0.67 | 0.24 – 1.10 | 0.002 |
| hiVlow × politics z | 0.88 | 0.09 – 1.67 | 0.030 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.410 / 0.378 | ||
look into this one
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| PTgen_outgroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.43 | 3.01 – 3.85 | <0.001 |
| txVcontrol | 0.08 | -0.58 – 0.75 | 0.806 |
| hiVlow | -0.36 | -1.35 – 0.64 | 0.480 |
| politics z | 0.78 | 0.44 – 1.11 | <0.001 |
| NFC z | 0.04 | -0.24 – 0.31 | 0.799 |
| income z | 0.01 | -0.25 – 0.27 | 0.919 |
| white 5 | 0.32 | -0.55 – 1.20 | 0.467 |
| MvOther | -0.30 | -0.87 – 0.27 | 0.301 |
| txVcontrol × politics z | -0.66 | -1.19 – -0.12 | 0.016 |
| txVcontrol × NFC z | 0.35 | -0.10 – 0.79 | 0.123 |
| txVcontrol × income z | 0.14 | -0.28 – 0.56 | 0.504 |
| txVcontrol × white 5 | -0.67 | -2.06 – 0.71 | 0.338 |
| txVcontrol × MvOther | -0.02 | -0.94 – 0.90 | 0.964 |
| hiVlow × politics z | -0.78 | -1.76 – 0.20 | 0.118 |
| hiVlow × NFC z | -0.07 | -0.89 – 0.74 | 0.857 |
| hiVlow × income z | -0.44 | -1.21 – 0.32 | 0.252 |
| hiVlow × MvOther | 0.51 | -1.16 – 2.18 | 0.545 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.268 / 0.193 | ||
look into this one
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| PT_in_out | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 1.58 | 1.06 – 2.11 | <0.001 |
| txVcontrol | 0.10 | -0.73 – 0.94 | 0.805 |
| hiVlow | 1.21 | -0.03 – 2.46 | 0.056 |
| politics z | -1.64 | -2.06 – -1.22 | <0.001 |
| NFC z | 0.21 | -0.14 – 0.56 | 0.229 |
| income z | 0.03 | -0.29 – 0.36 | 0.833 |
| white 5 | -0.49 | -1.59 – 0.61 | 0.380 |
| MvOther | 0.95 | 0.24 – 1.67 | 0.010 |
| txVcontrol × politics z | 1.35 | 0.68 – 2.01 | <0.001 |
| txVcontrol × NFC z | -0.21 | -0.77 – 0.34 | 0.449 |
| txVcontrol × income z | -0.23 | -0.75 – 0.29 | 0.384 |
| txVcontrol × white 5 | 1.33 | -0.40 – 3.07 | 0.132 |
| txVcontrol × MvOther | -0.15 | -1.31 – 1.00 | 0.793 |
| hiVlow × politics z | 1.83 | 0.60 – 3.06 | 0.004 |
| hiVlow × NFC z | 0.35 | -0.68 – 1.37 | 0.506 |
| hiVlow × income z | 0.30 | -0.66 – 1.25 | 0.541 |
| hiVlow × MvOther | -0.01 | -2.10 – 2.09 | 0.996 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.476 / 0.422 | ||
| AP_rep | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.77 | 2.56 – 2.98 | <0.001 |
| txVcontrol | 0.18 | -0.16 – 0.53 | 0.300 |
| hiVlow | -0.14 | -0.76 – 0.47 | 0.646 |
| politics z | 0.86 | 0.59 – 1.13 | <0.001 |
| txVcontrol × politics z | 0.56 | 0.13 – 0.99 | 0.011 |
| hiVlow × politics z | -1.00 | -1.78 – -0.21 | 0.013 |
| Observations | 209 | ||
| R2 / R2 adjusted | 0.505 / 0.493 | ||
| AP_rep | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.89 | 2.73 – 3.05 | <0.001 |
| condition [high] | -0.11 | -0.57 – 0.35 | 0.632 |
| condition [low] | -0.26 | -0.73 – 0.22 | 0.288 |
| condition [noMedia] | -0.22 | -0.80 – 0.37 | 0.464 |
| politics z | 1.24 | 1.06 – 1.41 | <0.001 |
|
condition [high] × politics z |
-0.06 | -0.67 – 0.55 | 0.846 |
|
condition [low] × politics z |
-1.06 | -1.61 – -0.50 | <0.001 |
|
condition [noMedia] × politics z |
-0.32 | -1.00 – 0.35 | 0.340 |
| Observations | 222 | ||
| R2 / R2 adjusted | 0.501 / 0.485 | ||
| AP_dem | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.38 | 4.09 – 4.67 | <0.001 |
| txVcontrol | -0.30 | -0.76 – 0.17 | 0.209 |
| hiVlow | 0.22 | -0.62 – 1.07 | 0.602 |
| politics z | -0.77 | -1.12 – -0.43 | <0.001 |
| NFC z | 0.21 | -0.10 – 0.53 | 0.184 |
| income z | -0.14 | -0.41 – 0.13 | 0.319 |
| MvOther | 0.26 | -0.32 – 0.85 | 0.377 |
| txVcontrol × politics z | -0.02 | -0.57 – 0.53 | 0.953 |
| txVcontrol × NFC z | -0.27 | -0.77 – 0.24 | 0.295 |
| txVcontrol × income z | 0.23 | -0.21 – 0.67 | 0.304 |
| txVcontrol × MvOther | 0.08 | -0.87 – 1.03 | 0.864 |
| hiVlow × politics z | -0.91 | -1.91 – 0.09 | 0.075 |
| hiVlow × NFC z | 0.46 | -0.47 – 1.39 | 0.333 |
| hiVlow × income z | -0.04 | -0.83 – 0.76 | 0.928 |
| hiVlow × MvOther | -1.65 | -3.36 – 0.05 | 0.058 |
| Observations | 205 | ||
| R2 / R2 adjusted | 0.326 / 0.277 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| AP_econ | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.56 | 4.14 – 4.98 | <0.001 |
| txVcontrol | 0.29 | -0.38 – 0.96 | 0.400 |
| hiVlow | -0.62 | -1.45 – 0.22 | 0.147 |
| politics z | -0.42 | -0.75 – -0.09 | 0.012 |
| NFC z | 0.11 | -0.20 – 0.41 | 0.487 |
| income z | -0.06 | -0.33 – 0.21 | 0.653 |
| white 5 | 0.41 | -0.42 – 1.24 | 0.329 |
| MvOther | -0.11 | -0.66 – 0.44 | 0.696 |
| txVcontrol × politics z | 0.17 | -0.36 – 0.70 | 0.522 |
| txVcontrol × NFC z | 0.27 | -0.21 – 0.75 | 0.264 |
| txVcontrol × income z | 0.17 | -0.27 – 0.60 | 0.446 |
| txVcontrol × white 5 | -0.28 | -1.60 – 1.04 | 0.675 |
| txVcontrol × MvOther | -0.33 | -1.22 – 0.56 | 0.468 |
| hiVlow × politics z | -0.76 | -1.72 – 0.19 | 0.117 |
| hiVlow × NFC z | 0.15 | -0.73 – 1.04 | 0.731 |
| hiVlow × income z | -0.35 | -1.14 – 0.44 | 0.384 |
| hiVlow × MvOther | -0.38 | -1.98 – 1.22 | 0.638 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.190 / 0.112 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| AP_elect | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.76 | 4.38 – 5.15 | <0.001 |
| txVcontrol | 0.22 | -0.39 – 0.83 | 0.480 |
| hiVlow | -0.48 | -1.25 – 0.28 | 0.215 |
| politics z | -0.52 | -0.82 – -0.22 | 0.001 |
| NFC z | 0.12 | -0.16 – 0.39 | 0.406 |
| income z | -0.05 | -0.30 – 0.20 | 0.699 |
| white 5 | 0.42 | -0.34 – 1.17 | 0.277 |
| MvOther | -0.38 | -0.88 – 0.12 | 0.138 |
| txVcontrol × politics z | 0.42 | -0.07 – 0.90 | 0.091 |
| txVcontrol × NFC z | 0.24 | -0.19 – 0.68 | 0.273 |
| txVcontrol × income z | 0.36 | -0.03 – 0.76 | 0.073 |
| txVcontrol × white 5 | -0.69 | -1.90 – 0.52 | 0.260 |
| txVcontrol × MvOther | 0.50 | -0.32 – 1.32 | 0.227 |
| hiVlow × politics z | 0.00 | -0.87 – 0.88 | 0.997 |
| hiVlow × NFC z | 0.35 | -0.46 – 1.16 | 0.399 |
| hiVlow × income z | 0.21 | -0.51 – 0.93 | 0.567 |
| hiVlow × MvOther | -0.43 | -1.89 – 1.02 | 0.558 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.197 / 0.120 | ||
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| AP_clim | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.25 | 4.84 – 5.67 | <0.001 |
| txVcontrol | -0.00 | -0.66 – 0.66 | 0.998 |
| hiVlow | -0.16 | -0.98 – 0.67 | 0.711 |
| politics z | -0.76 | -1.08 – -0.43 | <0.001 |
| NFC z | 0.11 | -0.18 – 0.41 | 0.453 |
| income z | -0.16 | -0.43 – 0.10 | 0.229 |
| white 5 | 0.64 | -0.18 – 1.45 | 0.126 |
| MvOther | -0.09 | -0.63 – 0.45 | 0.749 |
| txVcontrol × politics z | 0.25 | -0.28 – 0.77 | 0.352 |
| txVcontrol × NFC z | 0.32 | -0.15 – 0.79 | 0.185 |
| txVcontrol × income z | 0.32 | -0.11 – 0.75 | 0.148 |
| txVcontrol × white 5 | -0.22 | -1.53 – 1.09 | 0.741 |
| txVcontrol × MvOther | 0.13 | -0.76 – 1.01 | 0.776 |
| hiVlow × politics z | -0.10 | -1.05 – 0.85 | 0.834 |
| hiVlow × NFC z | 0.34 | -0.53 – 1.22 | 0.440 |
| hiVlow × income z | -0.06 | -0.84 – 0.72 | 0.877 |
| hiVlow × MvOther | -0.37 | -1.95 – 1.21 | 0.643 |
| Observations | 185 | ||
| R2 / R2 adjusted | 0.324 / 0.259 | ||
| AP_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.25 | 3.87 – 4.63 | <0.001 |
| txVcontrol | 0.28 | -0.22 – 0.79 | 0.271 |
| hiVlow | 0.10 | -0.81 – 1.02 | 0.824 |
| politics z | -0.63 | -1.02 – -0.24 | 0.002 |
| NFC z | 0.13 | -0.05 – 0.32 | 0.164 |
| income z | -0.02 | -0.20 – 0.17 | 0.865 |
| MvOther | 0.70 | 0.29 – 1.11 | 0.001 |
| white 5 | 0.20 | -0.36 – 0.76 | 0.482 |
| txVcontrol × politics z | 0.74 | 0.12 – 1.35 | 0.019 |
| hiVlow × politics z | -0.35 | -1.48 – 0.78 | 0.542 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.171 / 0.125 | ||
look into this
## Model matrix is rank deficient. Parameters `hiVlow:white_.5` were not
## estimable.
| AP_outgroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.78 | 2.30 – 3.25 | <0.001 |
| txVcontrol | -0.16 | -0.92 – 0.59 | 0.668 |
| hiVlow | 0.10 | -1.03 – 1.23 | 0.860 |
| politics z | 0.58 | 0.20 – 0.96 | 0.003 |
| income z | -0.01 | -0.31 – 0.28 | 0.930 |
| NFC z | -0.02 | -0.34 – 0.29 | 0.889 |
| MvOther | -0.17 | -0.82 – 0.48 | 0.598 |
| white 5 | -0.32 | -1.32 – 0.68 | 0.525 |
| txVcontrol × politics z | -0.01 | -0.61 – 0.60 | 0.982 |
| txVcontrol × income z | -0.06 | -0.53 – 0.42 | 0.815 |
| txVcontrol × NFC z | 0.09 | -0.41 – 0.59 | 0.724 |
| txVcontrol × MvOther | 0.07 | -0.98 – 1.11 | 0.901 |
| txVcontrol × white 5 | -0.23 | -1.80 – 1.34 | 0.773 |
| hiVlow × politics z | -1.13 | -2.25 – -0.02 | 0.046 |
| hiVlow × income z | -0.12 | -0.98 – 0.75 | 0.790 |
| hiVlow × NFC z | 0.16 | -0.77 – 1.09 | 0.741 |
| hiVlow × MvOther | -0.67 | -2.56 – 1.23 | 0.488 |
| Observations | 173 | ||
| R2 / R2 adjusted | 0.221 / 0.141 | ||
m.ownVote <- lm(ownVote.0 ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.ownVote)| ownVote.0 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 1.22 | 0.93 – 1.51 | <0.001 |
| biasAvg z | -0.01 | -0.32 – 0.29 | 0.923 |
| biasSD z | 0.05 | -0.18 – 0.29 | 0.651 |
| politics z | -0.24 | -0.51 – 0.02 | 0.075 |
| MvOther | -0.61 | -1.00 – -0.21 | 0.003 |
| white 5 | 0.23 | -0.28 – 0.74 | 0.368 |
| biasAvg z × biasSD z | 0.11 | -0.09 – 0.31 | 0.285 |
| biasAvg z × politics z | 0.04 | -0.18 – 0.26 | 0.730 |
| biasSD z × politics z | 0.12 | -0.09 – 0.33 | 0.273 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.064 / 0.025 | ||
There is an interaction between CMC and DMC.
d$politics.z <- as.numeric(d$politics.z)
m.natVote <- lm(nationalVote.0 ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.natVote)| nationalVote.0 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 1.14 | 0.82 – 1.45 | <0.001 |
| biasAvg z | -0.42 | -0.75 – -0.09 | 0.012 |
| biasSD z | -0.09 | -0.35 – 0.16 | 0.476 |
| politics z | 0.23 | -0.05 – 0.52 | 0.110 |
| MvOther | -0.62 | -1.05 – -0.19 | 0.005 |
| white 5 | -0.01 | -0.56 – 0.54 | 0.967 |
| biasAvg z × biasSD z | 0.26 | 0.04 – 0.48 | 0.020 |
| biasAvg z × politics z | -0.08 | -0.31 – 0.16 | 0.521 |
| biasSD z × politics z | 0.15 | -0.08 – 0.38 | 0.204 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.103 / 0.065 | ||
##
## Call:
## lm(formula = nationalVote.0 ~ (biasAvg.z * biasSD.z) + (biasAvg.z +
## biasSD.z) * politics.z + MvOther + white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8321 -0.7944 0.1592 1.0744 2.9505
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13628 0.15813 7.186 1.44e-11 ***
## biasAvg.z -0.42245 0.16606 -2.544 0.01175 *
## biasSD.z -0.09195 0.12863 -0.715 0.47559
## politics.z 0.23483 0.14609 1.607 0.10961
## MvOther -0.61988 0.21864 -2.835 0.00507 **
## white_.5 -0.01151 0.27974 -0.041 0.96721
## biasAvg.z:biasSD.z 0.25867 0.10988 2.354 0.01957 *
## biasAvg.z:politics.z -0.07733 0.12015 -0.644 0.52057
## biasSD.z:politics.z 0.14954 0.11735 1.274 0.20408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.409 on 192 degrees of freedom
## (47 observations deleted due to missingness)
## Multiple R-squared: 0.1027, Adjusted R-squared: 0.06527
## F-statistic: 2.746 on 8 and 192 DF, p-value: 0.006838
# Create the plot
plot_model(m.natVote,
type = "pred",
terms = c("biasAvg.z", "biasSD.z [-1, 1]")) +
ggtitle("") +
ylab("Confidence in National Vote") +
xlab("COnservative Media Consumption") +
xlim(-3.2, 3.2) +
ylim(-4, 4) +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = c(0.7, 0.8),
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank()
) +
scale_color_manual(
labels = c("High Diversity", "Low Diversity"),
values = c("blue", "purple")
) +
scale_fill_manual(values = c("blue", "purple")) +
scale_y_continuous(
breaks = seq(-4, 4, 1),
limits = c(-5.4, 5.2)
)## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
## 3.5.0.
## ℹ Please use the `legend.position.inside` argument of `theme()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
m.trustSci <- lm(trustSci ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustSci)| trustSci | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.59 | 0.45 – 0.73 | <0.001 |
| biasAvg z | -0.17 | -0.32 – -0.02 | 0.027 |
| biasSD z | 0.07 | -0.05 – 0.18 | 0.241 |
| politics z | -0.24 | -0.37 – -0.11 | <0.001 |
| MvOther | -0.18 | -0.37 – 0.02 | 0.076 |
| white 5 | 0.05 | -0.20 – 0.30 | 0.681 |
| biasAvg z × biasSD z | 0.05 | -0.05 – 0.15 | 0.289 |
| biasAvg z × politics z | 0.11 | 0.00 – 0.21 | 0.048 |
| biasSD z × politics z | 0.06 | -0.05 – 0.16 | 0.300 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.192 / 0.158 | ||
m.expectWin <- lm(expectedWin.0 ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.expectWin)| expectedWin.0 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.05 | -0.35 – 0.26 | 0.755 |
| biasAvg z | -0.13 | -0.45 – 0.19 | 0.413 |
| biasSD z | -0.14 | -0.39 – 0.10 | 0.256 |
| politics z | -0.93 | -1.21 – -0.65 | <0.001 |
| MvOther | 0.23 | -0.19 – 0.65 | 0.289 |
| white 5 | 0.53 | -0.00 – 1.07 | 0.051 |
| biasAvg z × biasSD z | 0.09 | -0.12 – 0.30 | 0.412 |
| biasAvg z × politics z | 0.01 | -0.22 – 0.24 | 0.933 |
| biasSD z × politics z | 0.05 | -0.18 – 0.27 | 0.669 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.312 / 0.284 | ||
m.voteBehavior <- polr(vote ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d, Hess = T)
tab_model(m.voteBehavior)| vote | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| 1|2 | 0.04 | 0.02 – 0.10 | <0.001 |
| 2|3 | 0.35 | 0.19 – 0.67 | 0.002 |
| biasAvg z | 1.09 | 0.54 – 2.17 | 0.798 |
| biasSD z | 1.43 | 0.79 – 2.75 | 0.255 |
| politics z | 0.06 | 0.03 – 0.12 | <0.001 |
| MvOther | 1.26 | 0.56 – 2.80 | 0.572 |
| white 5 | 0.76 | 0.22 – 2.33 | 0.638 |
| biasAvg z × biasSD z | 0.81 | 0.53 – 1.20 | 0.298 |
| biasAvg z × politics z | 1.22 | 0.65 – 2.52 | 0.555 |
| biasSD z × politics z | 0.90 | 0.51 – 1.51 | 0.699 |
| Observations | 197 | ||
| R2 Nagelkerke | 0.681 | ||
m.trustPrez <- lm(confPresident ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustPrez)| confPresident | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.38 | 3.15 – 3.61 | <0.001 |
| biasAvg z | -0.08 | -0.33 – 0.16 | 0.508 |
| biasSD z | -0.08 | -0.27 – 0.11 | 0.427 |
| politics z | 0.58 | 0.37 – 0.80 | <0.001 |
| MvOther | -0.29 | -0.61 – 0.04 | 0.081 |
| white 5 | -0.14 | -0.55 – 0.27 | 0.503 |
| biasAvg z × biasSD z | 0.11 | -0.06 – 0.27 | 0.201 |
| biasAvg z × politics z | -0.02 | -0.20 – 0.16 | 0.829 |
| biasSD z × politics z | 0.14 | -0.04 – 0.31 | 0.119 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.264 / 0.233 | ||
m.trustCongress <- lm(confCongress ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustCongress)| confCongress | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.64 | 3.39 – 3.90 | <0.001 |
| biasAvg z | -0.20 | -0.47 – 0.07 | 0.139 |
| biasSD z | -0.05 | -0.25 – 0.16 | 0.666 |
| politics z | 0.22 | -0.02 – 0.45 | 0.067 |
| MvOther | 0.10 | -0.25 – 0.45 | 0.575 |
| white 5 | 0.02 | -0.43 – 0.47 | 0.917 |
| biasAvg z × biasSD z | 0.17 | -0.01 – 0.34 | 0.066 |
| biasAvg z × politics z | -0.06 | -0.26 – 0.13 | 0.520 |
| biasSD z × politics z | 0.06 | -0.13 – 0.25 | 0.550 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.042 / 0.002 | ||
m.trustSC <- lm(confSupremeCourt ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustSC)| confSupremeCourt | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.47 | 3.24 – 3.70 | <0.001 |
| biasAvg z | -0.16 | -0.40 – 0.08 | 0.195 |
| biasSD z | -0.13 | -0.32 – 0.06 | 0.184 |
| politics z | 0.29 | 0.08 – 0.50 | 0.008 |
| MvOther | -0.29 | -0.61 – 0.03 | 0.076 |
| white 5 | 0.42 | 0.01 – 0.83 | 0.045 |
| biasAvg z × biasSD z | 0.15 | -0.01 – 0.31 | 0.074 |
| biasAvg z × politics z | 0.00 | -0.17 – 0.18 | 0.972 |
| biasSD z × politics z | 0.11 | -0.06 – 0.28 | 0.201 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.136 / 0.100 | ||
m.trustEPA <- lm(confEPA ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustEPA)| confEPA | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.12 | 3.86 – 4.38 | <0.001 |
| biasAvg z | -0.43 | -0.71 – -0.15 | 0.003 |
| biasSD z | -0.17 | -0.39 – 0.04 | 0.119 |
| politics z | -0.09 | -0.33 – 0.16 | 0.480 |
| MvOther | -0.08 | -0.44 – 0.29 | 0.678 |
| white 5 | 0.31 | -0.16 – 0.78 | 0.192 |
| biasAvg z × biasSD z | 0.16 | -0.02 – 0.35 | 0.081 |
| biasAvg z × politics z | 0.11 | -0.09 – 0.31 | 0.295 |
| biasSD z × politics z | 0.12 | -0.07 – 0.32 | 0.222 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.082 / 0.044 | ||
m.trustDOJ <- lm(confDOJ ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustDOJ)| confDOJ | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.53 | 3.28 – 3.78 | <0.001 |
| biasAvg z | -0.16 | -0.42 – 0.10 | 0.224 |
| biasSD z | -0.03 | -0.24 – 0.17 | 0.742 |
| politics z | 0.06 | -0.17 – 0.29 | 0.611 |
| MvOther | 0.03 | -0.31 – 0.37 | 0.865 |
| white 5 | 0.61 | 0.17 – 1.05 | 0.007 |
| biasAvg z × biasSD z | 0.16 | -0.01 – 0.34 | 0.065 |
| biasAvg z × politics z | 0.01 | -0.18 – 0.20 | 0.919 |
| biasSD z × politics z | -0.04 | -0.23 – 0.14 | 0.660 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.061 / 0.022 | ||
m.trustDOE <- lm(confDOE ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
politics.z + MvOther + white_.5, data = d)
tab_model(m.trustDOE)| confDOE | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.61 | 3.34 – 3.88 | <0.001 |
| biasAvg z | -0.26 | -0.54 – 0.02 | 0.073 |
| biasSD z | -0.17 | -0.38 – 0.05 | 0.135 |
| politics z | -0.21 | -0.45 – 0.04 | 0.102 |
| MvOther | 0.34 | -0.03 – 0.71 | 0.072 |
| white 5 | 0.47 | -0.00 – 0.94 | 0.050 |
| biasAvg z × biasSD z | 0.07 | -0.12 – 0.25 | 0.475 |
| biasAvg z × politics z | 0.23 | 0.03 – 0.44 | 0.024 |
| biasSD z × politics z | 0.05 | -0.15 – 0.25 | 0.616 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.136 / 0.100 | ||
m.trustMil <- lm(confMilitary ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
(politics.z + MvOther + white_.5), data = d)
tab_model(m.trustMil)| confMilitary | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.33 | 4.06 – 4.61 | <0.001 |
| biasAvg z | -0.21 | -0.60 – 0.18 | 0.289 |
| biasSD z | 0.03 | -0.31 – 0.37 | 0.869 |
| politics z | 0.51 | 0.26 – 0.76 | <0.001 |
| MvOther | -0.10 | -0.48 – 0.28 | 0.608 |
| white 5 | 0.54 | 0.03 – 1.04 | 0.039 |
| biasAvg z × biasSD z | 0.10 | -0.10 – 0.29 | 0.336 |
| biasAvg z × politics z | -0.20 | -0.42 – 0.03 | 0.092 |
| biasAvg z × MvOther | 0.13 | -0.31 – 0.57 | 0.568 |
| biasAvg z × white 5 | 0.23 | -0.44 – 0.90 | 0.495 |
| biasSD z × politics z | -0.02 | -0.23 – 0.19 | 0.845 |
| biasSD z × MvOther | -0.19 | -0.61 – 0.22 | 0.362 |
| biasSD z × white 5 | 0.14 | -0.53 – 0.82 | 0.675 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.169 / 0.116 | ||
tab_model(m.ingroupBias <- lm(bias_ingroup ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| bias_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.07 | 3.90 – 4.24 | <0.001 |
| biasAvg z | 0.11 | -0.13 – 0.35 | 0.346 |
| biasSD z | -0.14 | -0.35 – 0.07 | 0.200 |
| politics z | -0.02 | -0.17 – 0.14 | 0.845 |
| MvOther | -0.14 | -0.38 – 0.10 | 0.258 |
| white 5 | 0.17 | -0.15 – 0.49 | 0.289 |
| biasAvg z × biasSD z | -0.01 | -0.13 – 0.11 | 0.919 |
| biasAvg z × politics z | 0.03 | -0.11 – 0.17 | 0.632 |
| biasAvg z × MvOther | 0.08 | -0.19 – 0.35 | 0.542 |
| biasAvg z × white 5 | -0.19 | -0.60 – 0.21 | 0.351 |
| biasSD z × politics z | -0.03 | -0.16 – 0.10 | 0.655 |
| biasSD z × MvOther | -0.04 | -0.30 – 0.22 | 0.775 |
| biasSD z × white 5 | 0.37 | -0.06 – 0.79 | 0.089 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.081 / 0.017 | ||
# Generate the model
d$NFC.z <- as.numeric(d$NFC.z)
tab_model(m.outgroupBias <- lm(bias_outgroup ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
(politics.z + MvOther + white_.5), data = d))| bias_outgroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.90 | 4.68 – 5.12 | <0.001 |
| biasAvg z | 0.02 | -0.28 – 0.32 | 0.913 |
| biasSD z | -0.00 | -0.27 – 0.27 | 0.991 |
| politics z | -0.27 | -0.46 – -0.07 | 0.009 |
| MvOther | 0.06 | -0.24 – 0.37 | 0.677 |
| white 5 | 0.08 | -0.32 – 0.47 | 0.702 |
| biasAvg z × biasSD z | -0.11 | -0.26 – 0.04 | 0.148 |
| biasAvg z × politics z | 0.19 | 0.02 – 0.37 | 0.033 |
| biasAvg z × MvOther | 0.18 | -0.15 – 0.52 | 0.283 |
| biasAvg z × white 5 | -0.02 | -0.53 – 0.49 | 0.939 |
| biasSD z × politics z | 0.05 | -0.11 – 0.21 | 0.520 |
| biasSD z × MvOther | 0.20 | -0.12 – 0.53 | 0.223 |
| biasSD z × white 5 | -0.43 | -0.96 – 0.11 | 0.116 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.152 / 0.094 | ||
tab_model(m.self_ingroup <- lm(bias_self_in ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) *
(politics.z + MvOther + white_.5), data = d))| bias_self_in | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.40 | -0.58 – -0.22 | <0.001 |
| biasAvg z | 0.02 | -0.22 – 0.26 | 0.870 |
| biasSD z | 0.04 | -0.18 – 0.25 | 0.735 |
| politics z | -0.13 | -0.29 – 0.03 | 0.115 |
| MvOther | 0.17 | -0.08 – 0.41 | 0.184 |
| white 5 | -0.28 | -0.60 – 0.04 | 0.090 |
| biasAvg z × biasSD z | 0.03 | -0.09 – 0.15 | 0.639 |
| biasAvg z × politics z | -0.06 | -0.20 – 0.08 | 0.424 |
| biasAvg z × MvOther | -0.07 | -0.34 – 0.21 | 0.626 |
| biasAvg z × white 5 | -0.05 | -0.47 – 0.36 | 0.794 |
| biasSD z × politics z | 0.10 | -0.03 – 0.23 | 0.135 |
| biasSD z × MvOther | 0.17 | -0.10 – 0.43 | 0.220 |
| biasSD z × white 5 | -0.21 | -0.64 – 0.22 | 0.334 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.094 / 0.032 | ||
tab_model(m.self_outgroup <- lm(bias_self_out ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| bias_self_out | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -1.23 | -1.53 – -0.94 | <0.001 |
| biasAvg z | 0.12 | -0.29 – 0.53 | 0.569 |
| biasSD z | -0.10 | -0.46 – 0.26 | 0.588 |
| politics z | 0.12 | -0.15 – 0.39 | 0.373 |
| MvOther | -0.04 | -0.45 – 0.37 | 0.861 |
| white 5 | -0.18 | -0.72 – 0.36 | 0.501 |
| biasAvg z × biasSD z | 0.13 | -0.07 – 0.34 | 0.199 |
| biasAvg z × politics z | -0.22 | -0.45 – 0.02 | 0.077 |
| biasAvg z × MvOther | -0.17 | -0.63 – 0.29 | 0.469 |
| biasAvg z × white 5 | -0.23 | -0.92 – 0.47 | 0.518 |
| biasSD z × politics z | 0.02 | -0.20 – 0.23 | 0.872 |
| biasSD z × MvOther | -0.07 | -0.52 – 0.37 | 0.740 |
| biasSD z × white 5 | 0.58 | -0.14 – 1.30 | 0.114 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.125 / 0.065 | ||
| repPTgen | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.54 | 3.34 – 3.75 | <0.001 |
| biasAvg z | -0.00 | -0.24 – 0.23 | 0.968 |
| biasSD z | 0.23 | 0.06 – 0.40 | 0.007 |
| politics z | 0.60 | 0.40 – 0.80 | <0.001 |
| MvOther | -0.43 | -0.74 – -0.13 | 0.006 |
| white 5 | 0.16 | -0.24 – 0.56 | 0.426 |
| biasAvg z × biasSD z | 0.04 | -0.10 – 0.19 | 0.567 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.325 / 0.304 | ||
| demPTgen | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.94 | 4.76 – 5.12 | <0.001 |
| biasAvg z | -0.10 | -0.30 – 0.10 | 0.327 |
| biasSD z | 0.15 | 0.00 – 0.30 | 0.048 |
| politics z | -0.90 | -1.08 – -0.73 | <0.001 |
| MvOther | 0.15 | -0.12 – 0.42 | 0.268 |
| white 5 | 0.19 | -0.16 – 0.54 | 0.279 |
| biasAvg z × biasSD z | 0.03 | -0.09 – 0.16 | 0.597 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.489 / 0.473 | ||
look into this one
tab_model(m <- lm(PTgen_ingroup ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| PTgen_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.98 | 4.76 – 5.19 | <0.001 |
| biasAvg z | -0.30 | -0.60 – -0.00 | 0.050 |
| biasSD z | 0.05 | -0.22 – 0.31 | 0.740 |
| politics z | -0.67 | -0.87 – -0.48 | <0.001 |
| MvOther | 0.17 | -0.14 – 0.47 | 0.279 |
| white 5 | 0.36 | -0.04 – 0.75 | 0.078 |
| biasAvg z × biasSD z | 0.07 | -0.08 – 0.22 | 0.361 |
| biasAvg z × politics z | 0.09 | -0.08 – 0.27 | 0.297 |
| biasAvg z × MvOther | -0.03 | -0.37 – 0.31 | 0.843 |
| biasAvg z × white 5 | 0.35 | -0.16 – 0.86 | 0.182 |
| biasSD z × politics z | 0.18 | 0.02 – 0.34 | 0.027 |
| biasSD z × MvOther | 0.12 | -0.21 – 0.44 | 0.477 |
| biasSD z × white 5 | 0.19 | -0.34 – 0.72 | 0.484 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.367 / 0.323 | ||
look into this one
tab_model(m <- lm(PTgen_outgroup ~ (biasAvg.z * biasSD.z) + (politics.z + MvOther + white_.5), data = d))| PTgen_outgroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 3.34 | 3.12 – 3.56 | <0.001 |
| biasAvg z | 0.12 | -0.13 – 0.36 | 0.338 |
| biasSD z | 0.21 | 0.03 – 0.39 | 0.025 |
| politics z | 0.26 | 0.05 – 0.47 | 0.017 |
| MvOther | -0.44 | -0.77 – -0.12 | 0.008 |
| white 5 | 0.09 | -0.33 – 0.51 | 0.667 |
| biasAvg z × biasSD z | -0.04 | -0.19 – 0.11 | 0.570 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.163 / 0.136 | ||
d$PT_in_out <- d$PTgen_ingroup - d$PTgen_outgroup
tab_model(m <- lm(PT_in_out ~ (biasAvg.z * biasSD.z) + (politics.z + MvOther + white_.5), data = d))| PT_in_out | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 1.74 | 1.46 – 2.02 | <0.001 |
| biasAvg z | -0.28 | -0.59 – 0.03 | 0.075 |
| biasSD z | 0.01 | -0.22 – 0.24 | 0.920 |
| politics z | -0.87 | -1.13 – -0.60 | <0.001 |
| MvOther | 0.67 | 0.25 – 1.08 | 0.002 |
| white 5 | 0.19 | -0.34 – 0.72 | 0.491 |
| biasAvg z × biasSD z | 0.14 | -0.05 – 0.34 | 0.135 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.381 / 0.360 | ||
look into this
d$politics.z <- as.numeric(d$politics.z)
tab_model(m<-lm(AP_rep ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| AP_rep | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.89 | 2.65 – 3.13 | <0.001 |
| biasAvg z | 0.01 | -0.34 – 0.35 | 0.975 |
| biasSD z | 0.05 | -0.25 – 0.35 | 0.742 |
| politics z | 1.04 | 0.82 – 1.26 | <0.001 |
| MvOther | -0.07 | -0.40 – 0.26 | 0.685 |
| white 5 | -0.23 | -0.67 – 0.22 | 0.318 |
| biasAvg z × biasSD z | 0.05 | -0.13 – 0.22 | 0.602 |
| biasAvg z × politics z | 0.04 | -0.16 – 0.24 | 0.718 |
| biasAvg z × MvOther | 0.03 | -0.36 – 0.41 | 0.897 |
| biasAvg z × white 5 | -0.33 | -0.91 – 0.25 | 0.264 |
| biasSD z × politics z | 0.21 | 0.03 – 0.39 | 0.021 |
| biasSD z × MvOther | 0.04 | -0.32 – 0.41 | 0.814 |
| biasSD z × white 5 | -0.09 | -0.68 – 0.51 | 0.776 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.479 / 0.446 | ||
| AP_dem | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.21 | 3.97 – 4.45 | <0.001 |
| biasAvg z | -0.22 | -0.49 – 0.04 | 0.100 |
| biasSD z | -0.04 | -0.24 – 0.15 | 0.652 |
| politics z | -0.75 | -0.99 – -0.52 | <0.001 |
| MvOther | 0.40 | 0.05 – 0.76 | 0.025 |
| white 5 | 0.03 | -0.43 – 0.48 | 0.905 |
| biasAvg z × biasSD z | 0.10 | -0.07 – 0.27 | 0.252 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.341 / 0.321 | ||
tab_model(m <-lm(AP_econ ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) + (politics.z + MvOther + white_.5), data = d))| AP_econ | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.75 | 4.52 – 4.97 | <0.001 |
| biasAvg z | -0.28 | -0.53 – -0.03 | 0.028 |
| biasSD z | -0.00 | -0.18 – 0.18 | 0.978 |
| politics z | -0.31 | -0.52 – -0.09 | 0.006 |
| MvOther | -0.32 | -0.65 – 0.01 | 0.058 |
| white 5 | 0.29 | -0.14 – 0.71 | 0.190 |
| biasAvg z × biasSD z | 0.12 | -0.04 – 0.27 | 0.146 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.121 / 0.094 | ||
tab_model(lm(AP_elect ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) + (politics.z + MvOther + white_.5), data = d))| AP_elect | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.89 | 4.68 – 5.10 | <0.001 |
| biasAvg z | -0.33 | -0.56 – -0.09 | 0.007 |
| biasSD z | -0.06 | -0.23 – 0.11 | 0.483 |
| politics z | -0.23 | -0.43 – -0.03 | 0.028 |
| MvOther | -0.14 | -0.45 – 0.17 | 0.378 |
| white 5 | 0.09 | -0.31 – 0.50 | 0.643 |
| biasAvg z × biasSD z | 0.14 | -0.01 – 0.29 | 0.065 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.114 / 0.086 | ||
look into this
tab_model(lm(AP_clim ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| AP_clim | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.31 | 5.07 – 5.55 | <0.001 |
| biasAvg z | -0.47 | -0.81 – -0.14 | 0.006 |
| biasSD z | 0.00 | -0.29 – 0.30 | 0.990 |
| politics z | -0.61 | -0.82 – -0.39 | <0.001 |
| MvOther | -0.14 | -0.47 – 0.19 | 0.414 |
| white 5 | 0.55 | 0.11 – 0.99 | 0.014 |
| biasAvg z × biasSD z | 0.20 | 0.03 – 0.36 | 0.024 |
| biasAvg z × politics z | -0.06 | -0.25 – 0.14 | 0.573 |
| biasAvg z × MvOther | -0.21 | -0.59 – 0.17 | 0.271 |
| biasAvg z × white 5 | 0.22 | -0.36 – 0.80 | 0.449 |
| biasSD z × politics z | 0.05 | -0.13 – 0.22 | 0.609 |
| biasSD z × MvOther | -0.07 | -0.43 – 0.28 | 0.682 |
| biasSD z × white 5 | 0.12 | -0.46 – 0.71 | 0.675 |
| Observations | 201 | ||
| R2 / R2 adjusted | 0.324 / 0.281 | ||
look into this one
tab_model(m.2 <-lm(AP_ingroup ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| AP_ingroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.29 | 4.01 – 4.57 | <0.001 |
| biasAvg z | -0.31 | -0.71 – 0.08 | 0.117 |
| biasSD z | 0.02 | -0.33 – 0.36 | 0.930 |
| politics z | -0.36 | -0.62 – -0.10 | 0.006 |
| MvOther | 0.49 | 0.09 – 0.88 | 0.016 |
| white 5 | 0.17 | -0.34 – 0.69 | 0.510 |
| biasAvg z × biasSD z | 0.05 | -0.15 – 0.25 | 0.615 |
| biasAvg z × politics z | 0.12 | -0.11 – 0.35 | 0.298 |
| biasAvg z × MvOther | -0.27 | -0.71 – 0.18 | 0.236 |
| biasAvg z × white 5 | 0.19 | -0.48 – 0.85 | 0.577 |
| biasSD z × politics z | 0.32 | 0.12 – 0.53 | 0.002 |
| biasSD z × MvOther | 0.14 | -0.29 – 0.57 | 0.518 |
| biasSD z × white 5 | -0.18 | -0.87 – 0.51 | 0.611 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.219 / 0.165 | ||
tab_model(m.2 <-lm(AP_outgroup ~ (biasAvg.z * biasSD.z) + (biasAvg.z + biasSD.z) * (politics.z + MvOther + white_.5), data = d))| AP_outgroup | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.68 | 2.42 – 2.94 | <0.001 |
| biasAvg z | 0.10 | -0.26 – 0.47 | 0.566 |
| biasSD z | 0.16 | -0.15 – 0.48 | 0.310 |
| politics z | 0.54 | 0.30 – 0.77 | <0.001 |
| MvOther | -0.15 | -0.51 – 0.22 | 0.428 |
| white 5 | -0.41 | -0.89 – 0.06 | 0.087 |
| biasAvg z × biasSD z | 0.11 | -0.07 – 0.29 | 0.235 |
| biasAvg z × politics z | -0.01 | -0.23 – 0.20 | 0.889 |
| biasAvg z × MvOther | -0.07 | -0.48 – 0.33 | 0.730 |
| biasAvg z × white 5 | -0.45 | -1.06 – 0.16 | 0.148 |
| biasSD z × politics z | 0.06 | -0.13 – 0.25 | 0.547 |
| biasSD z × MvOther | -0.33 | -0.72 – 0.06 | 0.093 |
| biasSD z × white 5 | -0.21 | -0.85 – 0.42 | 0.511 |
| Observations | 188 | ||
| R2 / R2 adjusted | 0.218 / 0.164 | ||