library(ggplot2)
library(ggthemes)
library(ggthemr)
library(patchwork)
library(ggtech)
library(ggtext)
library(plotly)
##
## Adjuntando el paquete: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(plotrix)
library(RColorBrewer)
library(ggpubr)
##
## Adjuntando el paquete: 'ggpubr'
## The following objects are masked from 'package:ggthemr':
##
## rotate_x_text, rotate_y_text
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(ggpmisc)
## Cargando paquete requerido: ggpp
## Registered S3 methods overwritten by 'ggpp':
## method from
## heightDetails.titleGrob ggplot2
## widthDetails.titleGrob ggplot2
##
## Adjuntando el paquete: 'ggpp'
## The following objects are masked from 'package:ggpubr':
##
## as_npc, as_npcx, as_npcy
## The following object is masked from 'package:ggplot2':
##
## annotate
library(doBy)
library(readxl)
library(xlsx)
datos <- read_xlsx("datos_visualizacion.xlsx")
dim(datos)
## [1] 24 5
head(datos)
## # A tibble: 6 × 5
## material rep ambiente rinde proteina
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 hibrido3 1 A 4637. 20
## 2 hibrido7 1 A 5385. 5
## 3 hibrido1 1 A 5803. 17
## 4 hibrido6 1 A 5018. 4
## 5 hibrido2 1 A 5441. 21
## 6 hibrido4 1 A 4246. 27
which(is.na(datos))
## integer(0)
range(datos$rinde)
## [1] 3087.719 6569.051
datos$material <- as.factor(datos$material)
datos$ambiente <- as.factor(datos$ambiente)
media_rinde <- mean(datos$rinde)
La base de datos contiene 5 columnas y 28 observaciones.
ggplot(data = datos, aes(material, rinde, fill = material)) +
geom_bar( width = 0.4, stat = "identity", alpha=0.4)+
ggtitle("Diagrama de barras") +
scale_fill_manual(values=c('#999999','#E69F00', "lightgreen", "#E25539",
"#378963", "#64794666", "#699633", "#968563",
"#02689123", "#66631966", "#896687", "#888301"))+
ylab("Rendimiento (kg/ha)")+
xlab("Materiales")+
geom_text(aes(x = 3, y = 6000,size=10,fontface="bold",colour = "red",
label = "4863.4 kg/ha"))+
geom_hline(yintercept = media_rinde, linetype="dashed",
linewidth=1.3, color="red")+
labs(caption = "Figura 1: Gráfico de barras del rendimiento en función de
los diferentes materiales evaluados a campo.")+
theme_few()+
guides(fill = guide_legend(title = "Rendimiento\nde materiales"))+
theme(axis.text.x = element_text(size = 13),
axis.text.y = element_text(size = 11),
axis.title.x = element_text(size = 12),
axis.title.y = element_text(size = 12),
legend.position = "none",
plot.caption = element_text(hjust = 0.5, size = 13, color = "grey"))
ggplot(datos,aes(material, rinde, fill=material))+
geom_boxplot(alpha=0.5)+
geom_jitter()+
scale_fill_hue(c=40)+
xlab("Material")+
ylab("Rendimiento")+
facet_grid(~ambiente)+
labs(caption = "Figura 2: Gráfico de cajas del rendimiento en función de
los diferentes materiales evaluados a campo.")+
guides(fill = guide_legend(title = "Materiales"))+
theme_sjplot2()+
theme(axis.text.x = element_text(face = "italic", size = 8,
color = "black", angle = 0),
axis.text.y = element_text(face = "italic",size = 11),
axis.title.x = element_text(face = "bold.italic",size = 11),
axis.title.y = element_text(face = "bold.italic",size = 11),
legend.title = element_text(face = "bold.italic"),
strip.background = element_rect(fill = "lightblue"),
strip.text = element_text(size = 12, face = "bold"),
panel.background = element_rect(fill = "lightyellow"),
panel.border = element_rect(fill = "transparent",
color = 1,
linewidth = 0.5),
legend.background = element_rect(fill = "pink"),
legend.text.align = 0.5,
legend.justification = "left",
legend.text = element_text(hjust = 2),
plot.caption = element_text(hjust = 0.5, size = 13, color = "grey"))
## Warning: The `legend.text.align` argument of `theme()` is deprecated as of ggplot2
## 3.5.0.
## ℹ Please use theme(legend.text = element_text(hjust)) instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplot(datos,aes(proteina, rinde))+
geom_point(size=2)+
scale_fill_hue(c=40)+
xlab("Contenido de Proteína")+
ylab("Rendimiento (Kg/ha)")+
facet_grid(~ambiente)+
labs(caption = "Figura 3: Gráfico de dispersión del rendimiento en función del
contenido de proteína de los diferentes materiales evaluados a campo.")+
guides(fill = guide_legend(title = "Materiales"))+
geom_smooth(se=F, method = "lm", col="lightgreen")+
stat_poly_eq(use_label(c("eq", "adj.R2", "p", "n")), size=3, label.y = 7200) +
stat_cor(label.x = 5, label.y = 6100, size=3) +
theme_sjplot2()+
theme(axis.text.x = element_text(face = "italic", size = 8,
color = "black", angle = 0),
axis.text.y = element_text(face = "italic",size = 8),
axis.title.x = element_text(face = "bold.italic",size = 11),
axis.title.y = element_text(face = "bold.italic",size = 11),
legend.title = element_text(face = "bold.italic"),
strip.background = element_rect(fill = "lightblue"),
strip.text = element_text(size = 12, face = "bold"),
panel.background = element_rect(fill = "white"),
panel.border = element_rect(fill = "transparent",
color = 1,
linewidth = 0.5),
legend.background = element_rect(fill = "pink"),
legend.text.align = 0.5,
legend.justification = "left",
legend.text = element_text(hjust = 2),
plot.caption = element_text(hjust = 0.5, size = 13, color = "grey"),
legend.position = "none")
## `geom_smooth()` using formula = 'y ~ x'
datos2 <- read_xlsx("data_lineas.xlsx")
datos2$tratamiento <- as.factor(datos2$tratamiento)
dim(datos2)
## [1] 60 4
head(datos2)
## # A tibble: 6 × 4
## dda tratamiento mortalidad_acum mortalidad
## <dbl> <fct> <dbl> <dbl>
## 1 3 BB3 23.2 23.2
## 2 3 BB3 8.8 8.8
## 3 3 BB3 16.4 16.4
## 4 3 BB3 12.8 12.8
## 5 3 BB5 10.4 10.4
## 6 3 BB5 11.2 11.2
datos2 <- summaryBy(mortalidad ~ tratamiento + dda, data = datos2,FUN = mean)
colnames(datos2) <- c("tratamiento", "dda", "mortalidad")
datos2
## # A tibble: 15 × 3
## tratamiento dda mortalidad
## <fct> <dbl> <dbl>
## 1 BB3 3 15.3
## 2 BB3 9 20.1
## 3 BB3 14 18.4
## 4 BB5 3 21.3
## 5 BB5 9 25.3
## 6 BB5 14 22.1
## 7 PRO3 3 10.3
## 8 PRO3 9 7.8
## 9 PRO3 14 13.1
## 10 PRO5 3 10
## 11 PRO5 9 9.4
## 12 PRO5 14 14.6
## 13 Testigo 3 1.1
## 14 Testigo 9 1.5
## 15 Testigo 14 6.4
ggplot(datos2, aes(factor(dda), mortalidad, col=tratamiento)) +
geom_point(aes(size=0.5),stat = "identity",position = "identity")+
geom_line(linewidth=0.7,aes(group = tratamiento))+
scale_colour_brewer(palette = "Set2")+
geom_label(aes(x=factor(dda), label = tratamiento, group=factor(dda)),
position = position_dodge(width = 0.7), size=2,
vjust=-1, hjust=1 ,col="black")+
geom_vline(xintercept = 5 , linetype ="dashed", color ="red",
linewidth = 0.6)+
labs(fill="Tratamiento", caption = "Figura 4: Gráfico de perfiles de la mortalidad
de los insectos en función del tratamiento aplicado a campo.")+
ylab("Mortalidad (%)")+
xlab("Días después de la aplicación")+
ylim(0,30)+
theme_sjplot()+
theme(axis.text.x = element_text(face = "italic", size = 8,
color = "black", angle = 0),
axis.text.y = element_text(face = "italic",size = 8),
axis.title.x = element_text(face = "bold.italic",size = 11),
axis.title.y = element_text(face = "bold.italic",size = 11),
legend.title = element_text(face = "bold.italic"),
strip.background = element_rect(fill = "lightblue"),
strip.text = element_text(size = 12, face = "bold"),
panel.background = element_rect(fill = "white"),
panel.border = element_rect(fill = "transparent",
color = 1,
linewidth = 0.5),
legend.background = element_rect(fill = "pink"),
legend.text.align = 0.5,
legend.justification = "left",
legend.text = element_text(hjust = 2),
plot.caption = element_text(hjust = 0.5, size = 13, color = "grey"),
legend.position = "none")