Loop over outcome and ranking variable pairs
#----------------------------------------
# 4. MAIN LOOP
#----------------------------------------
# Iterate over pairs for cate treatment effect
for (i in seq_along(cate_outcome_rankvar_pairs)) {
outcome <- cate_outcome_rankvar_pairs[[i]][[1]]
ranking_variable <- cate_outcome_rankvar_pairs[[i]][[2]]
# Create plot
create_quintile_outcome_plots(outcome, ranking_variable, "cate")
}
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 2 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 2 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 1 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "ohp_all_ever_inperson_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_ohp_all_ever_inperson_cw0.csv"
## Rows: 12,208
## Columns: 45
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ cate <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_se <dbl> 0.013531, 0.013647, 0.017988, 0.012490, 0.025…
## $ cate_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 15, 1…
## $ cate_lambda_0 <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_lambda_0_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 14, 1…
## $ cate_lambda_1 <dbl> 0.2209, 0.2120, 0.2623, 0.2756, 0.2627, 0.172…
## $ cate_lambda_1_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_2 <dbl> 0.2175, 0.2086, 0.2578, 0.2725, 0.2563, 0.167…
## $ cate_lambda_2_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_3 <dbl> 0.2141, 0.2052, 0.2533, 0.2693, 0.2498, 0.163…
## $ cate_lambda_3_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 7, 5, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## $ cate_lambda_4 <dbl> 0.2107, 0.2017, 0.2488, 0.2662, 0.2434, 0.158…
## $ cate_lambda_4_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 7, 6, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## [1] "OHP analysis detected - excluding CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12208"
## [2] "Dimensions of selected_ranking_df: 2"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 52"
## person_id cate_rankings_selected X.numhh_list X.gender_inp X.age_inp
## 1 5 2 1 1 60
## 2 8 2 2 0 41
## 3 16 4 2 1 39
## 4 17 5 1 0 52
## 5 18 4 1 0 51
## 6 23 1 2 1 32
## X.hispanic_inp X.race_white_inp X.race_black_inp X.race_nwother_inp
## 1 1 0 0 0
## 2 0 1 0 0
## 3 0 1 0 0
## 4 0 1 0 0
## 5 0 0 1 0
## 6 1 0 0 0
## X.ast_dx_pre_lottery X.dia_dx_pre_lottery X.hbp_dx_pre_lottery
## 1 0 0 0
## 2 1 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## 6 0 0 0
## X.chl_dx_pre_lottery X.ami_dx_pre_lottery X.chf_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.emp_dx_pre_lottery X.kid_dx_pre_lottery X.cancer_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.dep_dx_pre_lottery X.lessHS X.HSorGED X.charg_tot_pre_ed
## 1 0 0 1 0
## 2 0 0 1 0
## 3 0 0 1 1888
## 4 1 1 0 0
## 5 0 0 0 1715
## 6 0 1 0 0
## X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate clate_se
## 1 0 -144.00 0 1 1.1504 8 3.5659 4.664
## 2 0 -134.00 0 0 0.8975 1 3.3977 2.461
## 3 1888 -84.61 1 0 1.0000 10 86.5757 4.745
## 4 0 -168.00 0 0 1.2126 3 0.8981 4.609
## 5 1006 -160.39 0 0 1.0000 10 75.1033 5.278
## 6 0 -98.00 1 1 1.0033 9 3.2103 3.311
## clate_ranking_5 clate_ranking_20 cate_W cate cate_se cate_ranking_5
## 1 2 8 1 1.88542 1.713 3
## 2 2 8 0 0.47401 1.194 2
## 3 5 20 0 28.31469 3.951 5
## 4 1 3 0 -0.08733 2.145 1
## 5 5 18 0 20.69142 2.405 5
## 6 2 8 1 0.09818 1.095 1
## cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 12 1.88542 3
## 2 6 0.47401 2
## 3 20 28.31469 5
## 4 3 -0.08733 1
## 5 18 20.69142 5
## 6 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "ohp_all_ever_inperson_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_ohp_all_ever_inperson_cw0.csv"
## Rows: 12,208
## Columns: 45
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ cate <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_se <dbl> 0.013531, 0.013647, 0.017988, 0.012490, 0.025…
## $ cate_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 15, 1…
## $ cate_lambda_0 <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_lambda_0_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 14, 1…
## $ cate_lambda_1 <dbl> 0.2209, 0.2120, 0.2623, 0.2756, 0.2627, 0.172…
## $ cate_lambda_1_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_2 <dbl> 0.2175, 0.2086, 0.2578, 0.2725, 0.2563, 0.167…
## $ cate_lambda_2_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_3 <dbl> 0.2141, 0.2052, 0.2533, 0.2693, 0.2498, 0.163…
## $ cate_lambda_3_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 7, 5, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## $ cate_lambda_4 <dbl> 0.2107, 0.2017, 0.2488, 0.2662, 0.2434, 0.158…
## $ cate_lambda_4_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 7, 6, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## [1] "OHP analysis detected - excluding CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12208"
## [2] "Dimensions of selected_ranking_df: 2"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 52"
## person_id cate_rankings_selected X.numhh_list X.gender_inp X.age_inp
## 1 5 2 1 1 60
## 2 8 2 2 0 41
## 3 16 4 2 1 39
## 4 17 5 1 0 52
## 5 18 4 1 0 51
## 6 23 1 2 1 32
## X.hispanic_inp X.race_white_inp X.race_black_inp X.race_nwother_inp
## 1 1 0 0 0
## 2 0 1 0 0
## 3 0 1 0 0
## 4 0 1 0 0
## 5 0 0 1 0
## 6 1 0 0 0
## X.ast_dx_pre_lottery X.dia_dx_pre_lottery X.hbp_dx_pre_lottery
## 1 0 0 0
## 2 1 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## 6 0 0 0
## X.chl_dx_pre_lottery X.ami_dx_pre_lottery X.chf_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.emp_dx_pre_lottery X.kid_dx_pre_lottery X.cancer_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.dep_dx_pre_lottery X.lessHS X.HSorGED X.charg_tot_pre_ed
## 1 0 0 1 0
## 2 0 0 1 0
## 3 0 0 1 1888
## 4 1 1 0 0
## 5 0 0 0 1715
## 6 0 1 0 0
## X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate clate_se
## 1 0 1 0 1 1.1504 8 0.39883 0.16302
## 2 0 0 0 0 0.8975 1 0.19916 0.10261
## 3 1888 1 1 0 1.0000 10 0.18745 0.11559
## 4 0 0 0 0 1.2126 3 0.41306 0.05780
## 5 1006 1 0 0 1.0000 10 0.23865 0.07205
## 6 0 0 1 1 1.0033 9 0.02548 0.22824
## clate_ranking_5 clate_ranking_20 cate_W cate cate_se cate_ranking_5
## 1 5 18 1 0.09723 0.009730 5
## 2 1 4 0 0.05205 0.024135 1
## 3 1 3 0 0.04867 0.027492 1
## 4 5 19 0 0.09769 0.019527 5
## 5 2 6 0 0.07025 0.018605 2
## 6 1 1 1 0.02229 0.009796 1
## cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 19 0.09723 5
## 2 4 0.05205 1
## 3 3 0.04867 1
## 4 19 0.09769 5
## 5 7 0.07025 2
## 6 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "ohp_all_ever_inperson_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_ohp_all_ever_inperson_cw0.csv"
## Rows: 12,208
## Columns: 45
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ cate <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_se <dbl> 0.013531, 0.013647, 0.017988, 0.012490, 0.025…
## $ cate_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 15, 1…
## $ cate_lambda_0 <dbl> 0.2242, 0.2154, 0.2668, 0.2787, 0.2692, 0.176…
## $ cate_lambda_0_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 6, 5, 15, 18, 16, 1, 2, 12, 14, 13, 10, 14, 1…
## $ cate_lambda_1 <dbl> 0.2209, 0.2120, 0.2623, 0.2756, 0.2627, 0.172…
## $ cate_lambda_1_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_2 <dbl> 0.2175, 0.2086, 0.2578, 0.2725, 0.2563, 0.167…
## $ cate_lambda_2_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 3, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 6, 5, 15, 19, 15, 1, 2, 12, 14, 14, 11, 15, 1…
## $ cate_lambda_3 <dbl> 0.2141, 0.2052, 0.2533, 0.2693, 0.2498, 0.163…
## $ cate_lambda_3_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 7, 5, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## $ cate_lambda_4 <dbl> 0.2107, 0.2017, 0.2488, 0.2662, 0.2434, 0.158…
## $ cate_lambda_4_ranking_5 <int> 2, 2, 4, 5, 4, 1, 1, 4, 4, 4, 3, 4, 5, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 7, 6, 16, 19, 15, 1, 2, 13, 15, 15, 12, 15, 1…
## [1] "OHP analysis detected - excluding CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12208"
## [2] "Dimensions of selected_ranking_df: 2"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 52"
## person_id cate_rankings_selected X.numhh_list X.gender_inp X.age_inp
## 1 5 2 1 1 60
## 2 8 2 2 0 41
## 3 16 4 2 1 39
## 4 17 5 1 0 52
## 5 18 4 1 0 51
## 6 23 1 2 1 32
## X.hispanic_inp X.race_white_inp X.race_black_inp X.race_nwother_inp
## 1 1 0 0 0
## 2 0 1 0 0
## 3 0 1 0 0
## 4 0 1 0 0
## 5 0 0 1 0
## 6 1 0 0 0
## X.ast_dx_pre_lottery X.dia_dx_pre_lottery X.hbp_dx_pre_lottery
## 1 0 0 0
## 2 1 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## 6 0 0 0
## X.chl_dx_pre_lottery X.ami_dx_pre_lottery X.chf_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.emp_dx_pre_lottery X.kid_dx_pre_lottery X.cancer_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.dep_dx_pre_lottery X.lessHS X.HSorGED X.charg_tot_pre_ed
## 1 0 0 1 0
## 2 0 0 1 0
## 3 0 0 1 1888
## 4 1 1 0 0
## 5 0 0 0 1715
## 6 0 1 0 0
## X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate clate_se
## 1 0 -48.33 0 1 1.1504 8 -3.2872 3.897
## 2 0 -51.33 0 0 0.8975 1 -2.8577 1.750
## 3 1888 -5.64 1 0 1.0000 10 65.0260 1.974
## 4 0 -51.33 0 0 1.2126 3 0.3029 3.198
## 5 1006 -61.02 0 0 1.0000 10 58.0718 3.386
## 6 0 -31.08 1 1 1.0033 9 1.6028 5.641
## clate_ranking_5 clate_ranking_20 cate_W cate cate_se cate_ranking_5
## 1 1 2 1 -1.5142 1.4284 1
## 2 1 2 0 -0.6430 0.8423 2
## 3 5 18 0 21.0091 4.0054 5
## 4 2 8 0 -0.1304 1.1931 2
## 5 5 17 0 17.8280 3.7253 5
## 6 3 10 1 0.5509 0.8306 3
## cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 2 -1.5142 1
## 2 5 -0.6430 2
## 3 19 21.0091 5
## 4 7 -0.1304 2
## 5 18 17.8280 5
## 6 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "cate"
## [1] "#####Running cate function.#####"

## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "cate"
## [1] "#####Running cate function.#####"


# Iterate over pairs for clate treatment effect
for (i in seq_along(clate_outcome_rankvar_pairs)) {
outcome <- clate_outcome_rankvar_pairs[[i]][[1]]
ranking_variable <- clate_outcome_rankvar_pairs[[i]][[2]]
# Create plot
create_quintile_outcome_plots(outcome, ranking_variable, "clate")
}
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 2 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 2 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -151.08 -7.10 1.52 9.53 60.08
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -99.2398 1.3249 -74.91 <2e-16 ***
## clate_W 6.7203 2.7198 2.47 0.014 *
## X.gender_inp 8.3308 0.6831 12.19 <2e-16 ***
## X.age_inp -0.7098 0.0283 -25.11 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2454 133.19 <2e-16 ***
## Wu-Hausman 1 2453 3.82 0.051 .
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.4 on 2454 degrees of freedom
## Multiple R-Squared: 0.263, Adjusted R-squared: 0.262
## Wald test: 314 on 3 and 2454 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -135.20 -7.73 1.22 10.01 47.82
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -103.2850 1.2232 -84.4 <2e-16 ***
## clate_W 4.3826 2.5740 1.7 0.089 .
## X.gender_inp 8.2962 0.6538 12.7 <2e-16 ***
## X.age_inp -0.5239 0.0255 -20.6 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2410 161.60 <2e-16 ***
## Wu-Hausman 1 2409 1.45 0.23
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.7 on 2410 degrees of freedom
## Multiple R-Squared: 0.205, Adjusted R-squared: 0.204
## Wald test: 214 on 3 and 2410 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -111.94 -8.35 2.12 10.65 49.11
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -104.3886 1.4127 -73.89 <2e-16 ***
## clate_W -0.1351 2.5267 -0.05 0.96
## X.gender_inp 9.2763 0.6390 14.52 <2e-16 ***
## X.age_inp -0.4825 0.0273 -17.70 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2398 199.80 <2e-16 ***
## Wu-Hausman 1 2397 1.17 0.28
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.8 on 2398 degrees of freedom
## Multiple R-Squared: 0.172, Adjusted R-squared: 0.171
## Wald test: 166 on 3 and 2398 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -104.73 -13.84 1.17 16.06 69.88
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -123.2222 1.9674 -62.63 < 2e-16 ***
## clate_W 22.8154 3.5370 6.45 1.3e-10 ***
## X.gender_inp 8.2713 0.8929 9.26 < 2e-16 ***
## X.age_inp -0.3017 0.0349 -8.65 < 2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2467 175.37 <2e-16 ***
## Wu-Hausman 1 2466 3.22 0.073 .
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.1 on 2467 degrees of freedom
## Multiple R-Squared: 0.33, Adjusted R-squared: 0.329
## Wald test: 97.9 on 3 and 2467 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -142.43 -9.23 1.62 10.98 87.52
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -142.0116 1.5550 -91.3 <2e-16 ***
## clate_W 76.8174 2.2846 33.6 <2e-16 ***
## X.gender_inp 7.5509 0.7214 10.5 <2e-16 ***
## X.age_inp -0.4976 0.0292 -17.1 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 242.3 < 2e-16 ***
## Wu-Hausman 1 2414 12.4 0.00044 ***
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.1 on 2415 degrees of freedom
## Multiple R-Squared: 0.869, Adjusted R-squared: 0.868
## Wald test: 760 on 3 and 2415 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.528 -0.466 -0.330 0.554 1.770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.39670 0.05552 7.14 1.2e-12 ***
## clate_W 0.29632 0.11184 2.65 0.0081 **
## X.gender_inp -0.11239 0.02703 -4.16 3.3e-05 ***
## X.age_inp 0.00149 0.00113 1.31 0.1895
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 100.57 <2e-16 ***
## Wu-Hausman 1 2414 0.66 0.42
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.553 on 2415 degrees of freedom
## Multiple R-Squared: 0.0324, Adjusted R-squared: 0.0312
## Wald test: 5.86 on 3 and 2415 DF, p-value: 0.000555
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.948 -0.322 -0.234 0.412 2.478
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24196 0.04321 5.60 2.4e-08 ***
## clate_W 0.39122 0.07866 4.97 7.0e-07 ***
## X.gender_inp -0.08017 0.02335 -3.43 0.00061 ***
## X.age_inp 0.00158 0.00084 1.88 0.06011 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2410 181.09 <2e-16 ***
## Wu-Hausman 1 2409 2.09 0.15
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.527 on 2410 degrees of freedom
## Multiple R-Squared: 0.0617, Adjusted R-squared: 0.0605
## Wald test: 8.88 on 3 and 2410 DF, p-value: 7.48e-06
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.223 -0.358 -0.282 0.471 2.002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.276435 0.042397 6.52 8.5e-11 ***
## clate_W 0.290877 0.076268 3.81 0.00014 ***
## X.gender_inp -0.059921 0.020369 -2.94 0.00329 **
## X.age_inp 0.001368 0.000831 1.65 0.09978 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2411 197.17 <2e-16 ***
## Wu-Hausman 1 2410 0.64 0.43
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.528 on 2411 degrees of freedom
## Multiple R-Squared: 0.0479, Adjusted R-squared: 0.0467
## Wald test: 6.89 on 3 and 2411 DF, p-value: 0.000128
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.541 -0.421 -0.301 0.571 1.911
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.470429 0.041978 11.21 < 2e-16 ***
## clate_W 0.258665 0.077494 3.34 0.00086 ***
## X.gender_inp -0.103301 0.020286 -5.09 3.8e-07 ***
## X.age_inp -0.001469 0.000827 -1.78 0.07584 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2402 204.6 <2e-16 ***
## Wu-Hausman 1 2401 0.1 0.75
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.534 on 2402 degrees of freedom
## Multiple R-Squared: 0.0545, Adjusted R-squared: 0.0534
## Wald test: 11.2 on 3 and 2402 DF, p-value: 2.88e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.318 -0.400 -0.322 0.599 1.465
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.418013 0.047877 8.73 < 2e-16 ***
## clate_W 0.309136 0.071952 4.30 1.8e-05 ***
## X.gender_inp -0.065200 0.021046 -3.10 0.002 **
## X.age_inp -0.000629 0.000828 -0.76 0.448
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 238.63 <2e-16 ***
## Wu-Hausman 1 2428 0.24 0.62
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.534 on 2429 degrees of freedom
## Multiple R-Squared: 0.0643, Adjusted R-squared: 0.0632
## Wald test: 8.12 on 3 and 2429 DF, p-value: 2.24e-05
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "#####Creating dataframe.#####"
## [1] "cate_lambda_0_ranking_5"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## [1] "outcome_df:"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 1 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -85.87 -8.49 1.28 10.14 64.86
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.78865 1.44641 -31.66 < 2e-16 ***
## clate_W -2.18467 2.30757 -0.95 0.34
## X.gender_inp -4.58372 0.58943 -7.78 1.1e-14 ***
## X.age_inp -0.00128 0.02703 -0.05 0.96
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2425 197.58 <2e-16 ***
## Wu-Hausman 1 2424 1.73 0.19
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.3 on 2425 degrees of freedom
## Multiple R-Squared: 0.0211, Adjusted R-squared: 0.0198
## Wald test: 24.3 on 3 and 2425 DF, p-value: 1.81e-15
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.565 -8.845 0.889 9.537 58.242
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46.3364 1.2628 -36.69 < 2e-16 ***
## clate_W 7.4533 2.3065 3.23 0.0012 **
## X.gender_inp -4.5082 0.5782 -7.80 9.3e-15 ***
## X.age_inp -0.0297 0.0260 -1.14 0.2538
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2411 175.26 <2e-16 ***
## Wu-Hausman 1 2410 6.77 0.0093 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2411 degrees of freedom
## Multiple R-Squared: -0.00947, Adjusted R-squared: -0.0107
## Wald test: 22.8 on 3 and 2411 DF, p-value: 1.39e-14
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -96.07 -8.30 1.26 9.35 60.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41.1599 1.2256 -33.58 <2e-16 ***
## clate_W -5.6937 2.2628 -2.52 0.0119 *
## X.gender_inp -1.2637 0.5660 -2.23 0.0257 *
## X.age_inp -0.1015 0.0291 -3.48 0.0005 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2421 176.44 <2e-16 ***
## Wu-Hausman 1 2420 8.07 0.0045 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.4 on 2421 degrees of freedom
## Multiple R-Squared: -0.0349, Adjusted R-squared: -0.0362
## Wald test: 9.95 on 3 and 2421 DF, p-value: 1.62e-06
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.56 -10.70 0.63 12.41 89.07
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50.7960 1.5402 -32.98 < 2e-16 ***
## clate_W 15.9445 3.0498 5.23 1.9e-07 ***
## X.gender_inp -0.8228 0.8310 -0.99 0.32
## X.age_inp -0.1487 0.0315 -4.73 2.4e-06 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2440 142.33 <2e-16 ***
## Wu-Hausman 1 2439 3.46 0.063 .
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.4 on 2440 degrees of freedom
## Multiple R-Squared: 0.262, Adjusted R-squared: 0.261
## Wald test: 19.3 on 3 and 2440 DF, p-value: 2.33e-12
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.26 -7.86 1.41 9.68 46.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.4634 1.2675 -58.75 < 2e-16 ***
## clate_W 67.0824 1.8888 35.52 < 2e-16 ***
## X.gender_inp -3.2713 0.5810 -5.63 2.0e-08 ***
## X.age_inp -0.0932 0.0231 -4.04 5.5e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2413 224 <2e-16 ***
## Wu-Hausman 1 2412 0 1
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2413 degrees of freedom
## Multiple R-Squared: 0.862, Adjusted R-squared: 0.861
## Wald test: 467 on 3 and 2413 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -115.96 -7.45 1.68 9.60 60.37
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -94.7101 1.4138 -66.99 <2e-16 ***
## clate_W 5.4039 2.7422 1.97 0.049 *
## X.gender_inp 8.3672 0.7414 11.29 <2e-16 ***
## X.age_inp -0.8173 0.0301 -27.13 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 138.29 <2e-16 ***
## Wu-Hausman 1 2429 1.84 0.18
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.1 on 2430 degrees of freedom
## Multiple R-Squared: 0.271, Adjusted R-squared: 0.27
## Wald test: 310 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -155.30 -7.55 1.46 9.80 51.29
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -104.6726 1.1789 -88.79 <2e-16 ***
## clate_W 8.6344 3.0711 2.81 0.005 **
## X.gender_inp 9.3503 0.6631 14.10 <2e-16 ***
## X.age_inp -0.5532 0.0242 -22.81 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 109.71 <2e-16 ***
## Wu-Hausman 1 2428 4.94 0.026 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.5 on 2429 degrees of freedom
## Multiple R-Squared: 0.226, Adjusted R-squared: 0.225
## Wald test: 270 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -117.32 -8.16 2.36 11.41 49.12
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -107.7594 1.4209 -75.8 <2e-16 ***
## clate_W 1.1990 2.3900 0.5 0.62
## X.gender_inp 8.6577 0.6570 13.2 <2e-16 ***
## X.age_inp -0.4132 0.0276 -15.0 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 244.05 <2e-16 ***
## Wu-Hausman 1 2428 0.67 0.41
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.4 on 2429 degrees of freedom
## Multiple R-Squared: 0.138, Adjusted R-squared: 0.137
## Wald test: 126 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -95.32 -14.11 1.11 15.58 92.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -125.0018 2.1282 -58.74 < 2e-16 ***
## clate_W 20.9059 3.3343 6.27 4.3e-10 ***
## X.gender_inp 8.2034 0.9105 9.01 < 2e-16 ***
## X.age_inp -0.2266 0.0386 -5.87 4.9e-09 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 204.34 <2e-16 ***
## Wu-Hausman 1 2428 7.18 0.0074 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.1 on 2429 degrees of freedom
## Multiple R-Squared: 0.319, Adjusted R-squared: 0.318
## Wald test: 87.2 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -141.30 -9.10 1.81 10.95 88.03
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -141.6294 1.5261 -92.8 <2e-16 ***
## clate_W 77.1465 2.3417 32.9 <2e-16 ***
## X.gender_inp 7.2421 0.7174 10.1 <2e-16 ***
## X.age_inp -0.5073 0.0286 -17.7 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 235.48 <2e-16 ***
## Wu-Hausman 1 2429 8.64 0.0033 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.3 on 2430 degrees of freedom
## Multiple R-Squared: 0.863, Adjusted R-squared: 0.863
## Wald test: 683 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_sbp_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.739 -0.523 -0.448 0.524 1.660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.540292 0.062812 8.60 <2e-16 ***
## clate_W 0.024653 0.118731 0.21 0.836
## X.gender_inp -0.067606 0.026925 -2.51 0.012 *
## X.age_inp -0.000433 0.001178 -0.37 0.713
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 93.36 <2e-16 ***
## Wu-Hausman 1 2414 1.69 0.19
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.563 on 2415 degrees of freedom
## Multiple R-Squared: 0.0104, Adjusted R-squared: 0.00913
## Wald test: 3.35 on 3 and 2415 DF, p-value: 0.0184
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.948 -0.342 -0.239 0.416 2.442
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.251575 0.043822 5.74 1.1e-08 ***
## clate_W 0.383523 0.081614 4.70 2.8e-06 ***
## X.gender_inp -0.088315 0.023717 -3.72 0.0002 ***
## X.age_inp 0.001834 0.000838 2.19 0.0287 *
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 165.94 <2e-16 ***
## Wu-Hausman 1 2414 1.66 0.2
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.528 on 2415 degrees of freedom
## Multiple R-Squared: 0.0643, Adjusted R-squared: 0.0632
## Wald test: 8.7 on 3 and 2415 DF, p-value: 9.66e-06
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.351 -0.336 -0.250 0.438 1.657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.339510 0.041308 8.22 3.3e-16 ***
## clate_W 0.349964 0.079380 4.41 1.1e-05 ***
## X.gender_inp -0.077703 0.021162 -3.67 0.00025 ***
## X.age_inp -0.000402 0.000819 -0.49 0.62354
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2414 181.04 <2e-16 ***
## Wu-Hausman 1 2413 2.27 0.13
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.529 on 2414 degrees of freedom
## Multiple R-Squared: 0.0407, Adjusted R-squared: 0.0395
## Wald test: 8.61 on 3 and 2414 DF, p-value: 1.1e-05
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.378 -0.349 -0.280 0.424 1.665
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38650 0.03958 9.77 <2e-16 ***
## clate_W 0.37210 0.08133 4.58 5e-06 ***
## X.gender_inp -0.05369 0.02045 -2.62 0.0087 **
## X.age_inp -0.00128 0.00082 -1.56 0.1201
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 180.45 <2e-16 ***
## Wu-Hausman 1 2414 1.51 0.22
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.529 on 2415 degrees of freedom
## Multiple R-Squared: 0.0582, Adjusted R-squared: 0.0571
## Wald test: 8.17 on 3 and 2415 DF, p-value: 2.08e-05
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.550 -0.398 -0.298 0.611 1.537
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.386682 0.049066 7.88 4.9e-15 ***
## clate_W 0.316206 0.062533 5.06 4.6e-07 ***
## X.gender_inp -0.075347 0.020143 -3.74 0.00019 ***
## X.age_inp -0.000268 0.000933 -0.29 0.77368
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 329.9 <2e-16 ***
## Wu-Hausman 1 2414 0.7 0.4
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.533 on 2415 degrees of freedom
## Multiple R-Squared: 0.0602, Adjusted R-squared: 0.059
## Wald test: 11.2 on 3 and 2415 DF, p-value: 2.5e-07
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_debt_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86.56 -8.02 1.34 9.81 65.31
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46.40983 1.34996 -34.38 < 2e-16 ***
## clate_W -0.68870 2.20327 -0.31 0.75
## X.gender_inp -4.03943 0.56450 -7.16 1.1e-12 ***
## X.age_inp 0.00719 0.02441 0.29 0.77
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2428 196.94 <2e-16 ***
## Wu-Hausman 1 2427 0.89 0.35
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.8 on 2428 degrees of freedom
## Multiple R-Squared: 0.0207, Adjusted R-squared: 0.0195
## Wald test: 19.2 on 3 and 2428 DF, p-value: 2.68e-12
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.782 -8.151 0.729 9.203 71.464
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.2506 1.0820 -39.97 < 2e-16 ***
## clate_W 2.9347 2.3489 1.25 0.21164
## X.gender_inp -3.1162 0.5810 -5.36 9e-08 ***
## X.age_inp -0.0897 0.0236 -3.80 0.00015 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2425 171.70 <2e-16 ***
## Wu-Hausman 1 2424 0.88 0.35
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.4 on 2425 degrees of freedom
## Multiple R-Squared: 0.016, Adjusted R-squared: 0.0148
## Wald test: 17.2 on 3 and 2425 DF, p-value: 4.8e-11
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -92.36 -7.93 1.36 9.55 50.74
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -40.3838 1.3433 -30.06 < 2e-16 ***
## clate_W -1.4980 2.3768 -0.63 0.53
## X.gender_inp -3.4956 0.5889 -5.94 3.3e-09 ***
## X.age_inp -0.1248 0.0286 -4.37 1.3e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2427 156.74 <2e-16 ***
## Wu-Hausman 1 2426 1.74 0.19
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2427 degrees of freedom
## Multiple R-Squared: 0.0157, Adjusted R-squared: 0.0145
## Wald test: 19.6 on 3 and 2427 DF, p-value: 1.41e-12
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.253 -11.517 0.693 12.699 91.870
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -53.9934 1.6447 -32.83 < 2e-16 ***
## clate_W 14.1216 2.9069 4.86 1.3e-06 ***
## X.gender_inp -0.0479 0.8090 -0.06 0.953
## X.age_inp -0.0585 0.0331 -1.76 0.078 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2425 166.96 <2e-16 ***
## Wu-Hausman 1 2424 6.85 0.0089 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.7 on 2425 degrees of freedom
## Multiple R-Squared: 0.237, Adjusted R-squared: 0.236
## Wald test: 11.7 on 3 and 2425 DF, p-value: 1.24e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.98 -7.84 1.32 9.78 41.38
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.5369 1.2865 -57.94 < 2e-16 ***
## clate_W 67.0889 1.9302 34.76 < 2e-16 ***
## X.gender_inp -3.3768 0.5819 -5.80 7.4e-09 ***
## X.age_inp -0.0927 0.0231 -4.01 6.3e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 216 <2e-16 ***
## Wu-Hausman 1 2425 0 0.98
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.86, Adjusted R-squared: 0.86
## Wald test: 451 on 3 and 2426 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_1"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -116.97 -7.88 1.76 10.20 60.03
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -95.1821 1.5068 -63.17 <2e-16 ***
## clate_W 5.4245 3.0032 1.81 0.071 .
## X.gender_inp 8.2184 0.7836 10.49 <2e-16 ***
## X.age_inp -0.7989 0.0297 -26.94 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 123.85 <2e-16 ***
## Wu-Hausman 1 2429 1.69 0.19
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.7 on 2430 degrees of freedom
## Multiple R-Squared: 0.266, Adjusted R-squared: 0.265
## Wald test: 304 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -155.67 -7.32 1.38 9.75 50.93
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -104.5264 1.1841 -88.28 <2e-16 ***
## clate_W 8.5654 2.7769 3.08 0.0021 **
## X.gender_inp 9.4821 0.6449 14.70 <2e-16 ***
## X.age_inp -0.5545 0.0247 -22.50 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 140.36 <2e-16 ***
## Wu-Hausman 1 2428 5.95 0.015 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.8 on 2429 degrees of freedom
## Multiple R-Squared: 0.224, Adjusted R-squared: 0.223
## Wald test: 266 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -117.44 -8.12 2.00 11.04 47.14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -108.6245 1.3184 -82.39 <2e-16 ***
## clate_W 2.1617 2.3514 0.92 0.36
## X.gender_inp 9.0929 0.6344 14.33 <2e-16 ***
## X.age_inp -0.3941 0.0255 -15.47 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 225.58 <2e-16 ***
## Wu-Hausman 1 2428 0.44 0.51
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.6 on 2429 degrees of freedom
## Multiple R-Squared: 0.167, Adjusted R-squared: 0.166
## Wald test: 155 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -95.79 -14.20 1.49 15.67 74.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -123.4034 2.0847 -59.19 < 2e-16 ***
## clate_W 18.7725 3.4128 5.50 4.2e-08 ***
## X.gender_inp 8.0603 0.9170 8.79 < 2e-16 ***
## X.age_inp -0.2430 0.0384 -6.33 2.8e-10 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 198.7 <2e-16 ***
## Wu-Hausman 1 2428 10.4 0.0013 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.2 on 2429 degrees of freedom
## Multiple R-Squared: 0.301, Adjusted R-squared: 0.3
## Wald test: 79.7 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -140.87 -9.11 1.75 10.94 87.86
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -141.5549 1.5249 -92.8 <2e-16 ***
## clate_W 77.4206 2.3339 33.2 <2e-16 ***
## X.gender_inp 7.2460 0.7190 10.1 <2e-16 ***
## X.age_inp -0.5118 0.0286 -17.9 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 237.12 <2e-16 ***
## Wu-Hausman 1 2429 8.11 0.0044 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.3 on 2430 degrees of freedom
## Multiple R-Squared: 0.863, Adjusted R-squared: 0.863
## Wald test: 699 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_sbp_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.711 -0.519 -0.445 0.518 1.680
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.21e-01 6.22e-02 8.37 <2e-16 ***
## clate_W 5.60e-02 1.18e-01 0.48 0.6347
## X.gender_inp -7.24e-02 2.67e-02 -2.71 0.0068 **
## X.age_inp -5.26e-05 1.16e-03 -0.05 0.9638
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 94.08 <2e-16 ***
## Wu-Hausman 1 2414 1.03 0.31
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.561 on 2415 degrees of freedom
## Multiple R-Squared: 0.0168, Adjusted R-squared: 0.0155
## Wald test: 3.42 on 3 and 2415 DF, p-value: 0.0166
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.868 -0.359 -0.278 0.457 2.322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.294334 0.043713 6.73 2.1e-11 ***
## clate_W 0.311124 0.079001 3.94 8.4e-05 ***
## X.gender_inp -0.064806 0.022940 -2.82 0.0048 **
## X.age_inp 0.001081 0.000843 1.28 0.1998
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 179.37 <2e-16 ***
## Wu-Hausman 1 2414 0.25 0.62
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.528 on 2415 degrees of freedom
## Multiple R-Squared: 0.0662, Adjusted R-squared: 0.065
## Wald test: 5.62 on 3 and 2415 DF, p-value: 0.000776
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.361 -0.339 -0.236 0.442 1.701
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.336942 0.040874 8.24 2.7e-16 ***
## clate_W 0.352965 0.081123 4.35 1.4e-05 ***
## X.gender_inp -0.092912 0.021516 -4.32 1.6e-05 ***
## X.age_inp -0.000264 0.000818 -0.32 0.75
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2414 167.9 <2e-16 ***
## Wu-Hausman 1 2413 2.1 0.15
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.526 on 2414 degrees of freedom
## Multiple R-Squared: 0.0451, Adjusted R-squared: 0.0439
## Wald test: 9.39 on 3 and 2414 DF, p-value: 3.61e-06
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.387 -0.345 -0.275 0.415 1.443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.387683 0.039537 9.81 < 2e-16 ***
## clate_W 0.384108 0.079540 4.83 1.5e-06 ***
## X.gender_inp -0.052266 0.020283 -2.58 0.010 *
## X.age_inp -0.001430 0.000805 -1.77 0.076 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 188.84 <2e-16 ***
## Wu-Hausman 1 2414 1.83 0.18
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.529 on 2415 degrees of freedom
## Multiple R-Squared: 0.0596, Adjusted R-squared: 0.0584
## Wald test: 9.13 on 3 and 2415 DF, p-value: 5.25e-06
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.563 -0.394 -0.299 0.616 1.557
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.364041 0.049103 7.41 1.7e-13 ***
## clate_W 0.335019 0.063601 5.27 1.5e-07 ***
## X.gender_inp -0.071594 0.020127 -3.56 0.00038 ***
## X.age_inp 0.000125 0.000940 0.13 0.89418
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 321.77 <2e-16 ***
## Wu-Hausman 1 2414 1.18 0.28
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.533 on 2415 degrees of freedom
## Multiple R-Squared: 0.0588, Adjusted R-squared: 0.0577
## Wald test: 11.4 on 3 and 2415 DF, p-value: 2.04e-07
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_debt_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86.85 -7.94 1.14 9.81 72.50
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46.8458 1.3535 -34.61 <2e-16 ***
## clate_W -0.2472 2.2006 -0.11 0.91
## X.gender_inp -3.7313 0.5652 -6.60 5e-11 ***
## X.age_inp 0.0125 0.0248 0.50 0.62
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2427 200.09 <2e-16 ***
## Wu-Hausman 1 2426 0.36 0.55
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.8 on 2427 degrees of freedom
## Multiple R-Squared: 0.0187, Adjusted R-squared: 0.0175
## Wald test: 15.9 on 3 and 2427 DF, p-value: 3.06e-10
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.494 -8.163 0.952 9.264 59.163
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.2279 1.0709 -40.37 < 2e-16 ***
## clate_W 3.0303 2.3567 1.29 0.2
## X.gender_inp -3.3050 0.5720 -5.78 8.6e-09 ***
## X.age_inp -0.0912 0.0234 -3.90 9.9e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 169.2 <2e-16 ***
## Wu-Hausman 1 2425 0.7 0.4
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.3 on 2426 degrees of freedom
## Multiple R-Squared: 0.0197, Adjusted R-squared: 0.0185
## Wald test: 19 on 3 and 2426 DF, p-value: 3.57e-12
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -92.43 -8.16 1.19 9.45 51.13
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -40.2637 1.3769 -29.24 < 2e-16 ***
## clate_W -1.9105 2.3777 -0.80 0.42
## X.gender_inp -3.5843 0.5974 -6.00 2.3e-09 ***
## X.age_inp -0.1232 0.0292 -4.22 2.5e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 153.35 <2e-16 ***
## Wu-Hausman 1 2425 2.29 0.13
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.0132, Adjusted R-squared: 0.012
## Wald test: 20.5 on 3 and 2426 DF, p-value: 3.81e-13
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -101.037 -11.383 0.742 12.777 92.928
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -52.8035 1.6340 -32.32 < 2e-16 ***
## clate_W 13.5868 2.9096 4.67 3.2e-06 ***
## X.gender_inp -0.0925 0.8080 -0.11 0.91
## X.age_inp -0.0852 0.0332 -2.57 0.01 *
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 169.95 <2e-16 ***
## Wu-Hausman 1 2425 8.01 0.0047 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.9 on 2426 degrees of freedom
## Multiple R-Squared: 0.231, Adjusted R-squared: 0.23
## Wald test: 11.8 on 3 and 2426 DF, p-value: 1.1e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.26 -7.93 1.28 9.76 46.61
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.5878 1.2862 -57.99 < 2e-16 ***
## clate_W 67.2576 1.9263 34.91 < 2e-16 ***
## X.gender_inp -3.2871 0.5831 -5.64 1.9e-08 ***
## X.age_inp -0.0940 0.0232 -4.05 5.3e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 217.38 <2e-16 ***
## Wu-Hausman 1 2425 0.01 0.93
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.86, Adjusted R-squared: 0.86
## Wald test: 456 on 3 and 2426 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_2"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -116.18 -7.83 1.89 10.52 60.88
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -95.6011 1.5513 -61.62 <2e-16 ***
## clate_W 6.4285 2.9952 2.15 0.032 *
## X.gender_inp 7.6250 0.8056 9.47 <2e-16 ***
## X.age_inp -0.7865 0.0296 -26.62 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 134.14 <2e-16 ***
## Wu-Hausman 1 2429 2.18 0.14
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.3 on 2430 degrees of freedom
## Multiple R-Squared: 0.259, Adjusted R-squared: 0.258
## Wald test: 294 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -157.45 -7.48 1.28 9.71 48.94
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -104.7446 1.2187 -86.0 <2e-16 ***
## clate_W 7.1743 2.7584 2.6 0.0094 **
## X.gender_inp 10.0727 0.6337 15.9 <2e-16 ***
## X.age_inp -0.5391 0.0246 -21.9 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 138.14 <2e-16 ***
## Wu-Hausman 1 2428 4.02 0.045 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.6 on 2429 degrees of freedom
## Multiple R-Squared: 0.237, Adjusted R-squared: 0.236
## Wald test: 274 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -117.17 -7.83 1.76 10.67 47.08
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -108.5960 1.2734 -85.28 <2e-16 ***
## clate_W 2.9262 2.4586 1.19 0.23
## X.gender_inp 9.3414 0.6272 14.89 <2e-16 ***
## X.age_inp -0.3982 0.0246 -16.16 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 196.77 <2e-16 ***
## Wu-Hausman 1 2428 0.08 0.78
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.3 on 2429 degrees of freedom
## Multiple R-Squared: 0.188, Adjusted R-squared: 0.187
## Wald test: 179 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -96.10 -14.11 1.68 15.71 76.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -122.2330 1.9921 -61.36 < 2e-16 ***
## clate_W 17.1155 3.2695 5.23 1.8e-07 ***
## X.gender_inp 7.7953 0.9198 8.48 < 2e-16 ***
## X.age_inp -0.2530 0.0378 -6.70 2.6e-11 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 218.8 < 2e-16 ***
## Wu-Hausman 1 2428 14.3 0.00016 ***
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.3 on 2429 degrees of freedom
## Multiple R-Squared: 0.286, Adjusted R-squared: 0.285
## Wald test: 74.4 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -140.80 -9.10 1.67 10.95 87.46
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -141.6926 1.5246 -92.9 <2e-16 ***
## clate_W 77.6114 2.3291 33.3 <2e-16 ***
## X.gender_inp 7.2181 0.7177 10.1 <2e-16 ***
## X.age_inp -0.5097 0.0285 -17.9 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 235.83 <2e-16 ***
## Wu-Hausman 1 2429 7.88 0.005 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.2 on 2430 degrees of freedom
## Multiple R-Squared: 0.865, Adjusted R-squared: 0.865
## Wald test: 713 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_sbp_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.706 -0.518 -0.446 0.518 1.668
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.17e-01 6.12e-02 8.43 <2e-16 ***
## clate_W 5.74e-02 1.20e-01 0.48 0.631
## X.gender_inp -6.84e-02 2.67e-02 -2.56 0.011 *
## X.age_inp 3.12e-05 1.12e-03 0.03 0.978
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 90.40 <2e-16 ***
## Wu-Hausman 1 2414 1.15 0.28
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.561 on 2415 degrees of freedom
## Multiple R-Squared: 0.0175, Adjusted R-squared: 0.0163
## Wald test: 3.01 on 3 and 2415 DF, p-value: 0.0291
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.791 -0.371 -0.286 0.486 2.298
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.316665 0.043959 7.20 7.8e-13 ***
## clate_W 0.276495 0.079378 3.48 0.0005 ***
## X.gender_inp -0.069860 0.022529 -3.10 0.0020 **
## X.age_inp 0.000828 0.000839 0.99 0.3234
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 178.12 <2e-16 ***
## Wu-Hausman 1 2414 0.02 0.89
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.527 on 2415 degrees of freedom
## Multiple R-Squared: 0.0641, Adjusted R-squared: 0.063
## Wald test: 4.98 on 3 and 2415 DF, p-value: 0.00191
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.268 -0.339 -0.232 0.435 2.083
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.21e-01 4.06e-02 7.90 4.3e-15 ***
## clate_W 3.62e-01 8.10e-02 4.47 8.3e-06 ***
## X.gender_inp -8.65e-02 2.21e-02 -3.91 9.5e-05 ***
## X.age_inp -7.33e-05 8.19e-04 -0.09 0.93
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2414 169.80 <2e-16 ***
## Wu-Hausman 1 2413 2.56 0.11
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.527 on 2414 degrees of freedom
## Multiple R-Squared: 0.0399, Adjusted R-squared: 0.0387
## Wald test: 8.44 on 3 and 2414 DF, p-value: 1.4e-05
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.505 -0.331 -0.261 0.386 1.465
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.363601 0.039809 9.13 < 2e-16 ***
## clate_W 0.427497 0.077723 5.50 4.2e-08 ***
## X.gender_inp -0.056811 0.020283 -2.80 0.0051 **
## X.age_inp -0.001140 0.000807 -1.41 0.1578
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2416 199.19 <2e-16 ***
## Wu-Hausman 1 2415 4.06 0.044 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.533 on 2416 degrees of freedom
## Multiple R-Squared: 0.0489, Adjusted R-squared: 0.0477
## Wald test: 11.4 on 3 and 2416 DF, p-value: 1.98e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.563 -0.400 -0.313 0.610 1.485
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.406858 0.048469 8.39 < 2e-16 ***
## clate_W 0.310488 0.064039 4.85 1.3e-06 ***
## X.gender_inp -0.063633 0.020059 -3.17 0.0015 **
## X.age_inp -0.000612 0.000930 -0.66 0.5104
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2414 316.5 <2e-16 ***
## Wu-Hausman 1 2413 0.4 0.53
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.533 on 2414 degrees of freedom
## Multiple R-Squared: 0.0617, Adjusted R-squared: 0.0605
## Wald test: 9.73 on 3 and 2414 DF, p-value: 2.22e-06
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_debt_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86.84 -7.95 1.21 9.90 72.46
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46.8145 1.3750 -34.05 < 2e-16 ***
## clate_W 0.0332 2.1575 0.02 0.99
## X.gender_inp -3.7038 0.5630 -6.58 5.8e-11 ***
## X.age_inp 0.0113 0.0253 0.45 0.66
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2427 211.86 <2e-16 ***
## Wu-Hausman 1 2426 0.25 0.62
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.9 on 2427 degrees of freedom
## Multiple R-Squared: 0.0187, Adjusted R-squared: 0.0175
## Wald test: 15.4 on 3 and 2427 DF, p-value: 6.57e-10
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.024 -8.140 0.773 9.079 58.455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.4778 1.0523 -41.32 < 2e-16 ***
## clate_W 2.3819 2.2834 1.04 0.29698
## X.gender_inp -3.6288 0.5701 -6.36 2.3e-10 ***
## X.age_inp -0.0808 0.0232 -3.48 0.00051 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 176.33 <2e-16 ***
## Wu-Hausman 1 2425 0.39 0.53
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.2 on 2426 degrees of freedom
## Multiple R-Squared: 0.0236, Adjusted R-squared: 0.0224
## Wald test: 20.8 on 3 and 2426 DF, p-value: 2.82e-13
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -92.66 -7.98 1.23 9.36 51.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -40.3513 1.3748 -29.35 < 2e-16 ***
## clate_W -1.8079 2.5101 -0.72 0.47
## X.gender_inp -3.1382 0.6174 -5.08 4.0e-07 ***
## X.age_inp -0.1283 0.0292 -4.39 1.2e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 139.36 <2e-16 ***
## Wu-Hausman 1 2425 2.01 0.16
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.01, Adjusted R-squared: 0.00882
## Wald test: 17.3 on 3 and 2426 DF, p-value: 4.16e-11
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -100.503 -11.319 0.704 12.960 92.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -52.1847 1.6397 -31.83 < 2e-16 ***
## clate_W 13.4001 2.9188 4.59 4.6e-06 ***
## X.gender_inp -0.4114 0.8033 -0.51 0.6086
## X.age_inp -0.0941 0.0332 -2.84 0.0046 **
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 167.44 <2e-16 ***
## Wu-Hausman 1 2425 8.15 0.0043 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.9 on 2426 degrees of freedom
## Multiple R-Squared: 0.23, Adjusted R-squared: 0.229
## Wald test: 11.5 on 3 and 2426 DF, p-value: 1.78e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.58 -7.93 1.28 9.79 46.73
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.5432 1.2811 -58.19 < 2e-16 ***
## clate_W 67.5392 1.9220 35.14 < 2e-16 ***
## X.gender_inp -3.3061 0.5824 -5.68 1.5e-08 ***
## X.age_inp -0.0967 0.0231 -4.18 3.0e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 217.83 <2e-16 ***
## Wu-Hausman 1 2425 0.04 0.84
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.861, Adjusted R-squared: 0.86
## Wald test: 463 on 3 and 2426 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_3"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_sbp_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_sbp_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,167
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -144.00, -134.00, -84.61, -168.00, -160.39, -…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 3.5659, 3.3977, 86.5757, 0.8981, 75.1033, 3.2…
## $ clate_se <dbl> 4.664, 2.461, 4.745, 4.609, 5.278, 3.311, 3.8…
## $ clate_ranking_5 <int> 2, 2, 5, 1, 5, 2, 2, 5, 2, 2, 1, 3, 4, 3, 1, …
## $ clate_ranking_20 <int> 8, 8, 20, 3, 18, 8, 6, 17, 6, 8, 1, 12, 16, 9…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_se <dbl> 1.7130, 1.1941, 3.9508, 2.1447, 2.4046, 1.094…
## $ cate_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_0 <dbl> 1.88542, 0.47401, 28.31469, -0.08733, 20.6914…
## $ cate_lambda_0_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_0_ranking_20 <int> 12, 6, 20, 3, 18, 4, 3, 18, 11, 9, 1, 13, 18,…
## $ cate_lambda_1 <dbl> 1.4572, 0.1755, 27.3270, -0.6235, 20.0903, -0…
## $ cate_lambda_1_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 3, 2, …
## $ cate_lambda_1_ranking_20 <int> 12, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 13, 17,…
## $ cate_lambda_2 <dbl> 1.02891, -0.12306, 26.33931, -1.15968, 19.489…
## $ cate_lambda_2_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 3, 1, 4, 5, 2, 2, …
## $ cate_lambda_2_ranking_20 <int> 11, 6, 20, 2, 18, 4, 3, 18, 11, 9, 1, 14, 17,…
## $ cate_lambda_3 <dbl> 0.600652, -0.421592, 25.351623, -1.695847, 18…
## $ cate_lambda_3_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_3_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 8, 1, 14, 17,…
## $ cate_lambda_4 <dbl> 0.17239, -0.72012, 24.36394, -2.23202, 18.286…
## $ cate_lambda_4_ranking_5 <int> 3, 2, 5, 1, 5, 1, 1, 5, 3, 2, 1, 4, 5, 2, 2, …
## $ cate_lambda_4_ranking_20 <int> 11, 6, 20, 1, 18, 4, 4, 18, 11, 7, 1, 14, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12167"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12167" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12167" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 3 3 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 1 1 1
## 5 18 5 5 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -144.00 0 1 1.1504 8
## 2 0 0 -134.00 0 0 0.8975 1
## 3 1888 1888 -84.61 1 0 1.0000 10
## 4 0 0 -168.00 0 0 1.2126 3
## 5 1715 1006 -160.39 0 0 1.0000 10
## 6 0 0 -98.00 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 3.5659 4.664 2 8 1 1.88542 1.713
## 2 3.3977 2.461 2 8 0 0.47401 1.194
## 3 86.5757 4.745 5 20 0 28.31469 3.951
## 4 0.8981 4.609 1 3 0 -0.08733 2.145
## 5 75.1033 5.278 5 18 0 20.69142 2.405
## 6 3.2103 3.311 2 8 1 0.09818 1.095
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 3 12 1.88542 3
## 2 2 6 0.47401 2
## 3 5 20 28.31469 5
## 4 1 3 -0.08733 1
## 5 5 18 20.69142 5
## 6 1 4 0.09818 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 12 1.4572 3
## 2 6 0.1755 2
## 3 20 27.3270 5
## 4 3 -0.6235 1
## 5 18 20.0903 5
## 6 4 -0.1755 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 12 1.0289 3
## 2 6 -0.1231 2
## 3 20 26.3393 5
## 4 2 -1.1597 1
## 5 18 19.4891 5
## 6 4 -0.4493 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 11 0.6007 3
## 2 6 -0.4216 2
## 3 20 25.3516 5
## 4 2 -1.6958 1
## 5 18 18.8880 5
## 6 4 -0.7230 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 11 0.1724 3
## 2 6 -0.7201 2
## 3 20 24.3639 5
## 4 1 -2.2320 1
## 5 18 18.2868 5
## 6 4 -0.9967 1
## cate_lambda_4_ranking_20
## 1 11
## 2 6
## 3 20
## 4 1
## 5 18
## 6 4
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -117.20 -8.27 2.05 10.98 62.21
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -96.4482 1.6240 -59.39 <2e-16 ***
## clate_W 6.8383 3.0278 2.26 0.024 *
## X.gender_inp 7.7805 0.8287 9.39 <2e-16 ***
## X.age_inp -0.7668 0.0298 -25.76 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 142.22 <2e-16 ***
## Wu-Hausman 1 2429 2.52 0.11
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18 on 2430 degrees of freedom
## Multiple R-Squared: 0.248, Adjusted R-squared: 0.247
## Wald test: 280 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -157.74 -7.72 1.23 9.71 48.58
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -105.0146 1.2579 -83.48 <2e-16 ***
## clate_W 7.0509 2.7609 2.55 0.011 *
## X.gender_inp 10.0737 0.6425 15.68 <2e-16 ***
## X.age_inp -0.5292 0.0247 -21.45 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 134.37 <2e-16 ***
## Wu-Hausman 1 2428 4.03 0.045 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.4 on 2429 degrees of freedom
## Multiple R-Squared: 0.244, Adjusted R-squared: 0.243
## Wald test: 285 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -118.02 -7.61 1.68 10.59 45.96
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -108.5950 1.2243 -88.70 <2e-16 ***
## clate_W 1.9301 2.4483 0.79 0.43
## X.gender_inp 9.6060 0.6178 15.55 <2e-16 ***
## X.age_inp -0.3870 0.0241 -16.04 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 189.76 <2e-16 ***
## Wu-Hausman 1 2428 0.55 0.46
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16 on 2429 degrees of freedom
## Multiple R-Squared: 0.196, Adjusted R-squared: 0.195
## Wald test: 190 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -95.8 -13.8 1.5 15.5 75.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -120.9649 1.9397 -62.36 < 2e-16 ***
## clate_W 16.8535 3.2764 5.14 2.9e-07 ***
## X.gender_inp 7.5349 0.9183 8.21 3.7e-16 ***
## X.age_inp -0.2747 0.0372 -7.38 2.2e-13 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2429 216.2 < 2e-16 ***
## Wu-Hausman 1 2428 14.9 0.00012 ***
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.1 on 2429 degrees of freedom
## Multiple R-Squared: 0.286, Adjusted R-squared: 0.285
## Wald test: 74.8 on 3 and 2429 DF, p-value: <2e-16
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -141.07 -9.15 1.63 10.89 87.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -141.6350 1.5195 -93.2 <2e-16 ***
## clate_W 77.4209 2.3251 33.3 <2e-16 ***
## X.gender_inp 7.3079 0.7183 10.2 <2e-16 ***
## X.age_inp -0.5100 0.0286 -17.9 <2e-16 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2430 237.87 <2e-16 ***
## Wu-Hausman 1 2429 8.55 0.0035 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.2 on 2430 degrees of freedom
## Multiple R-Squared: 0.864, Adjusted R-squared: 0.864
## Wald test: 704 on 3 and 2430 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_sbp_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_debt_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_debt_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,094
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <int> 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> 0.39883, 0.19916, 0.18745, 0.41306, 0.23865, …
## $ clate_se <dbl> 0.16302, 0.10261, 0.11559, 0.05780, 0.07205, …
## $ clate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 2, 3, 4, 4, 2, 4, 2, …
## $ clate_ranking_20 <int> 18, 4, 3, 19, 6, 1, 1, 5, 7, 10, 14, 14, 8, 1…
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_se <dbl> 0.009730, 0.024135, 0.027492, 0.019527, 0.018…
## $ cate_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_0 <dbl> 0.09723, 0.05205, 0.04867, 0.09769, 0.07025, …
## $ cate_lambda_0_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_0_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 14, 9, 15, 17, 8, 1…
## $ cate_lambda_1 <dbl> 0.09480, 0.04601, 0.04180, 0.09281, 0.06560, …
## $ cate_lambda_1_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 5, 2, 5, 4, …
## $ cate_lambda_1_ranking_20 <int> 19, 4, 3, 19, 7, 1, 1, 7, 15, 9, 15, 17, 8, 1…
## $ cate_lambda_2 <dbl> 0.092368, 0.039981, 0.034923, 0.087925, 0.060…
## $ cate_lambda_2_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 4, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_2_ranking_20 <int> 19, 4, 3, 19, 8, 1, 1, 7, 16, 10, 16, 15, 8, …
## $ cate_lambda_3 <dbl> 0.089936, 0.033947, 0.028050, 0.083043, 0.056…
## $ cate_lambda_3_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 4, 4, 2, 5, 4, …
## $ cate_lambda_3_ranking_20 <int> 20, 4, 3, 18, 8, 1, 1, 7, 17, 11, 16, 14, 8, …
## $ cate_lambda_4 <dbl> 0.087503, 0.027914, 0.021177, 0.078162, 0.051…
## $ cate_lambda_4_ranking_5 <int> 5, 1, 1, 5, 2, 1, 1, 2, 5, 3, 5, 4, 2, 5, 4, …
## $ cate_lambda_4_ranking_20 <int> 20, 3, 2, 18, 8, 1, 1, 7, 17, 11, 17, 14, 8, …
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12094"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12094" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12094" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 5 5 1
## 2 8 1 1 2
## 3 16 1 1 2
## 4 17 5 5 1
## 5 18 2 2 1
## 6 23 1 1 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds clate
## 1 0 0 1 0 1 1.1504 8 0.39883
## 2 0 0 0 0 0 0.8975 1 0.19916
## 3 1888 1888 1 1 0 1.0000 10 0.18745
## 4 0 0 0 0 0 1.2126 3 0.41306
## 5 1715 1006 1 0 0 1.0000 10 0.23865
## 6 0 0 0 1 1 1.0033 9 0.02548
## clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 0.16302 5 18 1 0.09723 0.009730
## 2 0.10261 1 4 0 0.05205 0.024135
## 3 0.11559 1 3 0 0.04867 0.027492
## 4 0.05780 5 19 0 0.09769 0.019527
## 5 0.07205 2 6 0 0.07025 0.018605
## 6 0.22824 1 1 1 0.02229 0.009796
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 5 19 0.09723 5
## 2 1 4 0.05205 1
## 3 1 3 0.04867 1
## 4 5 19 0.09769 5
## 5 2 7 0.07025 2
## 6 1 1 0.02229 1
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 19 0.09480 5
## 2 4 0.04601 1
## 3 3 0.04180 1
## 4 19 0.09281 5
## 5 7 0.06560 2
## 6 1 0.01984 1
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 19 0.09237 5
## 2 4 0.03998 1
## 3 3 0.03492 1
## 4 19 0.08793 5
## 5 7 0.06095 2
## 6 1 0.01739 1
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 19 0.08994 5
## 2 4 0.03395 1
## 3 3 0.02805 1
## 4 19 0.08304 5
## 5 8 0.05629 2
## 6 1 0.01494 1
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 20 0.08750 5
## 2 4 0.02791 1
## 3 3 0.02118 1
## 4 18 0.07816 5
## 5 8 0.05164 2
## 6 1 0.01249 1
## cate_lambda_4_ranking_20
## 1 20
## 2 3
## 3 2
## 4 18
## 5 8
## 6 1
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.701 -0.520 -0.445 0.517 1.656
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.506506 0.060212 8.41 <2e-16 ***
## clate_W 0.056000 0.120620 0.46 0.642
## X.gender_inp -0.068036 0.026656 -2.55 0.011 *
## X.age_inp 0.000318 0.001099 0.29 0.773
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 89.02 <2e-16 ***
## Wu-Hausman 1 2414 1.22 0.27
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.561 on 2415 degrees of freedom
## Multiple R-Squared: 0.0175, Adjusted R-squared: 0.0163
## Wald test: 3.03 on 3 and 2415 DF, p-value: 0.0283
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.797 -0.371 -0.286 0.487 2.296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.323148 0.044722 7.23 6.7e-13 ***
## clate_W 0.275490 0.079836 3.45 0.00057 ***
## X.gender_inp -0.069541 0.022408 -3.10 0.00194 **
## X.age_inp 0.000665 0.000837 0.79 0.42682
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 174.59 <2e-16 ***
## Wu-Hausman 1 2414 0.03 0.86
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.528 on 2415 degrees of freedom
## Multiple R-Squared: 0.0629, Adjusted R-squared: 0.0618
## Wald test: 4.9 on 3 and 2415 DF, p-value: 0.00212
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.265 -0.344 -0.242 0.445 2.073
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.344746 0.039993 8.62 < 2e-16 ***
## clate_W 0.347243 0.081661 4.25 2.2e-05 ***
## X.gender_inp -0.088506 0.022254 -3.98 7.2e-05 ***
## X.age_inp -0.000447 0.000824 -0.54 0.59
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2414 172.01 <2e-16 ***
## Wu-Hausman 1 2413 2.48 0.12
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.528 on 2414 degrees of freedom
## Multiple R-Squared: 0.0339, Adjusted R-squared: 0.0327
## Wald test: 8.05 on 3 and 2414 DF, p-value: 2.45e-05
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.524 -0.317 -0.254 0.338 1.464
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.332320 0.040811 8.14 6.1e-16 ***
## clate_W 0.450595 0.077437 5.82 6.7e-09 ***
## X.gender_inp -0.056256 0.020385 -2.76 0.0058 **
## X.age_inp -0.000612 0.000799 -0.77 0.4440
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 197.04 <2e-16 ***
## Wu-Hausman 1 2414 4.75 0.029 *
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.533 on 2415 degrees of freedom
## Multiple R-Squared: 0.0521, Adjusted R-squared: 0.0509
## Wald test: 12.3 on 3 and 2415 DF, p-value: 5.82e-08
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.543 -0.401 -0.312 0.610 1.494
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.400595 0.047858 8.37 < 2e-16 ***
## clate_W 0.304700 0.063413 4.81 1.6e-06 ***
## X.gender_inp -0.064328 0.020012 -3.21 0.0013 **
## X.age_inp -0.000485 0.000928 -0.52 0.6012
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2415 322.65 <2e-16 ***
## Wu-Hausman 1 2414 0.29 0.59
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.532 on 2415 degrees of freedom
## Multiple R-Squared: 0.0623, Adjusted R-squared: 0.0612
## Wald test: 9.58 on 3 and 2415 DF, p-value: 2.76e-06
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_debt_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "Starting plots for outcome and ranking variable:"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_0"
## [1] "sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_4"
## [1] "#####Creating dataframe.#####"
## [1] "outcome filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "ranking filename"
## [1] "PP_Full_Analysis/Intermediate_data/Testing/empirical/cw_med_5/cate_clate_results_sim_hdl_level_neg_alpha_5_presentation_cw0.csv"
## Rows: 12,151
## Columns: 51
## $ person_id <int> 5, 8, 16, 17, 18, 23, 24, 29, 47, 57, 59, 68,…
## $ X.numhh_list <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ X.gender_inp <int> 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ X.age_inp <int> 60, 41, 39, 52, 51, 32, 34, 23, 43, 46, 38, 2…
## $ X.hispanic_inp <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.race_white_inp <int> 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ X.race_black_inp <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, …
## $ X.race_nwother_inp <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ast_dx_pre_lottery <int> 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ X.dia_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.hbp_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ X.chl_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.ami_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.chf_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.emp_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.kid_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.cancer_dx_pre_lottery <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ X.dep_dx_pre_lottery <int> 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, …
## $ X.lessHS <int> 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ X.HSorGED <int> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, …
## $ X.charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1715.3, 0.0, 0.0, 5743…
## $ X.ed_charg_tot_pre_ed <dbl> 0.0, 0.0, 1888.2, 0.0, 1006.3, 0.0, 0.0, 4542…
## $ Y <dbl> -48.33, -51.33, -5.64, -51.33, -61.02, -31.08…
## $ clate_W <int> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ Z <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ weights <dbl> 1.1504, 0.8975, 1.0000, 1.2126, 1.0000, 1.003…
## $ folds <int> 8, 1, 10, 3, 10, 9, 9, 4, 4, 10, 7, 6, 5, 7, …
## $ clate <dbl> -3.287238, -2.857718, 65.026032, 0.302876, 58…
## $ clate_se <dbl> 3.897, 1.750, 1.974, 3.198, 3.386, 5.641, 4.8…
## $ clate_ranking_5 <int> 1, 1, 5, 2, 5, 3, 1, 5, 3, 2, 2, 4, 4, 1, 3, …
## $ clate_ranking_20 <int> 2, 2, 18, 8, 17, 10, 4, 20, 9, 7, 5, 13, 16, …
## $ cate_W <int> 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, …
## $ cate <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_se <dbl> 1.4284, 0.8423, 4.0054, 1.1931, 3.7253, 0.830…
## $ cate_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 10, 3, 13, 17…
## $ cate_lambda_0 <dbl> -1.5142, -0.6430, 21.0091, -0.1304, 17.8280, …
## $ cate_lambda_0_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_0_ranking_20 <int> 2, 5, 19, 7, 18, 11, 7, 18, 10, 9, 3, 13, 17,…
## $ cate_lambda_1 <dbl> -1.87131, -0.85360, 20.00772, -0.42862, 16.89…
## $ cate_lambda_1_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_1_ranking_20 <int> 2, 5, 19, 7, 18, 11, 6, 18, 11, 9, 3, 13, 17,…
## $ cate_lambda_2 <dbl> -2.22840, -1.06416, 19.00637, -0.72688, 15.96…
## $ cate_lambda_2_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_2_ranking_20 <int> 1, 5, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_3 <dbl> -2.58549, -1.27473, 18.00502, -1.02515, 15.03…
## $ cate_lambda_3_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 3, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_3_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 12, 9, 2, 13, 17,…
## $ cate_lambda_4 <dbl> -2.94259, -1.48530, 17.00368, -1.32341, 14.10…
## $ cate_lambda_4_ranking_5 <int> 1, 2, 5, 2, 5, 3, 2, 5, 4, 3, 1, 4, 5, 1, 3, …
## $ cate_lambda_4_ranking_20 <int> 1, 6, 19, 7, 17, 12, 6, 18, 13, 9, 2, 13, 17,…
## [1] "Non-OHP analysis - including CLATE rankings"
## [1] "Dimensions of selected_ranking_df: 12151"
## [2] "Dimensions of selected_ranking_df: 3"
## [1] "Dimensions of outcome_df: 12151" "Dimensions of outcome_df: 51"
## [1] "Dimensions of cdf_data: 12151" "Dimensions of cdf_data: 53"
## person_id cate_rankings_selected clate_rankings_selected X.numhh_list
## 1 5 1 1 1
## 2 8 2 2 2
## 3 16 5 5 2
## 4 17 2 2 1
## 5 18 5 5 1
## 6 23 3 3 2
## X.gender_inp X.age_inp X.hispanic_inp X.race_white_inp X.race_black_inp
## 1 1 60 1 0 0
## 2 0 41 0 1 0
## 3 1 39 0 1 0
## 4 0 52 0 1 0
## 5 0 51 0 0 1
## 6 1 32 1 0 0
## X.race_nwother_inp X.ast_dx_pre_lottery X.dia_dx_pre_lottery
## 1 0 0 0
## 2 0 1 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.hbp_dx_pre_lottery X.chl_dx_pre_lottery X.ami_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 1 0 0
## 5 0 0 0
## 6 0 0 0
## X.chf_dx_pre_lottery X.emp_dx_pre_lottery X.kid_dx_pre_lottery
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## X.cancer_dx_pre_lottery X.dep_dx_pre_lottery X.lessHS X.HSorGED
## 1 0 0 0 1
## 2 0 0 0 1
## 3 0 0 0 1
## 4 0 1 1 0
## 5 0 0 0 0
## 6 0 0 1 0
## X.charg_tot_pre_ed X.ed_charg_tot_pre_ed Y clate_W Z weights folds
## 1 0 0 -48.33 0 1 1.1504 8
## 2 0 0 -51.33 0 0 0.8975 1
## 3 1888 1888 -5.64 1 0 1.0000 10
## 4 0 0 -51.33 0 0 1.2126 3
## 5 1715 1006 -61.02 0 0 1.0000 10
## 6 0 0 -31.08 1 1 1.0033 9
## clate clate_se clate_ranking_5 clate_ranking_20 cate_W cate cate_se
## 1 -3.2872 3.897 1 2 1 -1.5142 1.4284
## 2 -2.8577 1.750 1 2 0 -0.6430 0.8423
## 3 65.0260 1.974 5 18 0 21.0091 4.0054
## 4 0.3029 3.198 2 8 0 -0.1304 1.1931
## 5 58.0718 3.386 5 17 0 17.8280 3.7253
## 6 1.6028 5.641 3 10 1 0.5509 0.8306
## cate_ranking_5 cate_ranking_20 cate_lambda_0 cate_lambda_0_ranking_5
## 1 1 2 -1.5142 1
## 2 2 5 -0.6430 2
## 3 5 19 21.0091 5
## 4 2 7 -0.1304 2
## 5 5 18 17.8280 5
## 6 3 11 0.5509 3
## cate_lambda_0_ranking_20 cate_lambda_1 cate_lambda_1_ranking_5
## 1 2 -1.8713 1
## 2 5 -0.8536 2
## 3 19 20.0077 5
## 4 7 -0.4286 2
## 5 18 16.8966 5
## 6 11 0.3433 3
## cate_lambda_1_ranking_20 cate_lambda_2 cate_lambda_2_ranking_5
## 1 2 -2.2284 1
## 2 5 -1.0642 2
## 3 19 19.0064 5
## 4 7 -0.7269 2
## 5 18 15.9653 5
## 6 11 0.1356 3
## cate_lambda_2_ranking_20 cate_lambda_3 cate_lambda_3_ranking_5
## 1 1 -2.585 1
## 2 5 -1.275 2
## 3 19 18.005 5
## 4 7 -1.025 2
## 5 17 15.034 5
## 6 12 -0.072 3
## cate_lambda_3_ranking_20 cate_lambda_4 cate_lambda_4_ranking_5
## 1 1 -2.9426 1
## 2 6 -1.4853 2
## 3 19 17.0037 5
## 4 7 -1.3234 2
## 5 17 14.1027 5
## 6 12 -0.2796 3
## cate_lambda_4_ranking_20
## 1 1
## 2 6
## 3 19
## 4 7
## 5 17
## 6 12
## [1] "clate"
## [1] "#####Running clate function.#####"
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86.73 -7.88 1.21 9.90 73.36
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -47.4718 1.3658 -34.76 < 2e-16 ***
## clate_W 0.5588 2.1182 0.26 0.79
## X.gender_inp -3.7106 0.5588 -6.64 3.9e-11 ***
## X.age_inp 0.0213 0.0253 0.84 0.40
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2428 217.2 <2e-16 ***
## Wu-Hausman 1 2427 0.1 0.75
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.8 on 2428 degrees of freedom
## Multiple R-Squared: 0.0196, Adjusted R-squared: 0.0184
## Wald test: 15.2 on 3 and 2428 DF, p-value: 8.04e-10
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.492 -8.253 0.974 9.237 57.926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.0465 1.0612 -40.56 < 2e-16 ***
## clate_W 1.3993 2.2750 0.62 0.53857
## X.gender_inp -3.6671 0.5713 -6.42 1.7e-10 ***
## X.age_inp -0.0837 0.0235 -3.56 0.00038 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2425 183.77 <2e-16 ***
## Wu-Hausman 1 2424 0.05 0.82
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.4 on 2425 degrees of freedom
## Multiple R-Squared: 0.0259, Adjusted R-squared: 0.0247
## Wald test: 21.1 on 3 and 2425 DF, p-value: 1.63e-13
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -92.46 -7.80 1.07 9.26 50.73
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -40.8344 1.3334 -30.62 < 2e-16 ***
## clate_W -1.3554 2.5036 -0.54 0.59
## X.gender_inp -3.0769 0.6210 -4.95 7.7e-07 ***
## X.age_inp -0.1190 0.0287 -4.15 3.5e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 136.12 <2e-16 ***
## Wu-Hausman 1 2425 1.68 0.19
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.3 on 2426 degrees of freedom
## Multiple R-Squared: 0.0113, Adjusted R-squared: 0.0101
## Wald test: 16.1 on 3 and 2426 DF, p-value: 2.44e-10
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -100.02 -11.31 0.71 13.12 93.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -51.7457 1.6835 -30.74 < 2e-16 ***
## clate_W 13.2182 3.0074 4.40 1.2e-05 ***
## X.gender_inp -0.4484 0.8077 -0.56 0.5789
## X.age_inp -0.1044 0.0334 -3.12 0.0018 **
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 158.71 <2e-16 ***
## Wu-Hausman 1 2425 7.71 0.0055 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19 on 2426 degrees of freedom
## Multiple R-Squared: 0.225, Adjusted R-squared: 0.225
## Wald test: 11.8 on 3 and 2426 DF, p-value: 1.18e-07
##
## [1] "Y ~ clate_W + X.gender_inp + X.age_inp | Z + X.gender_inp + X.age_inp"
##
## Call:
## ivreg(formula = as.formula(formula_str), data = data_subset,
## weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.58 -7.91 1.29 9.77 46.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.6610 1.2742 -58.60 < 2e-16 ***
## clate_W 67.4797 1.9069 35.39 < 2e-16 ***
## X.gender_inp -3.2536 0.5822 -5.59 2.6e-08 ***
## X.age_inp -0.0941 0.0231 -4.08 4.7e-05 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 2426 221.27 <2e-16 ***
## Wu-Hausman 1 2425 0.03 0.86
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 2426 degrees of freedom
## Multiple R-Squared: 0.861, Adjusted R-squared: 0.861
## Wald test: 468 on 3 and 2426 DF, p-value: <2e-16
##
## [1] "rnk"
## [1] "Q1" "Q2" "Q3" "Q4" "Q5"
## [1] "Quintile Groups ranked by sim_hdl_level_neg_alpha_5_presentation_cw0_lambda_4"