SEM: Demonstrate Maximum Likelihood Estimation

Author

Liuyue Huang

Goal

Try doing the minimization ourselves (using nlm()).

Notes

The code is styled for readability, even if this means longer code. Names will be reused to avoid having too many names.

For learning, whenever possible, only functions covered before will be used.

The functions are just for demonstration. In real research, error catching is needed in the them.

Read the Data

library(readxl)
dat <- read_xlsx("sem_example.xlsx")

Use the following to show the data

head(dat)
# A tibble: 6 × 21
  case_id    x1    x2    x3    x4    x5    x6    x7    x8    x9   x10   x11
  <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 case_1   5.37  3.36  5.43  4.65  6.48  5.20  6.46  6.56  5.93  7.11  4.93
2 case_2   4.93  4.77  4.93  6.34  4.93  4.74  4.42  4.47  5.83  6.47  3.88
3 case_3   5.48  5.36  5.64  7.11  4.42  6.70  5.44  4.81  5.34  4.27  4.92
4 case_4   6.63  5.42  4.93  6.47  5.46  4.61  3.38  3.68  4.76  5.27  5.71
5 case_5   4.78  3.97  5.06  4.64  5.24  5.55  5.37  4.57  5.73  6.18  5.06
6 case_6   3.53  5.06  5.21  3.23  4.93  5.87  5.66  4.76  6.05  5.18  4.72
# ℹ 9 more variables: x12 <dbl>, x13 <dbl>, x14 <dbl>, x15 <dbl>, x16 <dbl>,
#   s1 <dbl>, s2 <dbl>, s3 <dbl>, s4 <dbl>

A Path Analysis Model

mod_pa <-
"
s3 ~ s1 + s2
s4 ~ s3
"

Write a Function to Create the Model Matrices

# Parameters in thetas, in this order (as in lavaan)
# (b31, b32, b43, sigma33, sigma44, sigma11, sigma12, sigma22)
matrices_pa <- function(thetas) {
    vnames <- c("s3", "s4", "s1", "s2")
    # Create the 4x4 beta matrix
    beta <- matrix(c(        0, 0, thetas[1], thetas[2],
                     thetas[3], 0,         0,         0,
                             0, 0,         0,         0,
                             0, 0,         0,         0),
                   byrow = TRUE,
                   nrow = 4,
                   ncol = 4)
    colnames(beta) <- vnames
    rownames(beta) <- vnames

    # Create the 4x4 psi matrix
    psi <- diag(thetas[c(4, 5, 6, 8)])
    psi[4, 3] <- psi[3, 4] <- thetas[7]
    colnames(psi) <- vnames
    rownames(psi) <- vnames

    # Return the matrices as a list
    out <- list(beta = beta,
                psi = psi)
    return(out)
  }

Test the function by using arbitrary numbers:

matrices_pa(thetas = 1:8)
$beta
   s3 s4 s1 s2
s3  0  0  1  2
s4  3  0  0  0
s1  0  0  0  0
s2  0  0  0  0

$psi
   s3 s4 s1 s2
s3  4  0  0  0
s4  0  5  0  0
s1  0  0  6  7
s2  0  0  7  8

Write a Function to Compute the Implied Covariance Matrices

implied_cov_pa <- function(thetas) {
    # Create the matrices
    m <- matrices_pa(thetas)
    beta <- m$beta
    psi <- m$psi

    # Compute the implied covariance matrix
    a <- solve(diag(4) - beta)
    sigma_implied <- a %*% psi %*% t(a)
    sigma_implied
  }

Write the ML Discrepancy Function

It will have three arguments.

  • thetas is the vector or parameters.
  • data_cov is the (ML) sample covariance matrix.
  • implied is the function to be used to compute the implied covariance matrix.

Only thetas will change in the minimization. data_cov and implied are fixed and will not change.

f_ml <- function(thetas,
                 data_cov,
                 implied) {
    # Compute the implied covariance matrix
    sigma_implied <- implied(thetas)
    # Compute the discrepancy function value
    p <- ncol(data_cov)
    fx <- log(det(sigma_implied)) - log(det(data_cov)) +
            sum(diag(data_cov %*% solve(sigma_implied))) - p
    fx
  }

Find the Solution

Prepare the ML estimate sample covariance matrix first:

n <- nrow(dat)
# Variables ordered as in lavaan
my_data_cov <- cov(dat[, c("s3", "s4", "s1", "s2")])
my_data_cov <- my_data_cov * (n - 1) / n
round(my_data_cov, 3)
      s3    s4    s1    s2
s3 0.568 0.356 0.207 0.201
s4 0.356 0.603 0.223 0.228
s1 0.207 0.223 0.556 0.157
s2 0.201 0.228 0.157 0.443

Set the starting values:

  • Positive numbers for variances or error variances.
  • Some nonzero numbers for regression coefficients just for identifying them in the minimization.
# Parameters in thetas, in this order (as in lavaan)
# (b31, b32, b43, sigma33, sigma44, sigma11, sigma12, sigma22)
start <- c(`s3~s1` = .03,
           `s3~s2` = .08,
           `s4~s3` = .06,
           `s3~~s3` = .50,
           `s4~~s4` = .08,
           `s1~~s1` = .50,
           `s1~~s2` = .08,
           `s2~~s2` = .50)

Put the starting values into the model matrices:

matrices_pa(thetas = start)
$beta
     s3 s4   s1   s2
s3 0.00  0 0.03 0.08
s4 0.06  0 0.00 0.00
s1 0.00  0 0.00 0.00
s2 0.00  0 0.00 0.00

$psi
    s3   s4   s1   s2
s3 0.5 0.00 0.00 0.00
s4 0.0 0.08 0.00 0.00
s1 0.0 0.00 0.50 0.08
s2 0.0 0.00 0.08 0.50

Use nlm() to minimize the discrepancy function value by trying different values for the parameters.

The argument f is the discrepancy function. The first argument of f should be the vector of parameters, thetas in our case.

From the help page, ... are other arguments to be used by f. In our case, it is data_cov, set to my_data_cov created above.

Set print.level = 2 just for illustration.

f_ml_min <- nlm(f = f_ml,
                p = start,
                data_cov = my_data_cov,
                implied = implied_cov_pa,
                print.level = 2)
iteration = 0
Step:
[1] 0 0 0 0 0 0 0 0
Parameter:
[1] 0.03 0.08 0.06 0.50 0.08 0.50 0.08 0.50
Function Value
[1] 4.805795
Gradient:
[1]  -0.7120980  -0.6427548  -8.0496758  -0.1107065 -75.3963364  -0.1255387
[7]  -0.6667372   0.3374183
Warning in log(det(sigma_implied)): NaNs produced
Warning in nlm(f = f_ml, p = start, data_cov = my_data_cov, implied =
implied_cov_pa, : NA/Inf replaced by maximum positive value
iteration = 1
Step:
[1]  0.07120980  0.06427548  0.80496758  0.01107065  7.53963364  0.01255387
[7]  0.06667372 -0.03374183
Parameter:
[1] 0.1012098 0.1442755 0.8649676 0.5110707 7.6196336 0.5125539 0.1466737
[8] 0.4662582
Function Value
[1] 2.269081
Gradient:
[1] -0.50227093 -0.47362142  0.03552988  0.08927538  0.12413816 -0.15883677
[7] -0.06198200  0.14165884

iteration = 2
Step:
[1]  0.050078710  0.047221963 -0.003469182 -0.008899016 -0.011693173
[6]  0.015835851  0.006185128 -0.014125271
Parameter:
[1] 0.1512885 0.1914974 0.8614984 0.5021716 7.6079405 0.5283897 0.1528589
[8] 0.4521329
Function Value
[1] 2.221056
Gradient:
[1] -0.370771781 -0.367363025  0.035066339  0.141090172  0.124334128
[6] -0.104174492  0.003731536  0.054745474

iteration = 3
Step:
[1]  0.1662352505  0.1638664157 -0.0150606778 -0.0596918125 -0.0519308470
[6]  0.0473225350  0.0006865728 -0.0269075094
Parameter:
[1] 0.3175238 0.3553639 0.8464377 0.4424798 7.5560096 0.5757123 0.1535454
[8] 0.4252254
Function Value
[1] 2.155561
Gradient:
[1]  0.113185260  0.029252321  0.033042427  0.006412762  0.125207584
[6]  0.073813866 -0.026130126 -0.099142456

iteration = 4
Step:
[1] -0.023917899 -0.016597775 -0.001520645  0.005084623 -0.006277815
[6] -0.010304208  0.002567834  0.010481756
Parameter:
[1] 0.2936059 0.3387661 0.8449171 0.4475644 7.5497318 0.5654080 0.1561133
[8] 0.4357071
Function Value
[1] 2.151591
Gradient:
[1]  0.040840492 -0.020726151  0.032841029  0.035884136  0.125312396
[6]  0.035435971 -0.009459744 -0.040196060

iteration = 5
Step:
[1] -0.0146895117 -0.0002947197 -0.0068493921 -0.0041016616 -0.0262374885
[6] -0.0101859081  0.0039498329  0.0116341496
Parameter:
[1] 0.2789163 0.3384714 0.8380677 0.4434628 7.5234943 0.5552221 0.1600631
[8] 0.4473413
Function Value
[1] 2.147388
Gradient:
[1]  0.004181962 -0.031908022  0.031921057  0.016428689  0.125753947
[6] -0.009370230  0.020639260  0.014920088

iteration = 6
Step:
[1] -0.025744278  0.016035230 -0.024168920 -0.013582700 -0.093049780
[6] -0.018562396  0.005033178  0.023476196
Parameter:
[1] 0.2531721 0.3545066 0.8138988 0.4298801 7.4304445 0.5366597 0.1650963
[8] 0.4708175
Function Value
[1] 2.138048
Gradient:
[1] -0.05055505 -0.01866278  0.02862471 -0.05643992  0.12733703 -0.09382561
[7]  0.05145596  0.11845304

iteration = 7
Step:
[1] -0.025255155  0.030699802 -0.039315694 -0.012858786 -0.153551351
[6] -0.013975086  0.002753964  0.020404602
Parameter:
[1] 0.2279169 0.3852064 0.7745831 0.4170213 7.2768932 0.5226847 0.1678502
[8] 0.4912221
Function Value
[1] 2.125658
Gradient:
[1] -0.09632902  0.02698756  0.02308942 -0.13869487  0.13000924 -0.16167559
[7]  0.06160524  0.19718183

iteration = 8
Step:
[1] -0.04817245  0.07052932 -0.10031621 -0.01324530 -0.39833897 -0.01521041
[7]  0.00226082  0.02938658
Parameter:
[1] 0.1797445 0.4557357 0.6742669 0.4037760 6.8785542 0.5074742 0.1701111
[8] 0.5206087
Function Value
[1] 2.096504
Gradient:
[1] -0.177282891  0.145213868  0.007854577 -0.260812245  0.137319414
[6] -0.238557886  0.052103844  0.294353976

iteration = 9
Step:
[1] -0.078154555  0.117765579 -0.204051700  0.001656068 -0.826658501
[6] -0.008477836  0.002154524  0.032005102
Parameter:
[1] 0.1015899 0.5735013 0.4702152 0.4054321 6.0518957 0.4989964 0.1722656
[8] 0.5526138
Function Value
[1] 2.038059
Gradient:
[1] -0.29966903  0.34151582 -0.02938573 -0.36511542  0.15448033 -0.28128154
[7]  0.02202108  0.37902259

iteration = 10
Step:
[1] -0.149744023  0.220496197 -0.475788814  0.040539139 -1.974706444
[6]  0.003602872  0.004789534  0.037724194
Parameter:
[1] -0.048154119  0.793997492 -0.005573658  0.445971204  4.077189274
[6]  0.502599284  0.177055111  0.590337965
Function Value
[1] 1.894928
Gradient:
[1] -0.49048718  0.64321092 -0.17622105 -0.46176815  0.20873942 -0.25777129
[7] -0.02701692  0.45373044
Warning in log(det(sigma_implied)): NaNs produced
Warning in log(det(sigma_implied)): NA/Inf replaced by maximum positive value
iteration = 11
Step:
[1] -0.041024321  0.058351341 -0.146148475  0.017879966 -0.627793765
[6]  0.002606861  0.001695773  0.006633764
Parameter:
[1] -0.08917844  0.85234883 -0.15172213  0.46385117  3.44939551  0.50520614
[7]  0.17875088  0.59697173
Function Value
[1] 1.843027
Gradient:
[1] -0.53040972  0.70213249 -0.25643845 -0.47112365  0.22902705 -0.24468285
[7] -0.03383878  0.46378835
Warning in log(det(sigma_implied)): NaNs produced
Warning in log(det(sigma_implied)): NA/Inf replaced by maximum positive value
iteration = 12
Step:
[1] -0.063987025  0.090779724 -0.243858932  0.035705706 -1.098699380
[6]  0.006071645  0.002546934  0.005807260
Parameter:
[1] -0.1531655  0.9431286 -0.3955811  0.4995569  2.3506961  0.5112778  0.1812978
[8]  0.6027790
Function Value
[1] 1.751026
Gradient:
[1] -0.57784475  0.77277551 -0.49417651 -0.46110674  0.24916816 -0.21469324
[7] -0.04318859  0.47183422

iteration = 13
Step:
[1] -6.167199e-03  1.010437e-02 -3.719340e-02  1.008094e-02 -1.941685e-01
[6]  3.985615e-03 -7.453559e-05 -4.081634e-03
Parameter:
[1] -0.1593327  0.9532329 -0.4327745  0.5096378  2.1565276  0.5152634  0.1812233
[8]  0.5986974
Function Value
[1] 1.72667
Gradient:
[1] -0.57364298  0.77126083 -0.55826892 -0.42628517  0.24484654 -0.19360960
[7] -0.04872908  0.46653694

iteration = 14
Step:
[1]  0.047457217 -0.033421983 -0.156786645  0.122336686 -1.292352181
[6]  0.075708411 -0.006432229 -0.120930204
Parameter:
[1] -0.1118754  0.9198109 -0.5895611  0.6319745  0.8641754  0.5909718  0.1747911
[8]  0.4777672
Function Value
[1] 1.648411
Gradient:
[1] -0.39571571  0.59867215 -1.59930695  0.09359044 -0.47722425  0.09611893
[7] -0.02970559  0.14979896

iteration = 15
Step:
[1]  0.21258227 -0.25727371  0.31076251  0.09734556  0.99602626  0.09938995
[7] -0.02159180 -0.16414707
Parameter:
[1]  0.1007068  0.6625372 -0.2787986  0.7293201  1.8602017  0.6903618  0.1531993
[8]  0.3136201
Function Value
[1] 1.415956
Gradient:
[1] -0.1295998  0.2976624 -0.5531426  0.4661481  0.2931105  0.2831564  0.3393709
[8] -1.5499410

iteration = 16
Step:
[1] -0.051409087  0.022348147  0.010793167 -0.063827265 -0.004152265
[6] -0.051192015 -0.020977778  0.166565388
Parameter:
[1]  0.04929774  0.68488539 -0.26800543  0.66549279  1.85604940  0.63916975
[7]  0.13222148  0.48018547
Function Value
[1] 1.320859
Gradient:
[1] -0.2173705  0.3317157 -0.5477723  0.3908053  0.2964227  0.2744989 -0.3929188
[8]  0.2481374

iteration = 17
Step:
[1]  0.033925789 -0.047455842  0.033251698 -0.015008635 -0.335330043
[6] -0.005843206  0.017444284 -0.002727245
Parameter:
[1]  0.08322353  0.63742954 -0.23475373  0.65048416  1.52071936  0.63332654
[7]  0.14966576  0.47745823
Function Value
[1] 1.16321
Gradient:
[1] -0.1873088  0.2910909 -0.6437137  0.4072581  0.3109076  0.2483561 -0.2849857
[8]  0.2155659

iteration = 18
Step:
[1]  0.0323268230 -0.0453052435  0.0422427851 -0.0159391337 -0.3484778194
[6] -0.0031358818  0.0082443848 -0.0005313852
Parameter:
[1]  0.1155503  0.5921243 -0.1925109  0.6345450  1.1722415  0.6301907  0.1579101
[8]  0.4769268
Function Value
[1] 0.9978276
Gradient:
[1] -0.1577929  0.2511240 -0.7941253  0.4169171  0.2989929  0.2317528 -0.2280929
[8]  0.1987516
Warning in log(det(sigma_implied)): NaNs produced
Warning in log(det(sigma_implied)): NA/Inf replaced by maximum positive value
Warning in log(det(sigma_implied)): NaNs produced
Warning in nlm(f = f_ml, p = start, data_cov = my_data_cov, implied =
implied_cov_pa, : NA/Inf replaced by maximum positive value
Warning in log(det(sigma_implied)): NaNs produced
Warning in nlm(f = f_ml, p = start, data_cov = my_data_cov, implied =
implied_cov_pa, : NA/Inf replaced by maximum positive value
iteration = 19
Step:
[1]  2.748040e-02 -3.846410e-02  3.897487e-02 -1.351488e-02 -2.877911e-01
[6] -2.174070e-03  6.001111e-03 -9.166806e-05
Parameter:
[1]  0.1430307  0.5536602 -0.1535361  0.6210301  0.8844505  0.6280166  0.1639113
[8]  0.4768352
Function Value
[1] 0.8670452
Gradient:
[1] -0.1314784  0.2155935 -1.0024517  0.4213172  0.2026061  0.2183379 -0.1844378
[8]  0.1858914
Warning in log(det(sigma_implied)): NaNs produced
Warning in log(det(sigma_implied)): NA/Inf replaced by maximum positive value
iteration = 20
Step:
[1]  0.027813473 -0.038844479  0.038832693 -0.012303058 -0.179397852
[6] -0.002757953  0.007959515 -0.001057004
Parameter:
[1]  0.1708442  0.5148157 -0.1147034  0.6087271  0.7050526  0.6252586  0.1718708
[8]  0.4757782
Function Value
[1] 0.7834943
Gradient:
[1] -0.10337395  0.17774485 -1.19493573  0.42343267  0.02547692  0.19826567
[7] -0.12031085  0.16186963

iteration = 21
Step:
[1]  0.037759396 -0.052805113  0.049463702 -0.017109666 -0.106139005
[6] -0.005363493  0.012877285 -0.002460648
Parameter:
[1]  0.20860361  0.46201060 -0.06523968  0.59161742  0.59891363  0.61989514
[7]  0.18474806  0.47331752
Function Value
[1] 0.7066857
Gradient:
[1] -0.0634310275  0.1238245435 -1.3128539269  0.4185013704 -0.1482909564
[6]  0.1564331775  0.0009947456  0.1105806335

iteration = 22
Step:
[1]  0.27983952 -0.39344671  0.35594937 -0.14026982 -0.35570604 -0.04513897
[7]  0.08810711 -0.01742984
Parameter:
[1] 0.4884431 0.0685639 0.2907097 0.4513476 0.2432076 0.5747562 0.2728552
[8] 0.4558877
Function Value
[1] 0.6689277
Gradient:
[1]  0.3324554 -0.4155562 -1.5699124 -0.1571814 -3.3982178 -0.6807551  1.9687060
[8] -0.8729821

iteration = 23
Step:
[1]  0.0269971006 -0.0407773571  0.0034120772 -0.0060472082  0.3635922459
[6] -0.0003468831 -0.0037455148 -0.0055933228
Parameter:
[1] 0.51544024 0.02778654 0.29412176 0.44530039 0.60679984 0.57440929 0.26910966
[8] 0.45029436
Function Value
[1] 0.5136082
Gradient:
[1]  0.3756204 -0.4833178 -0.6228370 -0.2549913  0.4450850 -0.6601690  1.9470013
[8] -0.8923928

iteration = 24
Step:
[1] -0.133234186  0.171392719 -0.152298080  0.097908325 -0.005773572
[6]  0.068485329 -0.160602556  0.028351396
Parameter:
[1] 0.3822061 0.1991793 0.1418237 0.5432087 0.6010263 0.6428946 0.1085071
[8] 0.4786458
Function Value
[1] 0.4994174
Gradient:
[1]  0.1343002 -0.1935954 -0.9167592  0.3077296  0.2418719  0.2898635 -0.5135702
[8]  0.2566006

iteration = 25
Step:
[1]  0.062085617 -0.086613189  0.106862947 -0.058376654 -0.052347589
[6] -0.030764164  0.043892872  0.003516036
Parameter:
[1] 0.4442917 0.1125661 0.2486866 0.4848321 0.5486787 0.6121305 0.1524000
[8] 0.4821618
Function Value
[1] 0.3928664
Gradient:
[1]  0.23674700 -0.33501824 -0.78291022  0.06385864  0.29037660  0.19822149
[7] -0.24991027  0.22713175

iteration = 26
Step:
[1]  0.030246449 -0.050139838  0.168710601 -0.078422618 -0.135026461
[6] -0.078482397  0.085585077 -0.001395748
Parameter:
[1] 0.47453812 0.06242623 0.41739723 0.40640945 0.41365221 0.53364806 0.23798505
[8] 0.48076604
Function Value
[1] 0.3216416
Gradient:
[1]  0.32643493 -0.48563327 -0.57501766 -0.46118850  0.05079746 -0.53894876
[7]  1.15730896 -0.27792979

iteration = 27
Step:
[1] -0.027115860  0.043462220 -0.020191475  0.039802460 -0.005727412
[6]  0.028634311 -0.041408941 -0.007577520
Parameter:
[1] 0.4474223 0.1058885 0.3972058 0.4462119 0.4079248 0.5622824 0.1965761
[8] 0.4731885
Function Value
[1] 0.2598242
Gradient:
[1]  0.26033889 -0.37507410 -0.63933659 -0.12592314 -0.01243889 -0.09222820
[7]  0.31481071  0.01943653

iteration = 28
Step:
[1] -0.047185369  0.070441669  0.051808888  0.022069232 -0.064347119
[6] -0.001955107 -0.020373099 -0.013844239
Parameter:
[1] 0.4002369 0.1763301 0.4490146 0.4682811 0.3435777 0.5603273 0.1762030
[8] 0.4593443
Function Value
[1] 0.203389
Gradient:
[1]  0.18327643 -0.25572411 -0.58772707  0.05415320 -0.46109297 -0.03258666
[7]  0.13968552  0.02811634

iteration = 29
Step:
[1] -0.077075368  0.114928014  0.049887207  0.013850854 -0.002253844
[6] -0.006883718 -0.024058838 -0.014028193
Parameter:
[1] 0.3231615 0.2912581 0.4989018 0.4821320 0.3413238 0.5534435 0.1521442
[8] 0.4453161
Function Value
[1] 0.1498197
Gradient:
[1]  0.075126449 -0.087318574 -0.425526089  0.170916751 -0.412217236
[6]  0.004469409 -0.053270627  0.028763411

iteration = 30
Step:
[1] -0.049454401  0.075027668  0.080201216 -0.010752597  0.012880283
[6] -0.005378323 -0.014251470 -0.010259626
Parameter:
[1] 0.2737071 0.3662858 0.5791031 0.4713794 0.3542041 0.5480652 0.1378927
[8] 0.4350565
Function Value
[1] 0.1176638
Gradient:
[1]  0.010176035  0.018805397 -0.152759799  0.140587098 -0.216400932
[6]  0.013654119 -0.159525596  0.006599024

iteration = 31
Step:
[1] -0.0075948108  0.0075505398  0.0331071248 -0.0173500088  0.0175529919
[6] -0.0005279322  0.0066493885  0.0030046314
Parameter:
[1] 0.2661123 0.3738363 0.6122102 0.4540294 0.3717571 0.5475373 0.1445421
[8] 0.4380611
Function Value
[1] 0.109549
Gradient:
[1] -0.002810790  0.029009712 -0.044351387  0.067033431 -0.060984110
[6] -0.002747095 -0.096738061  0.005867120

iteration = 32
Step:
[1]  0.006741810 -0.014464285  0.017003313 -0.012306723  0.006988320
[6]  0.002783217  0.008505320  0.003035337
Parameter:
[1] 0.2728541 0.3593721 0.6292135 0.4417227 0.3787454 0.5503205 0.1530474
[8] 0.4410964
Function Value
[1] 0.1077617
Gradient:
[1]  0.003797592  0.005590408  0.007480535  0.008320647 -0.009228494
[6] -0.012434965 -0.021019211 -0.001599203

iteration = 33
Step:
[1]  0.0002132757 -0.0023411804 -0.0026056635 -0.0014880322  0.0026610672
[6]  0.0017544991  0.0025483864  0.0012110566
Parameter:
[1] 0.2730674 0.3570309 0.6266078 0.4402346 0.3814065 0.5520750 0.1555958
[8] 0.4423075
Function Value
[1] 0.1076861
Gradient:
[1]  0.0026791724  0.0010483880 -0.0003346621  0.0007152110  0.0092167820
[6] -0.0118521095 -0.0018364776 -0.0020292781

iteration = 34
Step:
[1]  6.283655e-05 -9.614507e-04  3.324193e-04 -3.301696e-04 -7.608527e-04
[6]  1.511936e-03  7.561164e-04  1.867761e-04
Parameter:
[1] 0.2731302 0.3560694 0.6269403 0.4399045 0.3806456 0.5535869 0.1563519
[8] 0.4424943
Function Value
[1] 0.1076659
Gradient:
[1]  0.0021537119 -0.0008429275  0.0006570176 -0.0009899974  0.0040023345
[6] -0.0077600681  0.0016041746 -0.0027825813

iteration = 35
Step:
[1] -8.703511e-04  4.057357e-04 -3.565468e-04 -2.791057e-05 -7.015238e-04
[6]  1.878279e-03  6.149503e-04  3.321524e-04
Parameter:
[1] 0.2722599 0.3564752 0.6265837 0.4398766 0.3799441 0.5554652 0.1569669
[8] 0.4428264
Function Value
[1] 0.1076548
Gradient:
[1]  0.0002436611 -0.0006468195 -0.0004081091 -0.0011313102 -0.0008423697
[6] -0.0017698376  0.0018885356 -0.0019330528

iteration = 36
Step:
[1] -2.329246e-04  3.194533e-04  9.904804e-06  9.173229e-05  2.399946e-05
[6]  3.412691e-04  1.835542e-05  1.108619e-04
Parameter:
[1] 0.2720270 0.3567946 0.6265936 0.4399683 0.3799681 0.5558065 0.1569852
[8] 0.4429373
Function Value
[1] 0.107654
Gradient:
[1] -0.0001169935 -0.0001694396 -0.0003784635 -0.0006566196 -0.0006760246
[6] -0.0003995790  0.0007273488 -0.0011277965

iteration = 37
Step:
[1] -3.524305e-05  1.099009e-04  7.826852e-05  8.079796e-05  7.611920e-05
[6]  1.082278e-04 -8.845612e-06  9.691744e-05
Parameter:
[1] 0.2719917 0.3569045 0.6266719 0.4400491 0.3800442 0.5559147 0.1569764
[8] 0.4430342
Function Value
[1] 0.1076538
Gradient:
[1] -1.275922e-04  2.677858e-05 -1.443672e-04 -2.391189e-04 -1.486811e-04
[6]  1.067191e-04 -2.156320e-05 -4.317879e-04

iteration = 38
Step:
[1]  3.394972e-05 -1.378029e-05  3.994488e-05  3.296234e-05  2.593966e-05
[6] -2.604601e-06  7.217757e-06  5.402323e-05
Parameter:
[1] 0.2720257 0.3568907 0.6267118 0.4400820 0.3800702 0.5559121 0.1569836
[8] 0.4430882
Function Value
[1] 0.1076538
Gradient:
[1] -5.164758e-05  2.324896e-05 -2.493117e-05 -6.887824e-05  3.091838e-05
[6]  1.029736e-04 -1.264979e-04 -1.188667e-04

iteration = 39
Step:
[1]  2.345284e-05 -1.929043e-05  1.053614e-05  1.180536e-05  3.514316e-07
[6] -1.401769e-05  1.111974e-05  2.580433e-05
Parameter:
[1] 0.2720491 0.3568714 0.6267224 0.4400938 0.3800705 0.5558981 0.1569947
[8] 0.4431140
Function Value
[1] 0.1076538
Gradient:
[1] -6.161294e-06  1.136868e-06  6.568968e-06 -7.920775e-06  3.335110e-05
[6]  2.843059e-05 -5.583711e-05 -3.106848e-06

iteration = 40
Step:
[1]  3.366556e-06 -2.762619e-06 -1.393623e-06  1.343481e-06 -3.733148e-06
[6] -3.773389e-06  4.311391e-06  3.883401e-06
Parameter:
[1] 0.2720525 0.3568687 0.6267210 0.4400952 0.3800668 0.5558943 0.1569990
[8] 0.4431179
Function Value
[1] 0.1076538
Gradient:
[1]  3.721468e-07 -2.025047e-06  2.401634e-06 -9.841017e-07  7.508660e-06
[6]  3.096190e-06 -1.139888e-05  4.107825e-06

iteration = 41
Step:
[1] -3.153262e-07  7.854673e-07 -7.746248e-07  1.203274e-07 -1.039596e-06
[6] -1.803319e-07  8.922505e-07  1.735312e-08
Parameter:
[1] 0.2720522 0.3568695 0.6267202 0.4400953 0.3800658 0.5558941 0.1569999
[8] 0.4431179
Function Value
[1] 0.1076538
Gradient:
[1]  1.367795e-07 -6.679102e-07  8.704149e-08 -3.623768e-07  3.126388e-07
[6] -1.421085e-07 -1.110223e-06  9.592327e-07

iteration = 42
Parameter:
[1] 0.2720520 0.3568698 0.6267201 0.4400954 0.3800657 0.5558942 0.1570000
[8] 0.4431178
Function Value
[1] 0.1076538
Gradient:
[1] -8.881784e-09 -1.101341e-07 -6.750156e-08 -1.048051e-07 -1.172396e-07
[6] -4.973799e-08 -9.769963e-08  1.278977e-07

Relative gradient close to zero.
Current iterate is probably solution.

We can safely ignore the warning messages in this case. Even in real data and model, it is possible that some attempts yield invalid results. What matters is the final solution.

Check the code first to see if the minimization terminated normally (see the help page for the meaning of different code):

f_ml_min$code
[1] 1

The result of nlm() is a list. The solution is in the element estimate.

round(f_ml_min$estimate, 3)
[1] 0.272 0.357 0.627 0.440 0.380 0.556 0.157 0.443
start
 s3~s1  s3~s2  s4~s3 s3~~s3 s4~~s4 s1~~s1 s1~~s2 s2~~s2 
  0.03   0.08   0.06   0.50   0.08   0.50   0.08   0.50 

Compare with lavaan Output

library(lavaan)
This is lavaan 0.6-19
lavaan is FREE software! Please report any bugs.
mod_pa <-
"
s3 ~ s1 + s2
s4 ~ s3
"
fit_pa <- sem(model = mod_pa,
              data = dat,
              fixed.x = FALSE)
summary(fit_pa)
lavaan 0.6-19 ended normally after 1 iteration

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         8

  Number of observations                           400

Model Test User Model:
                                                      
  Test statistic                                43.062
  Degrees of freedom                                 2
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  s3 ~                                                
    s1                0.272    0.047    5.801    0.000
    s2                0.357    0.053    6.794    0.000
  s4 ~                                                
    s3                0.627    0.041   15.325    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  s1 ~~                                               
    s2                0.157    0.026    6.032    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .s3                0.440    0.031   14.142    0.000
   .s4                0.380    0.027   14.142    0.000
    s1                0.556    0.039   14.142    0.000
    s2                0.443    0.031   14.142    0.000

Compare the parameter estimates from the two methods:

round(f_ml_min$estimate, 3)
[1] 0.272 0.357 0.627 0.440 0.380 0.556 0.157 0.443
coef(fit_pa)
 s3~s1  s3~s2  s4~s3 s3~~s3 s4~~s4 s1~~s1 s1~~s2 s2~~s2 
 0.272  0.357  0.627  0.440  0.380  0.556  0.157  0.443 

Compute the differences:

f_ml_min$estimate - coef(fit_pa)
 s3~s1  s3~s2  s4~s3 s3~~s3 s4~~s4 s1~~s1 s1~~s2 s2~~s2 
     0      0      0      0      0      0      0      0 

Compare the values of the discrepancy function:

lavInspect(fit_pa, "optim")$fx
[1] 0.05382688
f_ml_min$minimum / 2
[1] 0.05382688

Note that lavaan divides the value by 2.

A Confirmatory Factor Analysis Model

mod_cfa <-
"
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ x9 + x10 + x11 + x12
f4 =~ x13 + x14 + x15 + x16
"

Write a Function to Create the Model Matrices

# Parameters in thetas in this order (as in lavaan)
# (lambda1 .... lambda12, ev1 .... ev16, v1 .. v4, v21, v31, v41, v32, v42, v43)
# ev?? is the error variance of an item
# v? is the variance of a factor
# v?? is the covariance between two factors
# - 1:12: lambda1 .... lambda12,
# - 13:28: ev1 .... ev16,
# - 29:32: v1 .. v4,
# - 33:38: v21, v31, v41, v32, v42, v43
matrices_cfa <- function(thetas) {
    vnames <- paste0("x", 1:16)
    fnames <- c("f1", "f2", "f3", "f4")
    # Create the 16x4 lambda matrix
    lambda <- matrix(c(        1,         0,         0,         0,
                       thetas[1],         0,         0,         0,
                       thetas[2],         0,         0,         0,
                       thetas[3],         0,         0,         0,
                               0,         1,         0,         0,
                               0, thetas[4],         0,         0,
                               0, thetas[5],         0,         0,
                               0, thetas[6],         0,         0,
                               0,         0,         1,         0,
                               0,         0, thetas[7],         0,
                               0,         0, thetas[8],         0,
                               0,         0, thetas[9],         0,
                               0,         0,         0,         1,
                               0,         0,         0, thetas[10],
                               0,         0,         0, thetas[11],
                               0,         0,         0, thetas[12]),
                     byrow = TRUE,
                     nrow = 16,
                     ncol = 4)
    rownames(lambda) <- vnames
    colnames(lambda) <- fnames

    # Create the 16x16 theta matrix
    theta <- diag(thetas[13:28])
    rownames(theta) <- vnames
    colnames(theta) <- vnames

    # Create the 4x4 psi matrix
    psi <- diag(thetas[29:32])
    psi[2, 1] <- psi[1, 2] <- thetas[33]
    psi[3, 1] <- psi[1, 3] <- thetas[34]
    psi[4, 1] <- psi[1, 4] <- thetas[35]
    psi[3, 2] <- psi[2, 3] <- thetas[36]
    psi[4, 2] <- psi[2, 4] <- thetas[37]
    psi[4, 3] <- psi[3, 4] <- thetas[38]
    rownames(psi) <- fnames
    colnames(psi) <- fnames

    # Return the matrices as a list
    out <- list(lambda = lambda,
                theta = theta,
                psi = psi)
    return(out)
  }

Test the function by using arbitrary numbers:

matrices_cfa(thetas = 1:38)
$lambda
    f1 f2 f3 f4
x1   1  0  0  0
x2   1  0  0  0
x3   2  0  0  0
x4   3  0  0  0
x5   0  1  0  0
x6   0  4  0  0
x7   0  5  0  0
x8   0  6  0  0
x9   0  0  1  0
x10  0  0  7  0
x11  0  0  8  0
x12  0  0  9  0
x13  0  0  0  1
x14  0  0  0 10
x15  0  0  0 11
x16  0  0  0 12

$theta
    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
x1  13  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0
x2   0 14  0  0  0  0  0  0  0   0   0   0   0   0   0   0
x3   0  0 15  0  0  0  0  0  0   0   0   0   0   0   0   0
x4   0  0  0 16  0  0  0  0  0   0   0   0   0   0   0   0
x5   0  0  0  0 17  0  0  0  0   0   0   0   0   0   0   0
x6   0  0  0  0  0 18  0  0  0   0   0   0   0   0   0   0
x7   0  0  0  0  0  0 19  0  0   0   0   0   0   0   0   0
x8   0  0  0  0  0  0  0 20  0   0   0   0   0   0   0   0
x9   0  0  0  0  0  0  0  0 21   0   0   0   0   0   0   0
x10  0  0  0  0  0  0  0  0  0  22   0   0   0   0   0   0
x11  0  0  0  0  0  0  0  0  0   0  23   0   0   0   0   0
x12  0  0  0  0  0  0  0  0  0   0   0  24   0   0   0   0
x13  0  0  0  0  0  0  0  0  0   0   0   0  25   0   0   0
x14  0  0  0  0  0  0  0  0  0   0   0   0   0  26   0   0
x15  0  0  0  0  0  0  0  0  0   0   0   0   0   0  27   0
x16  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0  28

$psi
   f1 f2 f3 f4
f1 29 33 34 35
f2 33 30 36 37
f3 34 36 31 38
f4 35 37 38 32

Write a Function to Compute the Implied Covariance Matrices

implied_cov_cfa <- function(thetas) {
    # Create the matrices
    m <- matrices_cfa(thetas)
    lambda <- m$lambda
    theta <- m$theta
    psi <- m$psi

    # Compute the implied covariance matrix
    sigma_implied <- lambda %*% psi %*% t(lambda) + theta
    sigma_implied
  }

Write the ML Discrepancy Function

No need. The discrepancy can be used again. We only need to tell it how to compute the implied covariance matrix by setting implied.

Find the Solution

Prepare the ML estimate sample covariance matrix first:

n <- nrow(dat)
# Variables ordered as in lavaan
my_data_items_cov <- cov(dat[, paste0("x", 1:16)])
my_data_items_cov <- my_data_items_cov * (n - 1) / n
round(my_data_items_cov, 3)
       x1     x2    x3     x4    x5    x6     x7     x8    x9   x10   x11   x12
x1  1.112  0.445 0.491  0.418 0.023 0.420  0.091  0.009 0.195 0.223 0.155 0.134
x2  0.445  0.961 0.396  0.340 0.041 0.339  0.039 -0.002 0.143 0.166 0.173 0.121
x3  0.491  0.396 0.935  0.344 0.237 0.531  0.227  0.161 0.377 0.325 0.361 0.295
x4  0.418  0.340 0.344  1.019 0.044 0.264 -0.005  0.093 0.193 0.170 0.143 0.143
x5  0.023  0.041 0.237  0.044 1.104 0.290  0.297  0.193 0.162 0.184 0.183 0.150
x6  0.420  0.339 0.531  0.264 0.290 1.067  0.287  0.174 0.314 0.223 0.296 0.310
x7  0.091  0.039 0.227 -0.005 0.297 0.287  1.038  0.176 0.140 0.196 0.207 0.176
x8  0.009 -0.002 0.161  0.093 0.193 0.174  0.176  1.048 0.134 0.181 0.146 0.214
x9  0.195  0.143 0.377  0.193 0.162 0.314  0.140  0.134 0.988 0.441 0.497 0.425
x10 0.223  0.166 0.325  0.170 0.184 0.223  0.196  0.181 0.441 1.087 0.410 0.390
x11 0.155  0.173 0.361  0.143 0.183 0.296  0.207  0.146 0.497 0.410 0.935 0.396
x12 0.134  0.121 0.295  0.143 0.150 0.310  0.176  0.214 0.425 0.390 0.396 0.964
x13 0.208  0.175 0.346  0.200 0.275 0.294  0.174  0.172 0.383 0.398 0.369 0.319
x14 0.203  0.137 0.308  0.140 0.229 0.322  0.228  0.073 0.325 0.309 0.321 0.301
x15 0.236  0.204 0.360  0.183 0.202 0.337  0.256  0.168 0.482 0.453 0.374 0.363
x16 0.256  0.126 0.353  0.139 0.183 0.314  0.256  0.166 0.349 0.340 0.309 0.304
      x13   x14   x15   x16
x1  0.208 0.203 0.236 0.256
x2  0.175 0.137 0.204 0.126
x3  0.346 0.308 0.360 0.353
x4  0.200 0.140 0.183 0.139
x5  0.275 0.229 0.202 0.183
x6  0.294 0.322 0.337 0.314
x7  0.174 0.228 0.256 0.256
x8  0.172 0.073 0.168 0.166
x9  0.383 0.325 0.482 0.349
x10 0.398 0.309 0.453 0.340
x11 0.369 0.321 0.374 0.309
x12 0.319 0.301 0.363 0.304
x13 0.950 0.451 0.505 0.462
x14 0.451 0.955 0.480 0.432
x15 0.505 0.480 0.967 0.536
x16 0.462 0.432 0.536 1.048

Set the starting values:

  • Positive numbers for variances or error variances.
# Parameters in thetas in this order (as in lavaan)
# - 1:12: lambda1 .... lambda12,
# - 13:28: ev1 .... ev16,
# - 29:32: v1 .. v4,
# - 33:38: v21, v31, v41, v32, v42, v43
start <- rep(0, 38)
start[13:28] <- .60
start[29:32] <- .50

Put the starting values into the matrices:

matrices_cfa(thetas = start)
$lambda
    f1 f2 f3 f4
x1   1  0  0  0
x2   0  0  0  0
x3   0  0  0  0
x4   0  0  0  0
x5   0  1  0  0
x6   0  0  0  0
x7   0  0  0  0
x8   0  0  0  0
x9   0  0  1  0
x10  0  0  0  0
x11  0  0  0  0
x12  0  0  0  0
x13  0  0  0  1
x14  0  0  0  0
x15  0  0  0  0
x16  0  0  0  0

$theta
     x1  x2  x3  x4  x5  x6  x7  x8  x9 x10 x11 x12 x13 x14 x15 x16
x1  0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x2  0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x3  0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x4  0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x5  0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x6  0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x7  0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x8  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x9  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
x11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0
x12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0
x13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
x14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0
x15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
x16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

$psi
    f1  f2  f3  f4
f1 0.5 0.0 0.0 0.0
f2 0.0 0.5 0.0 0.0
f3 0.0 0.0 0.5 0.0
f4 0.0 0.0 0.0 0.5

We use nlm() again. The call is nearly the same. We use the item level covariance this time, and use implied_cov_cfa() to compute the implied covariance matrix.

f_ml_min <- nlm(f = f_ml,
                p = start,
                data_cov = my_data_items_cov,
                implied = implied_cov_cfa,
                print.level = 2)
iteration = 0
Step:
 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Parameter:
 [1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6
[20] 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Function Value
[1] 6.489492
Gradient:
 [1] -0.674462015 -0.744306881 -0.632870979 -0.439096453 -0.449578653
 [6] -0.293082458 -0.668117252 -0.753363707 -0.643684221 -0.682805293
[11] -0.765247865 -0.700732812 -0.009616187 -1.002028281 -0.930702445
[16] -1.164852499 -0.003714963 -1.296281621 -1.216053153 -1.243618684
[21]  0.092923841 -1.352113063 -0.929761889 -1.010357842  0.124316209
[26] -0.985004107 -1.019454420 -1.245495287 -0.009616187 -0.003714963
[31]  0.092923841  0.124316209 -0.037374829 -0.321513998 -0.343362537
[36] -0.267621179 -0.454878524 -0.633029952

iteration = 1
Step:
 [1]  0.323237656  0.356710987  0.303305045  0.210438105  0.215461726
 [6]  0.140460522  0.320196912  0.361051495  0.308487319  0.327236193
[11]  0.366747008  0.335828003  0.004608582  0.480224631  0.446041541
[16]  0.558258557  0.001780405  0.621246301  0.582796602  0.596007453
[21] -0.044533990  0.648003664  0.445590777  0.484216595 -0.059578863
[26]  0.472065752  0.488576153  0.596906821  0.004608582  0.001780405
[31] -0.044533990 -0.059578863  0.017911983  0.154086410  0.164557379
[36]  0.128258138  0.218001703  0.303381233
Parameter:
 [1] 0.32323766 0.35671099 0.30330504 0.21043810 0.21546173 0.14046052
 [7] 0.32019691 0.36105149 0.30848732 0.32723619 0.36674701 0.33582800
[13] 0.60460858 1.08022463 1.04604154 1.15825856 0.60178041 1.22124630
[19] 1.18279660 1.19600745 0.55546601 1.24800366 1.04559078 1.08421659
[25] 0.54042114 1.07206575 1.08857615 1.19690682 0.50460858 0.50178041
[31] 0.45546601 0.44042114 0.01791198 0.15408641 0.16455738 0.12825814
[37] 0.21800170 0.30338123
Function Value
[1] 3.024356
Gradient:
 [1] -0.25771368 -0.33133232 -0.23838968 -0.20385209 -0.18204715 -0.13709700
 [7] -0.31010944 -0.34844788 -0.31135700 -0.34939216 -0.41009126 -0.32772738
[13]  0.17476300  0.23261247  0.28337308  0.20662918  0.06976203  0.15503165
[19]  0.15498828  0.12733034  0.27751928  0.22071253  0.28989008  0.23735501
[25]  0.31218631  0.26168429  0.30511921  0.24027405 -0.18395020 -0.02560500
[31] -0.05696112 -0.04717197 -0.09408111 -0.12378398 -0.18806761 -0.06225652
[37] -0.15369321 -0.47894365

iteration = 2
Step:
 [1]  0.155255085  0.193454212  0.144063501  0.118079192  0.108326090
 [6]  0.079300632  0.179634814  0.201975456  0.178999228  0.198886881
[11]  0.231627117  0.189572716 -0.081895430 -0.059462106 -0.086960951
[16] -0.039060035 -0.032697276 -0.008156636 -0.012154153  0.002263331
[21] -0.135466426 -0.036320127 -0.090079934 -0.061280417 -0.153379400
[26] -0.074018122 -0.092766463 -0.050880310  0.087189137  0.012255332
[31]  0.022195668  0.016009235  0.046218258  0.074449245  0.105844454
[36]  0.042748367  0.095226482  0.257459998
Parameter:
 [1] 0.47849274 0.55016520 0.44736855 0.32851730 0.32378782 0.21976115
 [7] 0.49983173 0.56302695 0.48748655 0.52612307 0.59837412 0.52540072
[13] 0.52271315 1.02076252 0.95908059 1.11919852 0.56908313 1.21308967
[19] 1.17064245 1.19827078 0.41999958 1.21168354 0.95551084 1.02293618
[25] 0.38704174 0.99804763 0.99580969 1.14602651 0.59179772 0.51403574
[31] 0.47766168 0.45643037 0.06413024 0.22853566 0.27040183 0.17100651
[37] 0.31322818 0.56084123
Function Value
[1] 2.660275
Gradient:
 [1] -0.14571819 -0.18482321 -0.13717283 -0.12819005 -0.11943730 -0.08797800
 [7] -0.15566028 -0.07967297 -0.08699618 -0.06800173 -0.18715576 -0.08209583
[13]  0.10913588  0.27042062  0.34853439  0.23961619 -0.11127714  0.17558057
[19]  0.17313306  0.13996757 -1.61324724  0.24906764  0.27329565  0.23119511
[25] -2.27030948  0.24273364  0.35365186  0.23547452 -0.15995787 -0.21859445
[31] -2.90948317 -3.97638890 -0.27593241 -0.59511759  0.68269942 -1.37187993
[37]  1.56582537  6.61021327

iteration = 3
Step:
 [1]  0.210660529  0.263373149  0.195521882  0.161648516  0.148041039
 [6]  0.108670407  0.243922030  0.269410391  0.239772101  0.265201218
[11]  0.314551941  0.253284846 -0.115481364 -0.100956093 -0.141277714
[16] -0.073235874 -0.038259120 -0.029507942 -0.034149101 -0.013330093
[21] -0.099315943 -0.071435157 -0.141642931 -0.101470199 -0.089820874
[26] -0.118956045 -0.149988182 -0.089486720  0.125015799  0.027492024
[31]  0.177903331  0.223899683  0.075714669  0.127647198  0.104857384
[36]  0.124876254  0.045029509  0.005759473
Parameter:
 [1] 0.6891533 0.8135383 0.6428904 0.4901658 0.4718289 0.3284316 0.7437538
 [8] 0.8324373 0.7272586 0.7913243 0.9129261 0.7786856 0.4072318 0.9198064
[15] 0.8178029 1.0459626 0.5308240 1.1835817 1.1364933 1.1849407 0.3206836
[22] 1.1402484 0.8138679 0.9214660 0.2972209 0.8790916 0.8458215 1.0565398
[29] 0.7168135 0.5415278 0.6555650 0.6803301 0.1398449 0.3561829 0.3752592
[36] 0.2958828 0.3582577 0.5666007
Function Value
[1] 1.666174
Gradient:
 [1]  0.053725774  0.089510380  0.035233729 -0.072040827 -0.052640011
 [6] -0.043042469 -0.009984415  0.062732553  0.030217780  0.058102255
[11]  0.066910580  0.008343882 -0.196848362  0.278036609  0.382017888
[16]  0.249427456 -0.133728502  0.205307869  0.190746801  0.150885614
[21] -0.518675371  0.298258970  0.369605605  0.293282270 -0.598606853
[26]  0.336926298  0.458470666  0.327587423  0.030992034 -0.088604303
[31] -0.314470736 -0.210950645 -0.229838882  0.105981062  0.098104397
[36]  0.086049493  0.081712464  0.599094840

iteration = 4
Step:
 [1]  0.07250889  0.07755282  0.07519367  0.11558397  0.09889653  0.07466102
 [7]  0.12293222  0.10092693  0.10262336  0.10141491  0.11515174  0.12191966
[13]  0.05590824 -0.17762386 -0.25030177 -0.14873250  0.04762529 -0.10559947
[19] -0.10078928 -0.07045466  0.14314305 -0.17227625 -0.24788459 -0.18824121
[25]  0.15486998 -0.22015297 -0.29509399 -0.19875284  0.03622146  0.04970942
[31]  0.09799579  0.00563107  0.14734468 -0.02450368  0.03890378 -0.05817722
[37]  0.06769988  0.04602481
Parameter:
 [1] 0.7616622 0.8910912 0.7180841 0.6057498 0.5707254 0.4030926 0.8666860
 [8] 0.9333643 0.8298820 0.8927392 1.0280778 0.9006052 0.4631400 0.7421826
[15] 0.5675011 0.8972302 0.5784493 1.0779823 1.0357041 1.1144860 0.4638267
[22] 0.9679721 0.5659833 0.7332248 0.4520908 0.6589386 0.5507275 0.8577870
[29] 0.7530350 0.5912372 0.7535608 0.6859611 0.2871896 0.3316792 0.4141630
[36] 0.2377055 0.4259576 0.6126255
Function Value
[1] 1.058867
Gradient:
 [1]  0.085879055  0.096752480  0.085704990 -0.057347410 -0.016634679
 [6]  0.006192064  0.068567132  0.133133863  0.094950224  0.078537123
[11]  0.081302742  0.046546059 -0.183449561  0.173437389  0.247984740
[16]  0.180101953 -0.174034621  0.205993089  0.164968365  0.119480537
[21]  0.049363823  0.265844442  0.169548724  0.189274324 -0.044519151
[26]  0.184303392  0.320442695  0.275626260  0.198257961 -0.045959482
[31]  0.166553022 -0.295590887 -0.038402373 -0.319734784  0.159538782
[36] -0.686363993  0.648131024  0.570708451
Warning in log(det(sigma_implied)): NaNs produced
Warning in nlm(f = f_ml, p = start, data_cov = my_data_items_cov, implied =
implied_cov_cfa, : NA/Inf replaced by maximum positive value
iteration = 5
Step:
 [1]  0.0073969126  0.0076657203  0.0078006331  0.0245312098  0.0187618078
 [6]  0.0128188737  0.0174761219  0.0097963113  0.0124729854  0.0137107587
[11]  0.0155757063  0.0193428769  0.0223748282 -0.0414477005 -0.0590769318
[16] -0.0368380101  0.0195339936 -0.0312165041 -0.0275953172 -0.0192077225
[21]  0.0113407951 -0.0467532627 -0.0535946750 -0.0446140284  0.0162411135
[26] -0.0498377421 -0.0718731074 -0.0522602723 -0.0077235304  0.0107393320
[31] -0.0102358235  0.0004042219  0.0270751894  0.0157849658  0.0002975933
[36]  0.0311869747 -0.0242724697  0.0060421100
Parameter:
 [1] 0.7690591 0.8987569 0.7258847 0.6302810 0.5894872 0.4159115 0.8841621
 [8] 0.9431606 0.8423550 0.9064500 1.0436535 0.9199481 0.4855149 0.7007349
[15] 0.5084242 0.8603921 0.5979833 1.0467657 1.0081087 1.0952783 0.4751675
[22] 0.9212189 0.5123886 0.6886107 0.4683320 0.6091009 0.4788544 0.8055267
[29] 0.7453115 0.6019765 0.7433250 0.6863653 0.3142648 0.3474641 0.4144606
[36] 0.2688925 0.4016851 0.6186676
Function Value
[1] 0.9195202
Gradient:
 [1]  0.081297056  0.056462380  0.087943498 -0.057828665 -0.007420326
 [6]  0.010710000  0.071762191  0.113842329  0.090983200  0.073860601
[11]  0.058090236  0.047822756 -0.172728214  0.124459927  0.177774425
[16]  0.150238961 -0.123069121  0.209344130  0.156865058  0.112225633
[21]  0.054624078  0.247557590  0.063240797  0.139413643  0.008977239
[26]  0.115969243  0.226442488  0.252585451  0.194468758  0.069945187
[31]  0.148911319 -0.176185871  0.029177052 -0.309078970  0.121871459
[36] -0.489883881  0.292018619  0.532590825

iteration = 6
Step:
 [1] -0.006458921  0.001811006 -0.007521914  0.024438385  0.012448665
 [6]  0.007272535  0.001957588 -0.005709244 -0.003159811 -0.001195174
[11]  0.004286706  0.006036420  0.040099391 -0.040102507 -0.056880692
[16] -0.042834163  0.021145851 -0.051043661 -0.040015911 -0.028399618
[21]  0.009327681 -0.064276824 -0.033391484 -0.044494760  0.007288229
[26] -0.043216117 -0.068933431 -0.068685192 -0.028565062 -0.021319842
[31] -0.026739001 -0.019729118  0.008052155  0.035655642 -0.005796896
[36]  0.026399139  0.026222376 -0.030163850
Parameter:
 [1] 0.7626001 0.9005679 0.7183628 0.6547194 0.6019359 0.4231840 0.8861197
 [8] 0.9374513 0.8391952 0.9052548 1.0479402 0.9259845 0.5256142 0.6606324
[15] 0.4515435 0.8175580 0.6191291 0.9957221 0.9680928 1.0668787 0.4844952
[22] 0.8569420 0.4789972 0.6441160 0.4756202 0.5658848 0.4099210 0.7368415
[29] 0.7167464 0.5806567 0.7165860 0.6666362 0.3223169 0.3831198 0.4086637
[36] 0.2952917 0.4279075 0.5885038
Function Value
[1] 0.7903282
Gradient:
 [1]  0.056127714 -0.020572113  0.070410994 -0.076911416 -0.019142004
 [6]  0.004826568  0.066362279  0.086205109  0.077440003  0.057038196
[11]  0.020636691  0.040587405 -0.124718575  0.057426917  0.087051113
[16]  0.105446805 -0.157452277  0.197946729  0.133308244  0.094601464
[21]  0.071479299  0.211397598 -0.030787309  0.070094842  0.018709141
[26]  0.029060978  0.039226528  0.198555728  0.153470889  0.013522122
[31]  0.135976673 -0.224783722  0.025317501 -0.114477078 -0.006267431
[36] -0.560299856  0.498136629  0.493988935

iteration = 7
Step:
 [1] -0.013829297  0.010123055 -0.017002273  0.026923873  0.009516180
 [6]  0.003760345 -0.011223255 -0.015218775 -0.014794783 -0.012239565
[11] -0.001203570 -0.005522504  0.043625124 -0.025254541 -0.036506589
[16] -0.037968053  0.035939642 -0.062722077 -0.044009187 -0.031874877
[21]  0.007007463 -0.069177024 -0.002561191 -0.030142671  0.003968161
[26] -0.021115906 -0.024265273 -0.068342056 -0.034039028 -0.020668276
[31] -0.042062510 -0.025366145  0.001024544 -0.008318544  0.021368824
[36]  0.045653632 -0.013239951 -0.034409126
Parameter:
 [1] 0.7487709 0.9106909 0.7013605 0.6816433 0.6114520 0.4269443 0.8748964
 [8] 0.9222326 0.8244004 0.8930152 1.0467366 0.9204620 0.5692394 0.6353778
[15] 0.4150369 0.7795899 0.6550688 0.9330000 0.9240837 1.0350038 0.4915026
[22] 0.7877650 0.4764360 0.6139733 0.4795884 0.5447688 0.3856557 0.6684994
[29] 0.6827074 0.5599884 0.6745235 0.6412701 0.3233415 0.3748012 0.4300325
[36] 0.3409453 0.4146675 0.5540946
Function Value
[1] 0.6894281
Gradient:
 [1]  0.021621442 -0.076986776  0.039182844 -0.091143519 -0.032111814
 [6] -0.010293466  0.041397332  0.050024962  0.039464680  0.032560948
[11] -0.005775644  0.016070572 -0.066797323 -0.007539093  0.006254236
[16]  0.050396764 -0.117387561  0.177715929  0.105205935  0.076767434
[21]  0.081061732  0.155286422 -0.040767748  0.017624608  0.022148836
[26] -0.030928678 -0.045667509  0.117974718  0.034399619  0.066758211
[31]  0.146345553 -0.245271014 -0.095667893 -0.283463436  0.444348355
[36] -0.206162923  0.212434891  0.309722719

iteration = 8
Step:
 [1] -0.0057512730  0.0119276343 -0.0082307399  0.0177739853  0.0067577493
 [6]  0.0030918997 -0.0061293369 -0.0075156269 -0.0069671847 -0.0061888609
[11]  0.0010121440 -0.0023509727  0.0204027597 -0.0074631913 -0.0122819284
[16] -0.0169382622  0.0216834805 -0.0365160963 -0.0238417921 -0.0174786875
[21] -0.0005890019 -0.0364849757  0.0021560841 -0.0115086788  0.0005829839
[26] -0.0045477066 -0.0016405760 -0.0329308134 -0.0109333450 -0.0129912247
[31] -0.0289152325 -0.0036667624  0.0114828705  0.0088612757 -0.0266943869
[36]  0.0129190340 -0.0067212512 -0.0127642258
Parameter:
 [1] 0.7430196 0.9226186 0.6931298 0.6994172 0.6182098 0.4300362 0.8687671
 [8] 0.9147169 0.8174332 0.8868264 1.0477488 0.9181110 0.5896421 0.6279146
[15] 0.4027550 0.7626517 0.6767523 0.8964839 0.9002419 1.0175251 0.4909136
[22] 0.7512800 0.4785921 0.6024646 0.4801713 0.5402211 0.3840151 0.6355686
[29] 0.6717740 0.5469972 0.6456082 0.6376033 0.3348243 0.3836625 0.4033381
[36] 0.3538643 0.4079463 0.5413304
Function Value
[1] 0.6432148
Gradient:
 [1]  0.012044360 -0.078008163  0.027408657 -0.109813058 -0.034986524
 [6] -0.014009036  0.016281881  0.025506179  0.015825698  0.027589572
[11]  0.005240478  0.009420692 -0.040195207 -0.028625625  0.006812737
[16]  0.023221993 -0.114203559  0.169807109  0.083553196  0.063598872
[21]  0.064827013  0.114797821 -0.051388099 -0.014546995  0.032189394
[26] -0.036511789 -0.021089043  0.070730408  0.061147411  0.062052425
[31]  0.033202380 -0.061524542 -0.032009009 -0.064665507  0.130804221
[36] -0.106850543  0.097350775  0.250591789

iteration = 9
Step:
 [1] -0.007744072  0.096355812 -0.023286021  0.150343804  0.058501365
 [6]  0.031043047  0.003046649 -0.011498573 -0.001284365 -0.018366539
[11]  0.007038675  0.008995238  0.073771264 -0.009358715 -0.068696859
[16] -0.063150739  0.142277814 -0.223662943 -0.121561284 -0.091762896
[21] -0.038671315 -0.175002141  0.005891144 -0.027629459 -0.024550370
[26] -0.012699986 -0.044399804 -0.132868173 -0.073312202 -0.068049218
[31] -0.060337613 -0.079755210  0.055544571 -0.021127342 -0.047696966
[36]  0.026275782 -0.007383119 -0.105723896
Parameter:
 [1] 0.7352755 1.0189744 0.6698438 0.8497610 0.6767112 0.4610793 0.8718137
 [8] 0.9032184 0.8161489 0.8684598 1.0547875 0.9271063 0.6634134 0.6185559
[15] 0.3340581 0.6995009 0.8190301 0.6728210 0.7786806 0.9257622 0.4522423
[22] 0.5762779 0.4844832 0.5748352 0.4556210 0.5275212 0.3396153 0.5027004
[29] 0.5984618 0.4789479 0.5852706 0.5578481 0.3903689 0.3625352 0.3556412
[36] 0.3801401 0.4005632 0.4356065
Function Value
[1] 0.5968366
Gradient:
 [1] -0.0128772726 -0.0791233450 -0.0209957314 -0.1686150135 -0.0044312536
 [6] -0.0026992950 -0.0405664657  0.0090545846  0.0003716387 -0.0214900986
[11] -0.0531408450 -0.0629936956  0.0078764444 -0.1072037001 -0.0620238119
[16] -0.1326929784 -0.0889337457  0.0235429063 -0.1012232183 -0.0350995251
[21] -0.0607984880 -0.2280756100 -0.0402361486 -0.0784814169 -0.0768741089
[26] -0.0865265619 -0.2461858415 -0.2701566082 -0.0621226661 -0.2114172375
[31]  0.0620864604 -0.0267394711  0.1316641480  0.0670192257  0.1040282243
[36]  0.2887802637  0.3471796610 -0.4232142672

iteration = 10
Step:
 [1] -0.022005707 -0.007865380 -0.019408536  0.036839450 -0.013986402
 [6] -0.011481185 -0.015342800 -0.034326583 -0.026960162 -0.025653638
[11] -0.022759794 -0.011492520  0.014334775  0.034234332  0.018739807
[16]  0.035581058  0.029762582 -0.023608693  0.018766873  0.001301570
[21]  0.018610879  0.053411439  0.026241780  0.027323115  0.024006171
[26]  0.029956784  0.053705248  0.069112370 -0.017312881  0.032086055
[31] -0.009437495 -0.002726046 -0.061177819 -0.001764654 -0.028247422
[36] -0.066624649 -0.074641854  0.019014264
Parameter:
 [1] 0.7132698 1.0111090 0.6504353 0.8866005 0.6627248 0.4495981 0.8564709
 [8] 0.8688918 0.7891887 0.8428062 1.0320277 0.9156138 0.6777482 0.6527903
[15] 0.3527979 0.7350820 0.8487927 0.6492123 0.7974474 0.9270638 0.4708532
[22] 0.6296893 0.5107250 0.6021583 0.4796271 0.5574779 0.3933206 0.5718128
[29] 0.5811489 0.5110340 0.5758331 0.5551221 0.3291911 0.3607705 0.3273937
[36] 0.3135155 0.3259213 0.4546208
Function Value
[1] 0.5516504
Gradient:
 [1] -0.030386946 -0.057580342 -0.036583462 -0.099812954 -0.018507340
 [6] -0.007684186 -0.033031547 -0.022787869 -0.016804925 -0.038247737
[11] -0.029080846 -0.026134909  0.040883137 -0.029480677  0.027431586
[16] -0.060908334  0.024575161  0.037965883 -0.032181269 -0.024139805
[21]  0.004794529 -0.087512870  0.009584330 -0.027833927  0.039111757
[26] -0.001140172  0.039462904 -0.048353677  0.007081784  0.250546446
[31] -0.082358714  0.079368988 -0.153823930  0.288453087 -0.053847543
[36] -0.037850956 -0.172890552  0.028519455

iteration = 11
Step:
 [1]  0.017774574  0.032731886  0.021517971  0.063059585  0.010513214
 [6]  0.004925714  0.024080593  0.010982879  0.009982727  0.027230323
[11]  0.030207577  0.028033648 -0.012591357  0.011245380 -0.018640396
[16]  0.032021651 -0.002190983 -0.017048116  0.023360934  0.012953724
[21] -0.003355154  0.058588262 -0.013077846  0.005745427 -0.010206220
[26] -0.002636359 -0.004586869  0.043499193  0.003321227 -0.068481427
[31]  0.014287718  0.015002429  0.040356654 -0.063962125 -0.022864046
[36]  0.020675551 -0.004295437  0.016784768
Parameter:
 [1] 0.7310444 1.0438409 0.6719532 0.9496601 0.6732380 0.4545238 0.8805515
 [8] 0.8798747 0.7991714 0.8700365 1.0622352 0.9436474 0.6651568 0.6640356
[15] 0.3341575 0.7671036 0.8466017 0.6321642 0.8208084 0.9400175 0.4674980
[22] 0.6882776 0.4976471 0.6079037 0.4694209 0.5548416 0.3887337 0.6153120
[29] 0.5844702 0.4425526 0.5901208 0.5701245 0.3695478 0.2968084 0.3045297
[36] 0.3341910 0.3216259 0.4714056
Function Value
[1] 0.5345426
Gradient:
 [1] -0.0098258361 -0.0245945092 -0.0007855760 -0.1422890357 -0.0049498219
 [6] -0.0089545686  0.0213205134 -0.0209065583 -0.0114594094 -0.0061180430
[11]  0.0152530610  0.0242691485  0.0203017692 -0.0041786095 -0.0079519857
[16] -0.0114816565 -0.0454414995  0.0536568585 -0.0415933208 -0.0214833769
[21] -0.0027329961  0.0281757870 -0.0153969282 -0.0010508110  0.0019814976
[26] -0.0005832952  0.0440146266  0.0513002867  0.1036054655 -0.0008627943
[31] -0.0006772609  0.1595010986  0.2424679337 -0.3673942821 -0.0123164234
[36]  0.3013019594 -0.3511010682  0.1294010659

iteration = 12
Step:
 [1]  0.020319323  0.052067794  0.018250379  0.113995290  0.022750788
 [6]  0.013781788  0.016083595  0.017208351  0.014286905  0.026000993
[11]  0.026979559  0.020246005 -0.007671125  0.002934445 -0.026329459
[16]  0.014457093  0.043643281 -0.057948230  0.012637473  0.003613077
[21] -0.009512231  0.007562697 -0.012876117 -0.004637580 -0.007443723
[26] -0.008835830 -0.016784355 -0.006307516 -0.033277014 -0.033666716
[31] -0.006778072 -0.023567012 -0.022256242  0.033373501  0.001075577
[36] -0.019053648  0.012556964 -0.028285046
Parameter:
 [1] 0.7513637 1.0959087 0.6902036 1.0636554 0.6959888 0.4683056 0.8966351
 [8] 0.8970830 0.8134583 0.8960375 1.0892148 0.9638934 0.6574857 0.6669701
[15] 0.3078281 0.7815607 0.8902450 0.5742159 0.8334459 0.9436306 0.4579858
[22] 0.6958403 0.4847710 0.6032661 0.4619772 0.5460057 0.3719493 0.6090045
[29] 0.5511931 0.4088859 0.5833428 0.5465575 0.3472915 0.3301819 0.3056053
[36] 0.3151374 0.3341828 0.4431205
Function Value
[1] 0.4969242
Gradient:
 [1]  6.352963e-05 -2.728735e-02  8.950561e-03 -1.061811e-01 -5.237400e-03
 [6] -4.971941e-03  3.890034e-02 -1.184886e-02  4.028649e-03  1.327081e-04
[11]  1.440398e-02  2.130554e-02 -2.450777e-02 -1.205524e-02 -4.660305e-02
[16]  1.260688e-03 -7.112682e-03 -6.056776e-03 -2.745865e-02 -2.175931e-02
[21] -1.797077e-02  4.247724e-02 -3.658101e-02 -1.038169e-02 -4.294951e-02
[26] -1.530015e-02 -2.723590e-02  4.243937e-02  9.114054e-02  1.245105e-02
[31]  9.949555e-02  1.553227e-01  5.119066e-02  4.888440e-02 -1.820352e-01
[36] -6.305925e-03  1.297107e-01 -1.518773e-01

iteration = 13
Step:
 [1]  3.469521e-03  3.325541e-02  3.543623e-05  8.901180e-02  1.202806e-02
 [6]  6.774119e-03 -7.085550e-03  1.015150e-03 -1.721034e-03  3.729999e-03
[11]  2.696643e-03 -3.792904e-05  1.062462e-02  8.495598e-03 -2.473505e-03
[16]  6.707840e-03  2.925206e-02 -4.426428e-02  4.243574e-03 -5.901312e-04
[21]  9.493971e-03 -1.204909e-02  5.456832e-03  1.905051e-03  2.112775e-02
[26]  3.000955e-03 -1.970023e-04 -1.375746e-02 -4.044942e-02 -3.801331e-02
[31] -2.144728e-02 -3.097138e-02 -6.430068e-03  6.716382e-03 -1.974405e-03
[36] -1.351957e-02 -2.363962e-02 -1.631444e-02
Parameter:
 [1] 0.7548332 1.1291641 0.6902390 1.1526672 0.7080168 0.4750797 0.8895496
 [8] 0.8980982 0.8117373 0.8997675 1.0919114 0.9638555 0.6681103 0.6754657
[15] 0.3053546 0.7882686 0.9194970 0.5299517 0.8376894 0.9430405 0.4674798
[22] 0.6837912 0.4902278 0.6051712 0.4831049 0.5490067 0.3717523 0.5952470
[29] 0.5107437 0.3708726 0.5618955 0.5155861 0.3408614 0.3368983 0.3036309
[36] 0.3016178 0.3105432 0.4268061
Function Value
[1] 0.481821
Gradient:
 [1] -0.010977551 -0.046048705 -0.003094044 -0.101555859 -0.001382212
 [6] -0.002980009  0.015869027 -0.016830171 -0.006166843 -0.011053864
[11] -0.015705973 -0.002714032 -0.033394063 -0.013938774 -0.023865027
[16] -0.001387196  0.001587868 -0.058450127 -0.037582520 -0.028653055
[21] -0.003116817  0.019354918 -0.030213354 -0.012014940  0.014842321
[26] -0.011141719 -0.032876500  0.010548451 -0.104768702 -0.100258497
[31] -0.007646079  0.043281148  0.230211313  0.236250656 -0.121950574
[36] -0.006104557  0.163398276 -0.108495016

iteration = 14
Step:
 [1]  8.481934e-03  4.214398e-02  3.847726e-03  1.031407e-01  1.357812e-02
 [6]  8.351260e-03 -5.848872e-03  6.955672e-03  2.638854e-03  9.830126e-03
[11]  1.011236e-02  4.155335e-03  1.424515e-02  7.099208e-03 -3.555728e-03
[16]  4.918516e-03  2.351231e-02 -3.269279e-02  9.371850e-03  4.274947e-03
[21]  5.714251e-03 -1.643536e-02  4.680708e-03  1.639931e-05  1.256646e-02
[26]  5.786760e-04 -4.697658e-03 -1.917502e-02 -1.427287e-02 -2.944395e-02
[31] -1.540213e-02 -2.423490e-02 -4.027345e-02 -1.342795e-02 -1.002259e-02
[36] -1.277573e-02 -2.633534e-02 -1.283205e-02
Parameter:
 [1] 0.7633152 1.1713081 0.6940868 1.2558079 0.7215949 0.4834310 0.8837007
 [8] 0.9050538 0.8143761 0.9095976 1.1020238 0.9680108 0.6823555 0.6825649
[15] 0.3017988 0.7931871 0.9430093 0.4972589 0.8470613 0.9473154 0.4731940
[22] 0.6673558 0.4949086 0.6051876 0.4956714 0.5495854 0.3670547 0.5760720
[29] 0.4964709 0.3414286 0.5464934 0.4913512 0.3005880 0.3234703 0.2936083
[36] 0.2888421 0.2842079 0.4139740
Function Value
[1] 0.4703989
Gradient:
 [1] -0.012382337  0.019792018 -0.008332368 -0.064934827 -0.012461516
 [6] -0.011075780 -0.003240711 -0.009372005 -0.011254929 -0.011830014
[11] -0.031172277 -0.022462554 -0.005620958  0.001914366  0.018151578
[16]  0.006084182  0.031705984 -0.079434717 -0.020868985 -0.022124699
[21]  0.002056808 -0.014832594 -0.018874900 -0.011042641  0.040706134
[26] -0.013244549 -0.054829417 -0.037073459  0.076784445  0.034419944
[31] -0.065243281 -0.044952973 -0.217677432  0.146383467  0.034695326
[36]  0.207805702  0.095982518 -0.078821490

iteration = 15
Step:
 [1]  1.373799e-02  4.536657e-02  7.624513e-03  1.396772e-01  1.872707e-02
 [6]  1.196357e-02 -4.226056e-03  1.069995e-02  6.071632e-03  1.690031e-02
[11]  2.146584e-02  1.163214e-02  1.683822e-02  4.909443e-03 -1.448472e-02
[16]  4.626451e-03  2.361678e-02 -2.451780e-02  1.728976e-02  1.063042e-02
[21] -1.924170e-03 -1.387550e-02  7.254594e-03 -6.472931e-04 -4.588508e-03
[26] -7.948656e-05 -1.586336e-03 -1.609506e-02 -3.717702e-02 -4.047996e-02
[31] -4.630043e-03 -1.575755e-02 -1.884660e-02 -2.629726e-02 -1.402811e-02
[36] -5.009295e-02 -4.469314e-02 -1.468233e-02
Parameter:
 [1] 0.7770531 1.2166746 0.7017113 1.3954851 0.7403220 0.4953945 0.8794747
 [8] 0.9157538 0.8204478 0.9264979 1.1234896 0.9796430 0.6991937 0.6874743
[15] 0.2873141 0.7978135 0.9666261 0.4727411 0.8643510 0.9579458 0.4712699
[22] 0.6534803 0.5021632 0.6045403 0.4910829 0.5495059 0.3654684 0.5599770
[29] 0.4592938 0.3009486 0.5418633 0.4755937 0.2817414 0.2971731 0.2795802
[36] 0.2387491 0.2395147 0.3992917
Function Value
[1] 0.4568537
Gradient:
 [1] -1.218212e-02  1.525857e-02 -1.027328e-02 -3.829893e-02 -1.066814e-02
 [6] -7.763123e-03 -1.298300e-02  1.663772e-02 -2.478728e-05  2.306841e-03
[11] -8.440971e-03 -2.640293e-02  2.115332e-03 -1.354490e-03 -8.300034e-03
[16]  1.923919e-03  4.267060e-02 -2.532173e-02 -1.090977e-02 -1.647957e-02
[21]  1.168928e-02 -3.791383e-02  1.553889e-02 -7.354981e-03  2.071799e-02
[26] -1.248940e-02 -4.654092e-02 -7.627744e-02 -1.917983e-02  1.449473e-01
[31]  5.387780e-02 -6.339256e-03  1.084176e-02  2.615808e-02  1.704179e-01
[36] -3.370576e-02 -1.345237e-01 -7.911652e-02

iteration = 16
Step:
 [1]  0.0086913674  0.0198104313  0.0057432225  0.0858293001  0.0106302133
 [6]  0.0067560687 -0.0009181824  0.0012885073  0.0017831401  0.0077067142
[11]  0.0097682970  0.0088567013  0.0057829071  0.0045420306 -0.0060795812
[16]  0.0066110943  0.0096021487 -0.0100945160  0.0161443002  0.0110021808
[21]  0.0010411756  0.0066482751  0.0005668279  0.0028452716  0.0006861977
[26]  0.0023557831  0.0070223413  0.0102519907 -0.0241796464 -0.0419757377
[31] -0.0066500472 -0.0082179018 -0.0205118025 -0.0188244257 -0.0184827309
[36] -0.0152223829 -0.0141020071 -0.0060551169
Parameter:
 [1] 0.7857445 1.2364851 0.7074545 1.4813144 0.7509522 0.5021506 0.8785565
 [8] 0.9170423 0.8222309 0.9342046 1.1332579 0.9884997 0.7049766 0.6920164
[15] 0.2812345 0.8044246 0.9762283 0.4626466 0.8804953 0.9689480 0.4723110
[22] 0.6601286 0.5027300 0.6073856 0.4917691 0.5518617 0.3724907 0.5702289
[29] 0.4351142 0.2589729 0.5352133 0.4673758 0.2612296 0.2783486 0.2610974
[36] 0.2235267 0.2254127 0.3932366
Function Value
[1] 0.4490497
Gradient:
 [1] -0.0129486111  0.0054773565 -0.0107534639 -0.0449094780 -0.0180367365
 [6] -0.0127496342 -0.0129309932  0.0164857177  0.0012465051  0.0052564673
[11]  0.0057361166 -0.0171224741  0.0061456760  0.0048563109 -0.0248432919
[16]  0.0080486160  0.0415894341 -0.0632015613 -0.0019526674 -0.0087694900
[21]  0.0153985233 -0.0261339643  0.0184593070  0.0004671215  0.0210587636
[26] -0.0029451215 -0.0116506200 -0.0478355560 -0.0327583614 -0.0641570814
[31]  0.0585816089  0.0103142774  0.1511257679 -0.0409170902  0.0566570115
[36] -0.0023217446 -0.0128417739 -0.0654422045

iteration = 17
Step:
 [1]  0.0271841243  0.0239288616  0.0211272989  0.1606458323  0.0291556113
 [6]  0.0199363110  0.0054229501  0.0013570859  0.0068986629  0.0156037724
[11]  0.0141465055  0.0223228235 -0.0067453182  0.0021081009  0.0097242754
[16]  0.0068508973 -0.0298363992  0.0446036166  0.0332172398  0.0309844428
[21]  0.0008686627  0.0287637853 -0.0065594667  0.0067230838 -0.0020124489
[26]  0.0054384515  0.0111183172  0.0383407994 -0.0522704345 -0.0514927193
[31] -0.0174291266 -0.0092168523 -0.0537944144 -0.0199743502 -0.0250218418
[36] -0.0269361665 -0.0239854582 -0.0057980444
Parameter:
 [1] 0.8129286 1.2604139 0.7285818 1.6419603 0.7801078 0.5220869 0.8839794
 [8] 0.9183994 0.8291296 0.9498084 1.1474044 1.0108225 0.6982313 0.6941245
[15] 0.2909588 0.8112755 0.9463919 0.5072502 0.9137126 0.9999325 0.4731797
[22] 0.6888924 0.4961705 0.6141087 0.4897566 0.5573001 0.3836090 0.6085697
[29] 0.3828438 0.2074802 0.5177842 0.4581589 0.2074352 0.2583743 0.2360756
[36] 0.1965906 0.2014273 0.3874385
Function Value
[1] 0.4457614
Gradient:
 [1] -0.0179925479 -0.0292971783 -0.0182922690 -0.0028477399 -0.0333925243
 [6] -0.0219673382 -0.0063311312  0.0001523297  0.0041719410  0.0157386815
[11]  0.0235647049  0.0161705364 -0.0065518648  0.0144400119 -0.0015340049
[16]  0.0217657181  0.0168438454  0.0536453015  0.0342443833  0.0214134737
[21]  0.0090712895  0.0230253043 -0.0061914243  0.0119393988  0.0135730787
[26]  0.0157119473  0.0361283057  0.0410179481 -0.0571546508  0.1228466004
[31] -0.0123726345  0.0337399797 -0.2619894133  0.0796469273 -0.0168646785
[36] -0.0484523603  0.0567886254  0.0092169223

iteration = 18
Step:
 [1]  0.0128782745  0.0238802769  0.0112914025  0.0355756714  0.0195539529
 [6]  0.0131540785  0.0110201198  0.0034290727  0.0043979971  0.0013026170
[11]  0.0020814435  0.0064792752  0.0033369413 -0.0054885865 -0.0014267912
[16] -0.0082725061  0.0004791922 -0.0195557023 -0.0105917091 -0.0072865525
[21] -0.0023224749 -0.0065947098 -0.0025385269 -0.0064047211 -0.0032604300
[26] -0.0063341911 -0.0112213611 -0.0070877807  0.0223187760 -0.0095888071
[31] -0.0014839690 -0.0112270222  0.0146300915  0.0045684967  0.0012787287
[36] -0.0002315687 -0.0111828380 -0.0055074034
Parameter:
 [1] 0.8258069 1.2842942 0.7398732 1.6775359 0.7996618 0.5352410 0.8949995
 [8] 0.9218284 0.8335276 0.9511110 1.1494859 1.0173018 0.7015682 0.6886359
[15] 0.2895320 0.8030030 0.9468711 0.4876945 0.9031209 0.9926459 0.4708572
[22] 0.6822977 0.4936320 0.6077039 0.4864962 0.5509659 0.3723876 0.6014820
[29] 0.4051625 0.1978914 0.5163002 0.4469319 0.2220653 0.2629428 0.2373543
[36] 0.1963590 0.1902444 0.3819311
Function Value
[1] 0.4413681
Gradient:
 [1] -0.0014666917  0.0391889651 -0.0044670223 -0.0231926009 -0.0276903336
 [6] -0.0191002378  0.0039020520  0.0021505464  0.0046189790  0.0069114350
[11] -0.0010995962  0.0130905067 -0.0032371190  0.0054176255  0.0262835655
[16]  0.0094832018  0.0062577321  0.0002646310  0.0154498494  0.0122852306
[21] -0.0028819009  0.0136832341 -0.0151845860  0.0001033946 -0.0023445956
[26] -0.0041595456 -0.0081547675  0.0264342930  0.0245983927 -0.1470668884
[31] -0.0149765071  0.0077347657  0.1381277706 -0.0144713717 -0.0457865497
[36]  0.0708939574 -0.1043804367  0.0373019091

iteration = 19
Step:
 [1] -0.0021541523 -0.0151792801 -0.0001977334 -0.0185529118  0.0117879523
 [6]  0.0075352310 -0.0010084897 -0.0048466052 -0.0052270426 -0.0093597600
[11] -0.0048973173 -0.0085306170  0.0066164388 -0.0049787628 -0.0111491485
[16] -0.0104911792  0.0013578487 -0.0194376706 -0.0204172213 -0.0152424069
[21] -0.0012877421 -0.0144272017  0.0058189315 -0.0037307915  0.0020322772
[26] -0.0005302865  0.0034053552 -0.0176264730  0.0062528412  0.0320148237
[31] -0.0031121066  0.0035332834  0.0128013960 -0.0055212187  0.0020812138
[36]  0.0066591697  0.0181449074 -0.0042594795
Parameter:
 [1] 0.8236528 1.2691149 0.7396755 1.6589830 0.8114497 0.5427762 0.8939910
 [8] 0.9169818 0.8283005 0.9417513 1.1445886 1.0087711 0.7081846 0.6836571
[15] 0.2783829 0.7925118 0.9482289 0.4682568 0.8827037 0.9774035 0.4695695
[22] 0.6678705 0.4994509 0.6039731 0.4885285 0.5504357 0.3757930 0.5838555
[29] 0.4114154 0.2299062 0.5131881 0.4504652 0.2348667 0.2574216 0.2394355
[36] 0.2030182 0.2083893 0.3776716
Function Value
[1] 0.4413355
Gradient:
 [1]  0.0007395826  0.0036482169 -0.0016837696  0.0208829470 -0.0130518671
 [6] -0.0086969614 -0.0028559342 -0.0029335219 -0.0043238870 -0.0016079724
[11]  0.0033395625  0.0001360938  0.0094557215 -0.0033829934 -0.0374521889
[16] -0.0053072853  0.0146599071  0.0069926926  0.0021622988  0.0002821920
[21]  0.0001346905 -0.0090667776  0.0029821337 -0.0080492484  0.0054036846
[26] -0.0064458483  0.0017916193 -0.0119174288  0.0256112962  0.1050653573
[31]  0.0250671413 -0.0056504774  0.0620314466 -0.0584121267 -0.0781332510
[36] -0.0350174503  0.1006598431 -0.0389834653

iteration = 20
Step:
 [1]  0.0071305501  0.0043180112  0.0070167052  0.0332118216  0.0151696370
 [6]  0.0102780638  0.0024460894  0.0040079626  0.0036355576  0.0050252107
[11]  0.0061576975  0.0035144124 -0.0012003433  0.0003954155  0.0019022978
[16]  0.0011834393 -0.0058694863 -0.0035999237  0.0019665350  0.0022577402
[21]  0.0007753356  0.0018636973 -0.0001800796  0.0018729200 -0.0015594027
[26]  0.0016293351  0.0008287907  0.0002465925 -0.0132629842 -0.0275063052
[31] -0.0018938907  0.0039170313 -0.0197714249  0.0033419895  0.0059223187
[36] -0.0120118470 -0.0132981391  0.0016872456
Parameter:
 [1] 0.8307833 1.2734330 0.7466922 1.6921948 0.8266194 0.5530543 0.8964371
 [8] 0.9209898 0.8319361 0.9467765 1.1507463 1.0122856 0.7069843 0.6840525
[15] 0.2802852 0.7936953 0.9423594 0.4646569 0.8846702 0.9796612 0.4703448
[22] 0.6697342 0.4992708 0.6058461 0.4869691 0.5520650 0.3766218 0.5841021
[29] 0.3981524 0.2023999 0.5112942 0.4543822 0.2150952 0.2607635 0.2453579
[36] 0.1910063 0.1950912 0.3793589
Function Value
[1] 0.4387568
Gradient:
 [1]  3.124565e-03 -4.603410e-03 -4.663647e-05 -1.769044e-02 -2.091579e-02
 [6] -1.358531e-02 -2.566001e-03 -1.307253e-03 -2.056961e-03  8.501825e-03
[11]  2.067038e-02  6.576959e-03  4.366910e-03 -3.690626e-03 -3.759870e-02
[16] -3.305981e-03  6.921045e-03 -1.987697e-02  1.909225e-03  1.748202e-03
[21] -1.481585e-03 -6.353442e-03  2.836725e-03 -3.961336e-03  6.231176e-04
[26] -1.328864e-03  9.075304e-03 -9.907343e-03 -2.837491e-02 -2.070669e-02
[31]  1.117085e-02  1.987550e-02 -3.808793e-02 -1.077005e-04  7.818321e-02
[36] -1.732676e-02  1.501597e-02 -5.411466e-02

iteration = 21
Step:
 [1]  0.0029315570  0.0022043056  0.0035853962  0.0356781229  0.0159773268
 [6]  0.0106453236  0.0007388001  0.0005718008  0.0012699072 -0.0023534610
[11] -0.0077741383 -0.0019496282 -0.0036157423  0.0019662272  0.0175616441
[16]  0.0028477396 -0.0091232073  0.0121934647  0.0046392306  0.0042334406
[21]  0.0034757491  0.0075597753  0.0014212900  0.0045193421 -0.0002804647
[26]  0.0026044164 -0.0032308335  0.0088584701 -0.0051662772 -0.0104718509
[31]  0.0032173210 -0.0090901054 -0.0067823724 -0.0026571895 -0.0121205716
[36] -0.0020380588 -0.0096289968  0.0017693308
Parameter:
 [1] 0.8337149 1.2756373 0.7502776 1.7278730 0.8425967 0.5636996 0.8971759
 [8] 0.9215616 0.8332060 0.9444230 1.1429721 1.0103359 0.7033686 0.6860188
[15] 0.2978468 0.7965430 0.9332362 0.4768503 0.8893094 0.9838947 0.4738206
[22] 0.6772940 0.5006921 0.6103654 0.4866886 0.5546694 0.3733910 0.5929605
[29] 0.3929861 0.1919280 0.5145115 0.4452921 0.2083129 0.2581064 0.2332373
[36] 0.1889683 0.1854622 0.3811282
Function Value
[1] 0.4380182
Gradient:
 [1] -0.002677410  0.015820541 -0.004076295 -0.011800474 -0.020559813
 [6] -0.013948839  0.004395442  0.007260471  0.005729650  0.002391577
[11] -0.007952115  0.004124222  0.004379611  0.006055480  0.033773926
[16]  0.005007379 -0.004424198  0.005612350  0.006556810  0.005994927
[21]  0.005377249  0.007288396  0.003996437  0.005549104 -0.000788031
[26]  0.002922331 -0.009328861  0.006479230  0.010349414 -0.013837020
[31] -0.009363344 -0.029707785 -0.031578320  0.013636818 -0.039034642
[36]  0.029812160 -0.054093423  0.048506131

iteration = 22
Step:
 [1]  4.299174e-03  7.968054e-04  4.948210e-03  1.743778e-02  1.650094e-02
 [6]  1.105330e-02  2.055034e-03 -2.085436e-04  5.184393e-04  6.187695e-05
[11]  2.392482e-03  6.824486e-04 -1.160896e-03 -2.523704e-03 -4.216485e-03
[16] -2.806233e-03 -7.521396e-04 -3.597325e-03 -4.350762e-03 -3.292531e-03
[21] -2.489904e-03 -2.665096e-03 -2.881826e-03 -2.311176e-03 -3.604125e-04
[26] -1.492042e-03  1.108339e-03 -1.620317e-03  3.344226e-03  1.317267e-03
[31] -4.921057e-03  6.067568e-03  3.491281e-03 -2.131400e-04  5.550719e-03
[36] -4.809220e-04  4.377981e-03 -7.836424e-04
Parameter:
 [1] 0.8380140 1.2764341 0.7552258 1.7453107 0.8590976 0.5747529 0.8992310
 [8] 0.9213531 0.8337244 0.9444849 1.1453646 1.0110184 0.7022077 0.6834950
[15] 0.2936303 0.7937368 0.9324841 0.4732530 0.8849587 0.9806021 0.4713307
[22] 0.6746289 0.4978103 0.6080542 0.4863282 0.5531774 0.3744993 0.5913402
[29] 0.3963303 0.1932453 0.5095904 0.4513597 0.2118041 0.2578932 0.2387880
[36] 0.1884873 0.1898402 0.3803446
Function Value
[1] 0.4368959
Gradient:
 [1]  0.0019918929  0.0115233023  0.0007133103 -0.0049194451 -0.0156358162
 [6] -0.0107076019  0.0012079511 -0.0024106903  0.0002703722  0.0049750852
[11]  0.0048492659  0.0074545682  0.0009402825  0.0009410641  0.0129968036
[16]  0.0006507292 -0.0061871610  0.0008631922  0.0024350193  0.0029817819
[21] -0.0024616540  0.0025944118 -0.0045602455  0.0002891483 -0.0012657466
[26]  0.0002421423 -0.0022414923  0.0044055923 -0.0047241109 -0.0197750154
[31] -0.0123805179 -0.0050778937  0.0325462111 -0.0041181778 -0.0146014294
[36]  0.0028889247  0.0047443081  0.0118546950

iteration = 23
Step:
 [1]  4.612639e-03 -2.444935e-03  5.778552e-03  3.919378e-02  3.303292e-02
 [6]  2.198957e-02  1.692270e-03  1.153861e-03  4.129837e-04 -4.186570e-03
[11] -2.734563e-03 -3.983928e-03  4.240284e-04 -2.025957e-03 -7.664348e-03
[16] -3.400287e-03  1.634410e-03 -9.650549e-03 -7.500758e-03 -5.861392e-03
[21] -5.175729e-04 -4.696738e-03  2.196728e-03 -9.613431e-04 -1.106670e-03
[26] -8.362433e-05  2.233371e-03 -4.175378e-03 -7.855271e-04 -6.783140e-03
[31] -1.431787e-03  7.554327e-04 -5.580758e-03 -1.652871e-03  1.012046e-04
[36] -4.804286e-03 -4.271514e-03 -1.123267e-03
Parameter:
 [1] 0.8426267 1.2739891 0.7610043 1.7845045 0.8921306 0.5967425 0.9009232
 [8] 0.9225069 0.8341374 0.9402983 1.1426301 1.0070344 0.7026317 0.6814691
[15] 0.2859660 0.7903365 0.9341185 0.4636025 0.8774579 0.9747408 0.4708131
[22] 0.6699321 0.5000070 0.6070929 0.4852215 0.5530937 0.3767327 0.5871649
[29] 0.3955448 0.1864622 0.5081587 0.4521151 0.2062234 0.2562403 0.2388892
[36] 0.1836830 0.1855687 0.3792213
Function Value
[1] 0.436145
Gradient:
 [1]  0.0080783273 -0.0030318013  0.0068416917 -0.0050716457 -0.0100725508
 [6] -0.0072073618  0.0012906227  0.0001999574 -0.0002624496  0.0018286137
[11]  0.0067363848  0.0031876524  0.0007013377 -0.0029726230 -0.0264777285
[16] -0.0043042547 -0.0052184959 -0.0118464669 -0.0044137103 -0.0021967352
[21] -0.0042349910 -0.0051059672  0.0026188722 -0.0013018315 -0.0029816114
[26] -0.0006779501  0.0057574852 -0.0049963020 -0.0090952312 -0.0104237969
[31] -0.0039830930 -0.0061021623  0.0091029904 -0.0165801843  0.0060162293
[36]  0.0123078117  0.0020106086 -0.0041815689

iteration = 24
Step:
 [1]  1.985992e-03 -3.263214e-03  4.217043e-03  5.072023e-02  4.410435e-02
 [6]  2.967229e-02 -4.578673e-05 -3.749631e-04 -4.134371e-04 -5.417256e-03
[11] -6.684831e-03 -6.556125e-03 -1.562061e-03 -1.279647e-03  7.442660e-03
[16] -1.072087e-03 -4.078765e-04  4.130426e-04 -3.487005e-03 -2.895538e-03
[21] -1.745918e-04  3.081900e-04 -2.190937e-04 -1.799470e-05 -1.539761e-03
[26]  2.763656e-04 -1.854631e-04  4.073755e-04  1.793572e-03 -1.054603e-02
[31] -1.908542e-03  5.154805e-03 -5.572933e-03 -4.200353e-04  3.308081e-03
[36] -7.635105e-03 -2.664479e-03  6.653214e-04
Parameter:
 [1] 0.8446127 1.2707259 0.7652214 1.8352248 0.9362349 0.6264148 0.9008775
 [8] 0.9221320 0.8337240 0.9348811 1.1359452 1.0004783 0.7010696 0.6801894
[15] 0.2934086 0.7892644 0.9337106 0.4640155 0.8739709 0.9718452 0.4706385
[22] 0.6702403 0.4997879 0.6070749 0.4836818 0.5533701 0.3765472 0.5875722
[29] 0.3973384 0.1759161 0.5062501 0.4572699 0.2006505 0.2558203 0.2421973
[36] 0.1760479 0.1829042 0.3798866
Function Value
[1] 0.4354876
Gradient:
 [1]  0.0083245446  0.0051347897  0.0087210914 -0.0059433531 -0.0048118771
 [6] -0.0036537919 -0.0003423608 -0.0024664217 -0.0018515038  0.0014120083
[11]  0.0061771441  0.0019776917  0.0014206165 -0.0022860682 -0.0012934542
[16] -0.0032316407 -0.0074663618 -0.0130843567 -0.0066547301 -0.0045953428
[21] -0.0033505430 -0.0038445123  0.0023650415 -0.0017227713 -0.0053925469
[26] -0.0002873506  0.0015896511 -0.0049827129  0.0010720562 -0.0222706369
[31]  0.0026582754 -0.0120906982  0.0011116974 -0.0074150215  0.0116848859
[36] -0.0617023730  0.0764243353 -0.0142128549

iteration = 25
Step:
 [1] -1.123551e-03 -8.521227e-03  1.351053e-03  5.725745e-02  5.453291e-02
 [6]  3.732958e-02  1.497043e-03  1.922521e-03  1.824599e-03 -5.953764e-03
[11] -7.772062e-03 -7.574613e-03 -5.027470e-03 -6.241691e-04  4.765880e-03
[16]  6.926696e-05  1.197919e-03  5.760689e-03 -1.739087e-03 -1.903560e-03
[21]  4.111312e-04  1.705737e-03 -1.562931e-03  9.828121e-04 -2.943070e-03
[26]  6.840138e-04 -2.208119e-04  3.266030e-03  1.565152e-03 -7.555196e-03
[31]  2.202499e-03  8.419901e-03 -3.049008e-03  4.341147e-03  4.129171e-03
[36]  1.269439e-03 -3.816627e-03  6.311279e-03
Parameter:
 [1] 0.8434891 1.2622047 0.7665724 1.8924822 0.9907678 0.6637444 0.9023745
 [8] 0.9240545 0.8355486 0.9289273 1.1281732 0.9929037 0.6960422 0.6795653
[15] 0.2981745 0.7893337 0.9349085 0.4697762 0.8722318 0.9699417 0.4710496
[22] 0.6719461 0.4982250 0.6080577 0.4807387 0.5540541 0.3763264 0.5908383
[29] 0.3989035 0.1683609 0.5084526 0.4656898 0.1976015 0.2601615 0.2463265
[36] 0.1773174 0.1790876 0.3861979
Function Value
[1] 0.435119
Gradient:
 [1]  6.444306e-03 -3.762924e-03  9.014574e-03  2.179624e-03  4.273254e-03
 [6]  1.155513e-03  1.508759e-03 -1.614996e-03 -7.132392e-04  1.191413e-03
[11]  2.970233e-03  8.750938e-04 -4.823722e-03 -2.049280e-03  3.220315e-03
[16] -1.563091e-03 -8.418862e-03  4.454794e-03 -6.368033e-03 -5.021139e-03
[21] -7.148273e-03 -2.122253e-03 -3.241734e-03  8.249295e-04 -9.800694e-03
[26]  7.912497e-04  8.937135e-04  1.558998e-03 -2.938081e-02  3.321798e-02
[31] -2.006981e-02  4.254321e-03  1.982456e-02 -1.060710e-02  3.847391e-02
[36]  6.011227e-02 -6.147771e-02  7.826628e-06

iteration = 26
Step:
 [1] -0.0040354414 -0.0005189615 -0.0050047121  0.0165835251  0.0075490619
 [6]  0.0055285801 -0.0024159377 -0.0008470327 -0.0010573268 -0.0018103612
[11] -0.0032361330 -0.0024200735  0.0012771140  0.0012226092 -0.0028500514
[16]  0.0013564127  0.0061442679  0.0013264352  0.0038300085  0.0027988998
[21]  0.0007599268  0.0008693324  0.0009172560  0.0002306731  0.0026805600
[26]  0.0001051569  0.0002009338 -0.0001134109  0.0012680774 -0.0073648829
[31]  0.0018470615 -0.0006460510 -0.0040581626 -0.0012136177 -0.0029601726
[36] -0.0048179662 -0.0031157825  0.0008874215
Parameter:
 [1] 0.8394537 1.2616857 0.7615677 1.9090657 0.9983169 0.6692729 0.8999586
 [8] 0.9232074 0.8344913 0.9271169 1.1249370 0.9904836 0.6973193 0.6807879
[15] 0.2953245 0.7906901 0.9410528 0.4711026 0.8760618 0.9727406 0.4718096
[22] 0.6728154 0.4991423 0.6082884 0.4834193 0.5541593 0.3765273 0.5907248
[29] 0.4001716 0.1609961 0.5102997 0.4650437 0.1935433 0.2589478 0.2433663
[36] 0.1724994 0.1759718 0.3870853
Function Value
[1] 0.4347439
Gradient:
 [1]  6.147566e-03  3.218907e-04  7.905410e-03 -5.678617e-03  2.004438e-03
 [6]  8.990497e-05  1.168093e-03  1.488498e-03  1.119744e-03  1.725908e-05
[11] -1.045728e-03 -7.253078e-04 -2.398068e-03 -4.849348e-04 -4.621512e-04
[16] -4.888570e-04 -3.607457e-03 -3.776389e-03 -2.911687e-03 -2.700887e-03
[21] -2.559638e-03 -2.916494e-04 -1.751417e-04  1.072820e-03 -1.237517e-03
[26]  9.634959e-04 -1.805489e-04  4.884839e-04 -5.514607e-03 -4.002314e-02
[31] -1.215664e-02 -8.409600e-03  1.778755e-02 -1.525603e-03 -1.286546e-02
[36]  4.286278e-03  8.918065e-03  2.135548e-02

iteration = 27
Step:
 [1] -7.923508e-03 -3.868297e-03 -8.915160e-03 -1.547419e-02 -8.817636e-03
 [6] -5.201326e-03 -3.001383e-03 -2.361686e-03 -2.302850e-03 -1.988068e-03
[11] -2.375711e-03 -1.839858e-03  2.078359e-03  1.241776e-03 -3.165837e-04
[16]  1.069475e-03  3.957136e-03 -1.463079e-04  1.756811e-03  1.576175e-03
[21]  1.605250e-04  2.492497e-04  7.125637e-04 -1.578050e-04 -1.153335e-04
[26] -7.805508e-05  6.873989e-04 -3.790689e-04  4.710892e-03  4.892804e-03
[31]  2.893681e-03 -1.062578e-04  2.553251e-03  1.401453e-03  1.227437e-03
[36]  4.918848e-04  1.522506e-03 -1.485955e-04
Parameter:
 [1] 0.8315302 1.2578174 0.7526526 1.8935915 0.9894992 0.6640716 0.8969572
 [8] 0.9208458 0.8321884 0.9251289 1.1225613 0.9886438 0.6993976 0.6820297
[15] 0.2950079 0.7917596 0.9450099 0.4709563 0.8778186 0.9743167 0.4719701
[22] 0.6730646 0.4998548 0.6081306 0.4833039 0.5540812 0.3772147 0.5903458
[29] 0.4048825 0.1658889 0.5131934 0.4649375 0.1960965 0.2603493 0.2445937
[36] 0.1729913 0.1774943 0.3869367
Function Value
[1] 0.4346761
Gradient:
 [1]  0.0027662388  0.0047130113  0.0036772150 -0.0013347539  0.0026470630
 [6]  0.0009434800  0.0005618261  0.0020422135  0.0012627623 -0.0019856934
[11] -0.0033688963 -0.0024725502  0.0023092319  0.0008605809  0.0047455799
[16]  0.0002689013  0.0025306797  0.0066311863  0.0006224994 -0.0007362324
[21]  0.0020036168  0.0004643255  0.0032231569  0.0009287042 -0.0004923457
[26]  0.0007551115  0.0013544472 -0.0002395488  0.0110046692  0.0493901915
[31]  0.0057257346 -0.0077191018 -0.0308987289  0.0003374083 -0.0105617985
[36] -0.0386772037  0.0102711475  0.0044960053

iteration = 28
Step:
 [1] -2.241307e-03 -5.026246e-04 -2.917064e-03  1.073566e-02  3.673104e-03
 [6]  3.150520e-03 -2.627541e-04 -2.172610e-04 -1.052457e-04  4.407155e-04
[11]  7.144826e-04  6.000131e-04  4.966504e-05  4.007260e-04 -4.537450e-04
[16]  5.679773e-04  1.289760e-03 -8.966118e-05  1.195528e-03  1.123133e-03
[21] -1.643652e-04  3.210902e-04 -5.634870e-04 -3.195579e-04 -4.612140e-04
[26] -2.169246e-04 -1.453382e-04  1.784946e-04  2.658817e-04 -2.703155e-03
[31]  6.408957e-04  8.011413e-04 -3.377443e-04  1.048302e-03  1.278835e-03
[36]  5.557139e-04 -4.014666e-04  3.514521e-04
Parameter:
 [1] 0.8292889 1.2573148 0.7497355 1.9043272 0.9931723 0.6672221 0.8966944
 [8] 0.9206285 0.8320832 0.9255696 1.1232758 0.9892438 0.6994473 0.6824304
[15] 0.2945541 0.7923275 0.9462997 0.4708667 0.8790142 0.9754399 0.4718057
[22] 0.6733857 0.4992913 0.6078110 0.4828427 0.5538643 0.3770694 0.5905243
[29] 0.4051484 0.1631857 0.5138343 0.4657386 0.1957588 0.2613976 0.2458726
[36] 0.1735470 0.1770928 0.3872882
Function Value
[1] 0.4345597
Gradient:
 [1]  0.0013922730  0.0036183425  0.0019689708 -0.0032282332  0.0021446915
 [6]  0.0006131735  0.0007531895  0.0013297417  0.0008467218 -0.0014511699
[11] -0.0018713017 -0.0016803376  0.0018014426  0.0005556124  0.0033042369
[16]  0.0002115179  0.0024863951  0.0008227659  0.0008795347  0.0001517755
[21]  0.0013158790  0.0005515908  0.0017879955  0.0005706084 -0.0019732624
[26]  0.0004380247  0.0012746284  0.0005794014 -0.0007079137 -0.0009146781
[31]  0.0047644839 -0.0024260345 -0.0042340318 -0.0053017786  0.0005960068
[36] -0.0028218281  0.0074629298 -0.0068671362

iteration = 29
Step:
 [1] -2.565662e-03 -2.284492e-03 -3.282269e-03  1.280637e-02  5.374997e-03
 [6]  4.614257e-03 -3.859303e-04 -3.909181e-04 -2.133979e-04  5.993083e-04
[11]  7.757243e-04  7.002916e-04 -1.133188e-03  1.149928e-04 -1.411461e-03
[16]  3.096054e-04 -7.043060e-05 -5.739739e-04  1.829936e-04  6.343712e-04
[21] -1.882261e-04 -7.079854e-05 -7.577960e-04 -2.641648e-04  1.249183e-03
[26] -2.308850e-04 -9.467136e-04 -2.317224e-04  2.610992e-03 -1.946170e-03
[31]  6.856615e-04  2.112123e-03 -4.155546e-05  2.002868e-03  1.590993e-03
[36] -3.535781e-04 -8.355614e-04  1.849834e-03
Parameter:
 [1] 0.8267232 1.2550303 0.7464532 1.9171336 0.9985473 0.6718364 0.8963085
 [8] 0.9202376 0.8318698 0.9261689 1.1240515 0.9899441 0.6983141 0.6825454
[15] 0.2931427 0.7926371 0.9462293 0.4702927 0.8791971 0.9760742 0.4716175
[22] 0.6733149 0.4985335 0.6075468 0.4840919 0.5536334 0.3761227 0.5902926
[29] 0.4077594 0.1612395 0.5145199 0.4678508 0.1957172 0.2634005 0.2474636
[36] 0.1731934 0.1762573 0.3891380
Function Value
[1] 0.4345088
Gradient:
 [1]  1.282256e-03  2.951376e-03  1.167070e-03 -3.593769e-03  2.135398e-03
 [6]  8.711751e-04  7.203127e-05  5.430678e-05  3.108802e-04  2.187583e-04
[11] -7.267242e-05 -2.794209e-05 -1.983231e-04  5.447731e-05 -2.046228e-03
[16] -4.440892e-06  1.539263e-03  1.562164e-04  5.971508e-04  6.760210e-04
[21] -8.277823e-05 -1.301359e-05 -1.406338e-03 -4.659952e-04  1.622837e-03
[26] -7.715784e-05 -7.653718e-04  3.487735e-04 -4.396664e-03 -1.260445e-02
[31] -4.448300e-03  4.198093e-03  1.054823e-02  8.861782e-04 -1.559489e-03
[36]  5.051067e-03 -6.747754e-03  3.150038e-03

iteration = 30
Step:
 [1] -3.590777e-03 -4.098915e-03 -4.115964e-03  8.616972e-03  1.575223e-03
 [6]  2.092377e-03 -1.086544e-03 -1.086201e-03 -1.003188e-03 -2.680934e-04
[11] -6.205153e-05 -5.945150e-05 -4.078647e-04  2.316525e-04  4.458170e-05
[16]  4.094844e-04 -4.011882e-04 -9.201845e-04  1.423524e-04  3.889344e-04
[21] -2.161769e-04  2.137140e-04  1.373797e-04  8.935811e-05  2.508972e-05
[26]  1.015326e-05  3.474940e-04 -8.887347e-05  2.823123e-03 -8.488732e-04
[31]  1.599710e-03  1.844153e-04  1.744014e-04  1.365212e-03  1.203701e-03
[36] -1.356842e-05 -2.852732e-04  4.927509e-04
Parameter:
 [1] 0.8231324 1.2509314 0.7423373 1.9257505 1.0001226 0.6739288 0.8952220
 [8] 0.9191514 0.8308666 0.9259008 1.1239895 0.9898846 0.6979062 0.6827770
[15] 0.2931873 0.7930466 0.9458281 0.4693725 0.8793395 0.9764632 0.4714013
[22] 0.6735286 0.4986709 0.6076362 0.4841170 0.5536436 0.3764702 0.5902037
[29] 0.4105825 0.1603907 0.5161196 0.4680352 0.1958916 0.2647657 0.2486673
[36] 0.1731799 0.1759720 0.3896308
Function Value
[1] 0.4344697
Gradient:
 [1]  2.173124e-04  2.594558e-03 -3.873524e-04 -2.665762e-03  1.825274e-03
 [6]  9.790462e-04  1.381402e-04 -4.347100e-05  1.817568e-04 -2.883063e-04
[11]  4.586963e-05 -2.872511e-04  1.033023e-04  3.409646e-04 -2.566207e-03
[16]  3.528591e-04  7.604442e-04 -1.839666e-04  5.070611e-04  1.012268e-03
[21]  3.975167e-04  2.325393e-04 -8.258070e-04 -1.804743e-04  1.787907e-03
[26] -5.043077e-05  5.643592e-04  2.729692e-04 -3.501420e-03 -1.292047e-02
[31] -9.761933e-04  4.511485e-03  7.362598e-03 -1.351655e-03  1.822826e-03
[36]  1.084085e-02 -3.961933e-03 -2.806594e-03

iteration = 31
Step:
 [1] -4.102826e-03 -6.498223e-03 -4.452396e-03  1.362551e-02 -1.629830e-04
 [6]  1.284625e-03 -1.490465e-03 -1.671287e-03 -1.565622e-03  5.066376e-04
[11]  7.868410e-04  9.089370e-04 -8.015905e-04  1.068108e-05  9.253801e-04
[16]  1.772490e-04 -1.251282e-03 -2.878783e-03 -2.028226e-04 -1.179748e-04
[21] -3.486158e-04 -7.211202e-05  3.753518e-04  2.373072e-04 -1.035735e-04
[26]  1.590913e-04 -1.016883e-04 -9.156403e-05  3.577603e-03 -1.061040e-03
[31]  1.458538e-03 -7.945730e-04  2.384197e-05  1.329550e-03  8.358294e-04
[36] -1.071651e-03 -1.293117e-03 -2.689945e-05
Parameter:
 [1] 0.8190296 1.2444332 0.7378849 1.9393761 0.9999596 0.6752134 0.8937315
 [8] 0.9174801 0.8293009 0.9264074 1.1247763 0.9907936 0.6971047 0.6827877
[15] 0.2941126 0.7932239 0.9445768 0.4664937 0.8791367 0.9763452 0.4710527
[22] 0.6734565 0.4990463 0.6078735 0.4840134 0.5538027 0.3763685 0.5901121
[29] 0.4141601 0.1593296 0.5175782 0.4672406 0.1959155 0.2660952 0.2495031
[36] 0.1721082 0.1746789 0.3896039
Function Value
[1] 0.4344283
Gradient:
 [1] -8.281056e-04  1.627550e-03 -1.849539e-03 -1.133937e-03  1.018012e-03
 [6]  9.990444e-04 -1.751062e-04 -4.707523e-04 -2.324718e-04 -3.504894e-04
[11] -1.781764e-05  1.286082e-06  5.682281e-04  7.301111e-04 -1.939618e-03
[16]  7.255885e-04 -1.045084e-03  1.154632e-05 -3.284235e-04  6.386678e-04
[21]  9.814336e-04  6.752288e-05  1.202878e-04  1.577085e-04  1.053390e-03
[26]  3.315463e-04  5.414265e-04  2.589182e-04 -3.107772e-03 -2.653167e-03
[31]  2.432483e-03  4.940976e-03  5.538382e-03 -2.566445e-04  2.471271e-03
[36]  2.806448e-03 -5.064567e-03 -6.157386e-03

iteration = 32
Step:
 [1] -4.578687e-04 -3.334472e-03 -5.509801e-05  6.558833e-03 -1.166286e-03
 [6] -4.064805e-04 -1.704300e-04 -1.358148e-04 -2.553996e-04  9.762754e-04
[11]  1.229598e-03  9.483193e-04 -1.042591e-03 -6.601739e-04  1.104690e-03
[16] -4.909413e-04 -6.393223e-04 -1.263193e-03  7.156751e-05 -3.386338e-04
[21] -2.395451e-04 -8.734288e-06  6.020196e-05 -1.732465e-06  1.803419e-04
[26] -1.553655e-04 -8.899739e-05 -1.429313e-04  1.639880e-03 -4.039784e-04
[31]  4.593595e-04 -9.025859e-04 -1.597830e-04  4.120916e-04  8.953362e-05
[36] -2.344636e-04 -3.592759e-04 -2.289757e-05
Parameter:
 [1] 0.8185717 1.2410987 0.7378298 1.9459349 0.9987933 0.6748069 0.8935611
 [8] 0.9173443 0.8290455 0.9273837 1.1260059 0.9917419 0.6960621 0.6821275
[15] 0.2952173 0.7927329 0.9439375 0.4652305 0.8792082 0.9760066 0.4708131
[22] 0.6734478 0.4991065 0.6078718 0.4841938 0.5536473 0.3762795 0.5899692
[29] 0.4158000 0.1589256 0.5180375 0.4663380 0.1957557 0.2665073 0.2495926
[36] 0.1718738 0.1743196 0.3895810
Function Value
[1] 0.4344133
Gradient:
 [1] -6.032614e-04  1.305978e-03 -1.381217e-03 -1.883403e-05  3.206253e-04
 [6]  7.158647e-04 -6.370726e-05 -1.418670e-04 -2.351292e-04 -2.976890e-04
[11]  1.159453e-04 -3.813838e-05  3.240395e-04  5.288427e-04 -8.437127e-04
[16]  7.508696e-04 -1.887653e-03  1.321609e-04 -5.229239e-04  1.659615e-04
[21]  4.322445e-04  3.205258e-05  1.592255e-04  6.976464e-05  8.454997e-04
[26] -1.092992e-04  3.318590e-04 -1.848193e-04  1.423700e-03  2.693312e-03
[31]  2.060357e-03  1.327251e-03 -4.863221e-03 -7.508270e-04 -1.025739e-04
[36]  2.049973e-03  2.747711e-03 -2.631069e-03

iteration = 33
Step:
 [1]  3.313904e-04 -2.058575e-03  9.347242e-04  5.932472e-03 -7.312771e-04
 [6] -5.957158e-04 -5.961611e-05 -8.984529e-05 -6.130179e-05  7.736926e-04
[11]  8.218759e-04  7.007004e-04 -5.318208e-04 -5.076379e-04  1.026784e-03
[16] -5.903560e-04  7.996074e-04 -1.152024e-03  4.783003e-04 -2.089072e-04
[21] -1.122455e-04 -1.323480e-05  9.852042e-05  8.943820e-05 -1.246620e-04
[26]  1.043843e-04 -2.509263e-05  1.290323e-04  3.944069e-04 -7.790979e-04
[31] -5.268604e-04 -1.282410e-03 -2.942864e-04 -1.802142e-04 -3.441468e-04
[36] -8.916582e-04 -1.007046e-03 -7.270156e-04
Parameter:
 [1] 0.8189031 1.2390401 0.7387645 1.9518674 0.9980620 0.6742112 0.8935014
 [8] 0.9172544 0.8289842 0.9281574 1.1268278 0.9924426 0.6955302 0.6816199
[15] 0.2962441 0.7921426 0.9447371 0.4640785 0.8796865 0.9757977 0.4707009
[22] 0.6734346 0.4992050 0.6079612 0.4840691 0.5537517 0.3762544 0.5900982
[29] 0.4161944 0.1581465 0.5175107 0.4650556 0.1954614 0.2663271 0.2492485
[36] 0.1709821 0.1733125 0.3888540
Function Value
[1] 0.4344056
Gradient:
 [1] -1.960956e-04  5.170479e-04 -5.369110e-04  3.714949e-05 -1.597513e-04
 [6]  4.157066e-04 -2.416662e-04 -2.670433e-04 -3.105853e-04 -1.833911e-04
[11] -1.424203e-04 -8.078516e-05  2.327134e-04  2.635048e-04  3.556622e-05
[16]  4.391012e-04 -1.481943e-03 -2.605560e-05 -5.050396e-04 -2.932872e-04
[21]  1.316067e-04  1.521627e-05  2.462315e-04  1.643912e-04 -5.819345e-06
[26]  1.298872e-04  3.445066e-04  1.205080e-05 -3.362572e-04  3.178862e-04
[31]  1.204736e-03 -8.579377e-04  1.738780e-03  2.245848e-04 -4.683187e-05
[36] -2.848395e-03 -1.204832e-04 -2.929212e-04

iteration = 34
Step:
 [1]  5.258751e-04 -2.471948e-04  8.942893e-04 -2.365234e-04 -4.113106e-04
 [6] -6.711720e-04  3.202179e-04  4.096320e-04  3.806809e-04  3.459339e-04
[11]  2.960737e-04  2.320537e-04 -2.145993e-04 -2.828080e-04  3.170450e-04
[16] -4.080869e-04  9.935045e-04 -1.700699e-05  3.251204e-04  4.559608e-05
[21]  4.109075e-05 -3.481422e-05 -2.510617e-05 -7.321874e-05 -5.606358e-05
[26] -5.731616e-05 -2.313715e-04 -2.631215e-05 -1.069591e-04  7.116384e-05
[31] -3.529622e-04  7.002165e-05 -3.606748e-05 -1.398533e-04 -7.914569e-05
[36]  9.998827e-05  1.099911e-04 -3.662250e-05
Parameter:
 [1] 0.8194290 1.2387929 0.7396588 1.9516308 0.9976507 0.6735400 0.8938217
 [8] 0.9176641 0.8293649 0.9285034 1.1271239 0.9926746 0.6953156 0.6813371
[15] 0.2965612 0.7917345 0.9457306 0.4640615 0.8800117 0.9758433 0.4707420
[22] 0.6733998 0.4991799 0.6078880 0.4840130 0.5536944 0.3760230 0.5900719
[29] 0.4160874 0.1582177 0.5171577 0.4651256 0.1954253 0.2661872 0.2491693
[36] 0.1710821 0.1734225 0.3888173
Function Value
[1] 0.4344031
Gradient:
 [1] -8.281376e-06  2.576363e-04 -5.596235e-05  9.982793e-05 -1.884395e-04
 [6]  2.750440e-04 -2.734808e-04 -1.403073e-04 -2.542073e-04  2.113936e-04
[11]  7.318669e-05  1.451106e-04  1.405382e-04  6.910028e-05  2.300453e-04
[16]  1.377884e-04 -4.491909e-04 -3.291589e-05 -1.463114e-04 -2.709619e-04
[21] -1.427267e-04 -6.060574e-05  1.415081e-04  3.982947e-05 -3.502940e-04
[26]  3.687717e-05 -4.412044e-04 -4.821032e-05  4.151701e-04  7.231797e-04
[31]  5.015011e-05 -4.917595e-04 -1.214847e-03  1.091038e-04 -8.718075e-04
[36] -6.972058e-04  1.134438e-03  6.617036e-04

iteration = 35
Step:
 [1]  8.642929e-05 -1.692855e-04  2.158609e-04 -5.364672e-04  1.223466e-04
 [6] -2.465806e-04  2.104697e-04  1.915280e-04  2.355480e-04 -1.439025e-04
[11] -1.359894e-04 -1.624547e-04 -9.780274e-05 -7.820665e-05  3.289724e-05
[16] -1.459388e-04  4.964764e-04  2.195353e-04  1.621293e-04  1.591516e-04
[21]  3.943685e-05  4.039358e-05 -7.765123e-05 -4.154152e-05  6.621631e-05
[26] -3.902294e-05  1.464218e-04  6.735056e-06  8.602491e-05  4.190433e-05
[31] -1.503443e-04  1.040710e-04  9.697858e-05  2.885871e-05  1.251862e-04
[36]  5.421464e-05  7.908332e-05  9.216761e-06
Parameter:
 [1] 0.8195154 1.2386236 0.7398746 1.9510944 0.9977731 0.6732935 0.8940321
 [8] 0.9178556 0.8296005 0.9283594 1.1269879 0.9925122 0.6952178 0.6812589
[15] 0.2965940 0.7915886 0.9462271 0.4642810 0.8801738 0.9760024 0.4707814
[22] 0.6734401 0.4991022 0.6078465 0.4840793 0.5536553 0.3761694 0.5900786
[29] 0.4161735 0.1582596 0.5170074 0.4652297 0.1955223 0.2662161 0.2492945
[36] 0.1711363 0.1735016 0.3888266
Function Value
[1] 0.4344025
Gradient:
 [1]  8.952128e-05  9.691042e-05  1.267608e-04  3.875566e-05 -1.031992e-04
 [6]  2.336975e-04 -1.820872e-04 -1.301075e-04 -1.457039e-04  8.408918e-05
[11]  1.330564e-04  3.155876e-05  1.391598e-05 -3.191047e-05 -8.217427e-06
[16] -1.865530e-05  5.584866e-05  1.471214e-04  4.847678e-05 -1.184972e-04
[21] -2.048779e-04  2.535216e-05 -5.580247e-05 -2.334133e-06 -4.427037e-05
[26] -6.928857e-05  8.701662e-05 -5.428191e-05 -6.244960e-05  1.679723e-04
[31] -1.512603e-04 -6.233947e-04 -4.856204e-05  4.971312e-05 -4.228440e-05
[36] -9.839241e-05  3.097078e-04  7.665228e-04

iteration = 36
Step:
 [1] -1.490550e-04 -2.650234e-04 -1.255140e-04 -1.649503e-04  1.287883e-04
 [6] -1.687226e-04  1.190268e-04  8.794400e-05  1.125933e-04 -1.373708e-04
[11] -1.814822e-04 -1.138683e-04 -3.665469e-05 -4.767174e-07  3.059545e-05
[16] -3.637185e-05  1.653655e-04 -1.673271e-05  7.149279e-06  9.796486e-05
[21]  6.089971e-05 -1.653646e-05  9.897505e-06 -1.350715e-05 -3.801122e-05
[26]  2.676874e-05 -1.972775e-05  1.507467e-05  1.403260e-04  7.181067e-06
[31] -1.003242e-04  1.658412e-04  3.941562e-05  1.246372e-05  8.656915e-05
[36] -8.970426e-06  2.241394e-05  3.432280e-06
Parameter:
 [1] 0.8193664 1.2383586 0.7397491 1.9509294 0.9979018 0.6731247 0.8941512
 [8] 0.9179435 0.8297131 0.9282221 1.1268064 0.9923983 0.6951812 0.6812584
[15] 0.2966246 0.7915522 0.9463924 0.4642643 0.8801809 0.9761004 0.4708423
[22] 0.6734236 0.4991121 0.6078329 0.4840412 0.5536821 0.3761497 0.5900937
[29] 0.4163138 0.1582668 0.5169070 0.4653955 0.1955617 0.2662286 0.2493811
[36] 0.1711273 0.1735240 0.3888300
Function Value
[1] 0.4344023
Gradient:
 [1]  6.205880e-05  3.000284e-05  1.067306e-04 -3.343241e-05 -5.323741e-05
 [6]  2.028777e-04 -1.500950e-04 -1.312976e-04 -1.158327e-04  1.000018e-04
[11]  1.013028e-04  8.387246e-05  2.431477e-05 -1.637446e-05 -4.554579e-05
[16] -5.901413e-05  2.250857e-04  7.633716e-05  6.639667e-05 -2.736300e-05
[21] -9.179857e-05  2.123812e-05 -8.384404e-07  4.384049e-06 -6.212630e-05
[26]  8.672174e-06 -1.110223e-05  5.961454e-06 -9.003642e-05 -4.399681e-05
[31] -3.026912e-06 -3.059242e-05  4.086687e-05 -7.302958e-05  1.958789e-04
[36]  2.557385e-04 -2.533156e-04  1.103970e-04

iteration = 37
Step:
 [1] -1.943738e-04 -3.663134e-04 -1.935111e-04 -2.306296e-04 -1.097226e-06
 [6] -3.764369e-04  1.900110e-04  1.456415e-04  1.587968e-04 -1.718624e-04
[11] -1.917180e-04 -1.461795e-04 -8.072940e-05 -1.239211e-05  5.221009e-05
[16] -1.055525e-05 -3.164101e-05 -4.729226e-05 -3.049134e-05  9.925767e-05
[21]  7.512457e-05 -2.504078e-05 -4.986286e-06 -1.642718e-05  2.833180e-06
[26]  3.442713e-06  1.769387e-05 -9.322924e-07  1.993549e-04  4.862430e-05
[31] -1.178273e-04  1.372791e-04  7.618334e-05  3.298395e-05  9.666301e-05
[36] -1.259146e-06  4.754348e-05 -2.928976e-06
Parameter:
 [1] 0.8191720 1.2379923 0.7395556 1.9506988 0.9979007 0.6727483 0.8943412
 [8] 0.9180892 0.8298719 0.9280502 1.1266147 0.9922521 0.6951005 0.6812460
[15] 0.2966769 0.7915416 0.9463608 0.4642170 0.8801505 0.9761996 0.4709175
[22] 0.6733986 0.4991071 0.6078165 0.4840441 0.5536855 0.3761674 0.5900928
[29] 0.4165131 0.1583154 0.5167892 0.4655328 0.1956379 0.2662616 0.2494778
[36] 0.1711261 0.1735716 0.3888271
Function Value
[1] 0.4344021
Gradient:
 [1]  2.689404e-05 -5.876076e-05  6.297540e-05 -4.189426e-05 -1.452349e-05
 [6]  1.427019e-04 -6.449241e-05 -8.081358e-05 -4.786216e-05  2.885514e-05
[11]  4.423648e-05  6.420109e-05 -1.167422e-05 -1.113420e-05 -5.666578e-05
[16] -5.893597e-05  2.001315e-04  2.604850e-05  4.052936e-05  5.555734e-05
[21]  2.846434e-05  2.139799e-05  2.233591e-05  5.115908e-06  4.452261e-05
[26]  1.382006e-05  1.000444e-05  9.887202e-06 -1.444995e-04 -4.567724e-05
[31]  1.667608e-04  2.169429e-04  2.291571e-04  3.063150e-05  1.664766e-04
[36]  1.214602e-04 -2.187512e-04 -3.033200e-04

iteration = 38
Step:
 [1] -7.558392e-05 -1.425540e-04 -9.764426e-05 -7.578726e-05 -6.740682e-05
 [6] -3.420711e-04  1.457260e-04  1.183975e-04  1.138305e-04 -7.535135e-05
[11] -8.126283e-05 -7.676874e-05 -3.911010e-05 -9.152434e-06  3.244557e-05
[16]  1.678501e-05 -1.393417e-04 -6.193442e-05 -3.198209e-05  2.413704e-05
[21]  4.175038e-05 -2.440679e-05 -1.526624e-05 -9.537712e-06 -1.182847e-06
[26]  2.375261e-06  1.334511e-05  8.058763e-06  7.512988e-05  1.681175e-05
[31] -1.274664e-04  3.556215e-05  1.483136e-05 -2.778709e-05  1.450461e-05
[36] -2.508407e-05  2.196059e-06 -3.873809e-05
Parameter:
 [1] 0.8190964 1.2378498 0.7394580 1.9506230 0.9978333 0.6724062 0.8944869
 [8] 0.9182076 0.8299857 0.9279749 1.1265334 0.9921754 0.6950614 0.6812369
[15] 0.2967093 0.7915584 0.9462214 0.4641551 0.8801185 0.9762238 0.4709592
[22] 0.6733742 0.4990919 0.6078070 0.4840429 0.5536879 0.3761808 0.5901008
[29] 0.4165883 0.1583322 0.5166617 0.4655684 0.1956528 0.2662338 0.2494923
[36] 0.1711010 0.1735738 0.3887883
Function Value
[1] 0.4344021
Gradient:
 [1]  1.254463e-05 -4.040196e-05  3.110756e-05 -4.923763e-05 -1.652722e-05
 [6]  7.355183e-05 -9.148238e-06 -4.857625e-05 -1.431033e-05 -7.254641e-06
[11]  2.241313e-05  3.874234e-05 -2.309264e-05 -4.781953e-06  9.574563e-06
[16] -2.595257e-05  6.228618e-05 -2.762945e-05  4.611422e-06  6.341239e-05
[21]  6.079759e-05  5.993428e-06 -2.369660e-06  2.120970e-06  8.570566e-05
[26]  1.809397e-05  4.104450e-05  2.151168e-05  2.814815e-05 -6.010481e-05
[31]  1.634177e-04  2.801563e-04 -5.410783e-06 -3.907630e-05  8.255086e-05
[36]  1.509548e-04 -2.710649e-04 -3.688641e-04

iteration = 39
Step:
 [1]  6.822845e-06  3.106039e-05 -1.414212e-05  2.185601e-05 -2.917649e-05
 [6] -1.670769e-04  6.633797e-05  7.739846e-05  5.596609e-05  2.786853e-06
[11] -8.147212e-06 -2.078172e-05  2.342145e-06  1.986159e-06 -9.001184e-06
[16]  2.121979e-05 -7.608090e-05 -1.922935e-05 -4.808242e-06 -1.910372e-05
[21]  1.797976e-05 -5.881102e-06  3.108571e-06 -6.414919e-07 -2.258024e-06
[26] -3.594406e-06 -1.287745e-05  2.636918e-07 -2.209474e-05  9.410281e-06
[31] -6.134567e-05 -1.584342e-05  2.425754e-06 -1.839625e-05 -1.410291e-05
[36] -9.365332e-06  5.191379e-06 -2.283468e-05
Parameter:
 [1] 0.8191032 1.2378808 0.7394438 1.9506449 0.9978042 0.6722391 0.8945532
 [8] 0.9182850 0.8300417 0.9279777 1.1265253 0.9921546 0.6950637 0.6812388
[15] 0.2967003 0.7915796 0.9461454 0.4641358 0.8801137 0.9762047 0.4709772
[22] 0.6733683 0.4990950 0.6078063 0.4840406 0.5536843 0.3761679 0.5901011
[29] 0.4165662 0.1583416 0.5166004 0.4655525 0.1956552 0.2662154 0.2494782
[36] 0.1710916 0.1735790 0.3887655
Function Value
[1] 0.434402
Gradient:
 [1]  7.084111e-06 -4.779405e-05  1.416822e-05 -1.797807e-05 -1.605827e-05
 [6]  3.869260e-05  8.657963e-06  5.329071e-06  4.181544e-06 -1.009681e-05
[11] -1.648119e-05  8.164136e-06 -3.370459e-05 -8.938628e-06  6.998846e-07
[16] -5.279333e-06 -1.601208e-05 -3.035794e-05 -2.739142e-06  3.422329e-05
[21]  6.377476e-05  6.821210e-06  1.820055e-05  1.733724e-06  7.084111e-05
[26]  6.725287e-06 -3.299405e-05  6.203038e-06 -3.971934e-05 -8.203571e-05
[31]  1.097398e-04  1.064500e-04  1.294644e-04  7.289103e-05 -7.764811e-05
[36] -5.754686e-05  5.848833e-05 -2.113474e-04

iteration = 40
Step:
 [1]  2.127376e-05  7.663880e-05  7.140795e-06  1.058051e-04  3.630663e-05
 [6] -4.644012e-05  2.072591e-05  2.387940e-05  1.904666e-05  1.327697e-05
[11]  1.694491e-05 -1.727294e-06  2.321013e-05  6.365194e-06 -1.242975e-05
[16]  1.198268e-05 -1.553123e-05 -6.789864e-06  4.482341e-07 -2.607315e-05
[21] -5.584360e-06 -4.850297e-06 -1.068356e-05 -8.761060e-07 -8.233047e-06
[26] -4.782327e-06  1.117287e-05  1.468846e-06 -3.652075e-05 -1.673510e-05
[31] -3.486644e-05 -1.673166e-05 -2.234283e-05 -2.491605e-05 -1.877614e-05
[36] -1.642599e-05 -1.626782e-05 -1.566167e-05
Parameter:
 [1] 0.8191245 1.2379575 0.7394510 1.9507507 0.9978405 0.6721927 0.8945740
 [8] 0.9183089 0.8300607 0.9279909 1.1265422 0.9921529 0.6950869 0.6812452
[15] 0.2966879 0.7915916 0.9461298 0.4641291 0.8801141 0.9761786 0.4709716
[22] 0.6733634 0.4990843 0.6078055 0.4840324 0.5536795 0.3761791 0.5901026
[29] 0.4165296 0.1583249 0.5165655 0.4655358 0.1956328 0.2661905 0.2494594
[36] 0.1710752 0.1735627 0.3887498
Function Value
[1] 0.434402
Gradient:
 [1]  3.826273e-06 -4.982006e-06  3.382183e-06 -1.291962e-05 -1.823963e-05
 [6]  1.834266e-05  8.476775e-06  5.389467e-06  5.066170e-06 -6.391332e-06
[11]  7.846268e-06 -5.659473e-06 -1.319478e-05 -5.886847e-06  2.649614e-05
[16]  3.254286e-06 -3.464606e-05 -2.166445e-05 -2.479794e-06  4.014566e-06
[21]  2.345502e-05 -3.218759e-06 -1.408651e-05 -1.840306e-06  4.190071e-05
[26] -4.426681e-06  1.322320e-05  2.135181e-06  3.057465e-05 -4.769163e-05
[31]  2.383516e-05  5.910294e-05 -1.974243e-05  1.057288e-05 -6.532019e-05
[36]  1.966072e-05 -2.298961e-05 -8.380852e-05

iteration = 41
Step:
 [1]  7.238481e-06  3.988897e-05  2.937180e-06  8.881149e-05  5.532473e-05
 [6]  6.690087e-06 -1.133120e-06  4.046202e-06  1.472445e-06  8.635007e-06
[11]  1.790370e-06  2.198822e-06  1.438357e-05  7.429172e-06 -1.496593e-05
[16]  5.180355e-06  2.018375e-05  6.331739e-06  4.188802e-06 -1.046967e-05
[21] -3.792049e-06  3.022968e-06  3.930628e-06  1.357929e-06 -6.718888e-06
[26]  1.519648e-06 -2.865842e-06  1.376197e-06 -1.629591e-05 -1.103175e-05
[31] -2.300627e-06 -3.580610e-06 -8.272686e-06 -2.391533e-06 -9.443627e-07
[36] -5.123355e-06 -4.304288e-06  1.538556e-06
Parameter:
 [1] 0.8191317 1.2379973 0.7394539 1.9508395 0.9978958 0.6721994 0.8945728
 [8] 0.9183129 0.8300622 0.9279996 1.1265440 0.9921551 0.6951013 0.6812526
[15] 0.2966729 0.7915968 0.9461500 0.4641354 0.8801183 0.9761681 0.4709678
[22] 0.6733665 0.4990882 0.6078068 0.4840257 0.5536811 0.3761762 0.5901039
[29] 0.4165134 0.1583139 0.5165632 0.4655322 0.1956246 0.2661881 0.2494584
[36] 0.1710701 0.1735584 0.3887514
Function Value
[1] 0.434402
Gradient:
 [1]  2.277289e-06 -1.325814e-06 -5.009326e-07 -1.642651e-06 -1.247003e-05
 [6]  1.332978e-05  4.540368e-06  1.088196e-05  4.916956e-06  1.772804e-06
[11] -7.789490e-07 -6.892265e-06 -5.044853e-06 -2.600586e-06  4.710898e-06
[16]  2.810197e-06 -1.726264e-05 -3.549161e-06  3.051781e-06 -7.890577e-06
[21]  9.201528e-06  5.400125e-07 -4.170886e-06 -6.927792e-07  1.610445e-05
[26] -9.912071e-07 -6.767920e-06  1.744382e-06  4.853007e-06 -1.978862e-05
[31] -4.089173e-06 -1.303846e-06  1.723066e-06  3.872458e-06 -2.799538e-05
[36]  9.947598e-07  1.361755e-05 -1.466560e-05

iteration = 42
Step:
 [1] -4.792987e-06  7.519530e-06 -4.123300e-06  5.007931e-05  4.120663e-05
 [6]  4.591631e-06 -3.538245e-06 -5.520446e-06 -2.737250e-06 -2.281168e-06
[11] -3.109722e-06  5.119904e-07  6.228938e-06  3.811295e-06 -4.542155e-06
[16]  4.492285e-07  1.897947e-05  1.206863e-06 -9.832568e-07  1.043092e-06
[21] -3.424127e-06  1.211612e-07  1.801796e-06  3.858596e-07 -5.607388e-06
[26] -5.655744e-08  2.635902e-06 -1.195258e-06 -5.788872e-08 -6.500891e-06
[31]  5.677492e-06  5.250995e-06 -3.142621e-06  3.336652e-06  4.080989e-06
[36] -2.138609e-06 -2.076212e-06  5.538626e-06
Parameter:
 [1] 0.8191269 1.2380049 0.7394498 1.9508896 0.9979370 0.6722040 0.8945693
 [8] 0.9183074 0.8300594 0.9279973 1.1265409 0.9921556 0.6951075 0.6812565
[15] 0.2966684 0.7915972 0.9461690 0.4641366 0.8801173 0.9761692 0.4709644
[22] 0.6733666 0.4990900 0.6078072 0.4840201 0.5536810 0.3761788 0.5901028
[29] 0.4165133 0.1583074 0.5165689 0.4655375 0.1956214 0.2661914 0.2494625
[36] 0.1710679 0.1735563 0.3887569
Function Value
[1] 0.434402
Gradient:
 [1] -1.197265e-06  1.127796e-06 -3.321787e-06  1.187340e-06 -7.045031e-06
 [6]  1.087486e-05  3.769429e-06  7.528200e-06  5.091039e-06  1.879386e-06
[11]  1.848038e-06 -3.254286e-06  1.548983e-06  1.598721e-07 -1.278977e-07
[16]  5.471179e-07  3.481659e-07  3.236522e-06  2.945200e-06 -7.585044e-06
[21]  1.435296e-06  9.237056e-08 -1.286082e-06 -4.511946e-07  2.664535e-07
[26] -1.659117e-06  4.796163e-07 -2.806644e-07 -1.115552e-06  2.422951e-06
[31] -9.354295e-06 -3.925749e-06  4.725109e-07  1.428191e-06 -4.835243e-06
[36] -1.172396e-07  3.666401e-06 -1.811884e-07

iteration = 43
Step:
 [1] -3.682144e-06 -3.460764e-06 -2.142703e-06  1.061705e-05  1.518893e-05
 [6] -8.993584e-06 -3.573180e-06 -6.274705e-06 -4.090105e-06 -3.355249e-06
[11] -4.390662e-06 -5.384338e-08  1.845322e-07  1.128702e-06 -5.694056e-07
[16] -1.028786e-07  5.046792e-06 -3.750218e-07 -1.993229e-06  4.674201e-06
[21] -1.893552e-06  1.427617e-07  1.490267e-06  5.249937e-07 -1.717844e-06
[26]  1.394112e-06  5.849922e-07 -1.119459e-07  3.245296e-06 -1.119520e-06
[31]  5.289021e-06  3.640130e-06  1.465042e-07  2.567725e-06  3.213265e-06
[36]  2.084293e-07  2.284269e-07  4.097673e-06
Parameter:
 [1] 0.8191233 1.2380014 0.7394476 1.9509002 0.9979522 0.6721950 0.8945657
 [8] 0.9183011 0.8300554 0.9279939 1.1265365 0.9921555 0.6951077 0.6812576
[15] 0.2966678 0.7915971 0.9461740 0.4641362 0.8801153 0.9761738 0.4709625
[22] 0.6733667 0.4990915 0.6078077 0.4840184 0.5536824 0.3761794 0.5901026
[29] 0.4165165 0.1583063 0.5165742 0.4655411 0.1956216 0.2661940 0.2494657
[36] 0.1710681 0.1735565 0.3887610
Function Value
[1] 0.434402
Gradient:
 [1] -2.142286e-06  4.304576e-07 -3.169021e-06  1.516946e-06 -4.170886e-06
 [6]  8.199663e-06  3.709033e-06  3.865352e-06  4.149570e-06  1.090683e-06
[11] -7.411102e-07  2.486900e-08  2.582823e-06  1.747935e-06 -2.859935e-06
[16]  2.060574e-07  5.190515e-06  4.593659e-06  1.421085e-06 -3.542056e-06
[21] -7.958079e-07  1.882938e-07  9.308110e-07  1.350031e-07 -3.659295e-06
[26]  1.136868e-06  1.989520e-07  1.669775e-07 -4.476419e-07  1.104183e-05
[31] -8.569145e-06 -7.005951e-06 -4.543921e-06 -6.881606e-06  1.152856e-05
[36]  9.414691e-07 -2.170708e-06  6.100009e-06

iteration = 44
Step:
 [1] -1.566398e-06 -3.456871e-06  2.744917e-07 -3.732022e-06  7.933713e-06
 [6] -1.920643e-05 -5.543743e-06 -7.666083e-06 -6.278767e-06 -3.074008e-06
[11] -2.477518e-06  7.041784e-08 -9.699219e-07 -2.331052e-07  1.023491e-06
[16] -4.793396e-07  1.672739e-08 -1.828523e-06 -2.672344e-06  5.656679e-06
[21] -2.340685e-06 -2.015256e-07  1.092432e-06  5.278756e-07 -1.525938e-06
[26]  1.497444e-07  6.936277e-07 -5.711251e-07  2.228667e-06  9.904173e-07
[31]  7.632983e-06  2.935248e-06  1.090348e-06  3.020762e-06  1.792877e-06
[36]  1.556480e-06  1.082705e-06  4.463735e-06
Parameter:
 [1] 0.8191217 1.2379979 0.7394479 1.9508964 0.9979601 0.6721758 0.8945602
 [8] 0.9182934 0.8300491 0.9279909 1.1265340 0.9921556 0.6951067 0.6812574
[15] 0.2966688 0.7915967 0.9461740 0.4641344 0.8801127 0.9761795 0.4709601
[22] 0.6733665 0.4990926 0.6078083 0.4840168 0.5536825 0.3761801 0.5901021
[29] 0.4165188 0.1583072 0.5165818 0.4655440 0.1956227 0.2661970 0.2494675
[36] 0.1710697 0.1735576 0.3887655
Function Value
[1] 0.434402
Gradient:
 [1] -2.625455e-06 -1.033101e-07 -2.067679e-06  7.393533e-07 -1.438849e-06
 [6]  4.295231e-06  3.378631e-06  7.034373e-07  2.646772e-06 -8.739676e-07
[11] -9.461002e-07  2.341238e-06  2.192024e-06  1.826095e-06 -1.808331e-06
[16]  6.750156e-08  5.375256e-06  2.433609e-06 -8.917311e-07  1.161737e-06
[21] -2.842171e-06 -5.684342e-07  2.160050e-06  1.847411e-07 -7.400303e-06
[26]  8.313350e-07  1.989520e-06 -5.684342e-07 -2.451372e-07  9.261925e-06
[31] -6.100009e-06 -6.384226e-06 -3.183231e-06 -4.021672e-06  1.044143e-05
[36] -3.414158e-06 -4.689582e-07  1.042721e-05

iteration = 45
Step:
 [1]  2.047473e-06 -1.919215e-07  2.541311e-06 -1.153757e-05 -1.570551e-06
 [6] -1.557974e-05 -5.100983e-06 -4.718085e-06 -4.999733e-06 -1.317495e-07
[11]  9.474451e-08 -3.021984e-07 -1.034762e-06 -8.904351e-07  9.297055e-07
[16] -3.667656e-07 -3.616112e-06 -1.030947e-06 -7.476273e-07  2.071323e-06
[21] -1.333741e-06  3.401213e-07 -8.111094e-08  4.369343e-07  6.194171e-07
[26]  1.555822e-07 -4.857711e-07  1.547817e-07 -6.539235e-07  1.724015e-06
[31]  4.530180e-06 -1.708187e-08  7.450466e-07  7.191504e-07 -4.740831e-07
[36]  1.515549e-06  8.664714e-07  1.781017e-06
Parameter:
 [1] 0.8191237 1.2379978 0.7394505 1.9508849 0.9979586 0.6721602 0.8945551
 [8] 0.9182887 0.8300441 0.9279907 1.1265341 0.9921553 0.6951057 0.6812565
[15] 0.2966697 0.7915963 0.9461704 0.4641334 0.8801119 0.9761816 0.4709588
[22] 0.6733669 0.4990925 0.6078087 0.4840174 0.5536827 0.3761796 0.5901022
[29] 0.4165181 0.1583090 0.5165864 0.4655440 0.1956234 0.2661977 0.2494670
[36] 0.1710712 0.1735585 0.3887672
Function Value
[1] 0.434402
Gradient:
 [1] -1.733724e-06 -5.222900e-07 -6.501466e-07 -1.365809e-07 -3.907985e-07
 [6]  1.524114e-06  1.879386e-06 -9.059420e-07  8.064660e-07 -1.008971e-06
[11] -1.479070e-06  2.010836e-06  1.001865e-06  1.094236e-06 -8.064660e-07
[16]  2.096101e-07  2.106759e-06  2.557954e-07 -1.353584e-06  2.621903e-06
[21] -3.179679e-06 -7.425172e-07  1.186606e-06  1.847411e-07 -5.755396e-06
[26]  1.104894e-06  5.258016e-07 -4.760636e-07  4.192202e-07  3.304024e-06
[31] -5.279333e-06 -7.691625e-06 -2.362555e-06 -4.405365e-06  7.368328e-06
[36] -2.575717e-06  8.917311e-07  1.324807e-05

iteration = 46
Step:
 [1]  2.574458e-06  1.692021e-06  2.094599e-06 -6.329007e-06 -2.259945e-06
 [6] -6.597494e-06 -2.761926e-06 -1.104084e-06 -2.105507e-06  1.121037e-06
[11]  1.537651e-06 -3.562350e-07 -3.440562e-07 -8.113065e-07  4.031425e-07
[16] -2.912993e-07 -2.420088e-06 -3.430489e-07  4.411000e-07 -7.525741e-07
[21] -3.382319e-07  4.601947e-07 -4.781188e-07  6.497313e-08  7.532794e-07
[26] -6.008906e-07 -4.157780e-07  2.202896e-07 -1.481228e-06  8.610455e-07
[31]  1.804509e-06 -8.070818e-07  1.479095e-07  1.087160e-08 -1.104194e-06
[36]  7.338906e-07  2.377060e-07  7.653362e-08
Parameter:
 [1] 0.8191263 1.2379994 0.7394525 1.9508786 0.9979563 0.6721536 0.8945523
 [8] 0.9182876 0.8300420 0.9279918 1.1265356 0.9921549 0.6951054 0.6812556
[15] 0.2966701 0.7915960 0.9461680 0.4641330 0.8801123 0.9761808 0.4709585
[22] 0.6733673 0.4990921 0.6078088 0.4840182 0.5536821 0.3761792 0.5901024
[29] 0.4165166 0.1583098 0.5165882 0.4655432 0.1956236 0.2661977 0.2494659
[36] 0.1710719 0.1735587 0.3887673
Function Value
[1] 0.434402
Gradient:
 [1] -7.851497e-07 -3.587152e-07 -1.065814e-08 -5.718204e-07 -1.598721e-07
 [6]  3.659295e-07  6.394885e-07 -4.547474e-07 -3.197442e-08 -6.501466e-07
[11] -4.478201e-07  6.643575e-07  2.060574e-07  8.881784e-08  1.172396e-07
[16]  6.039613e-08 -1.740830e-07 -8.917311e-07 -7.496226e-07  1.605827e-06
[21] -2.550848e-06 -5.506706e-07  2.877698e-07 -4.263256e-08 -3.932854e-06
[26] -9.237056e-08  2.060574e-07 -3.161915e-07  6.394885e-08 -1.836753e-06
[31] -3.627321e-06 -5.183409e-06  4.192202e-07 -4.938272e-07  7.212009e-07
[36] -2.369660e-06  2.355449e-06  9.645618e-06

iteration = 47
Step:
 [1] -2.831318e-06 -5.052940e-06 -3.014650e-06 -1.059774e-04 -3.778390e-05
 [6] -3.013387e-05 -3.647302e-06 -2.534391e-06 -2.607754e-06 -1.598580e-06
[11] -1.776620e-06 -1.853362e-06 -9.011706e-07 -1.891887e-07 -4.719144e-08
[16] -3.380640e-07 -4.785029e-06  8.567382e-06 -1.427185e-06  2.649818e-06
[21]  1.740776e-06  7.601643e-07 -9.208099e-08 -1.274066e-07  2.914619e-06
[26]  3.083642e-07  1.856616e-07 -7.747531e-07  1.160355e-05  1.982220e-05
[31]  1.215288e-05  1.032141e-05  1.602983e-05  1.064372e-05  9.627978e-06
[36]  1.610383e-05  1.594195e-05  9.716194e-06
Parameter:
 [1] 0.8191235 1.2379944 0.7394495 1.9507726 0.9979185 0.6721235 0.8945487
 [8] 0.9182851 0.8300394 0.9279902 1.1265339 0.9921531 0.6951045 0.6812555
[15] 0.2966701 0.7915957 0.9461632 0.4641416 0.8801109 0.9761835 0.4709602
[22] 0.6733681 0.4990920 0.6078086 0.4840211 0.5536824 0.3761794 0.5901017
[29] 0.4165282 0.1583297 0.5166003 0.4655535 0.1956396 0.2662084 0.2494756
[36] 0.1710880 0.1735747 0.3887770
Function Value
[1] 0.434402
Gradient:
 [1]  3.334932e-07  1.436273e-06  1.521627e-07  3.485453e-06  2.119283e-06
 [6]  5.368683e-07  1.238298e-07  6.840750e-08 -1.126566e-07 -1.213252e-07
[11]  1.539952e-06  6.014034e-07 -1.488480e-06 -1.292992e-06 -6.970780e-07
[16] -1.065477e-06 -4.064837e-07  5.582734e-06 -2.048317e-07  4.738041e-06
[21]  3.803873e-06 -3.604228e-07 -2.619771e-07 -1.001990e-06  5.176961e-06
[26]  2.018830e-07  6.735945e-08 -2.382894e-06  1.081606e-06  2.401132e-05
[31]  4.351666e-06  5.851639e-06 -3.525589e-06  7.426770e-07 -5.531398e-06
[36]  3.519141e-07 -2.053682e-06 -1.810186e-05

iteration = 48
Step:
 [1] -2.118595e-06 -3.592084e-06 -1.855933e-06 -1.523729e-05 -7.199977e-06
 [6] -5.577775e-06 -8.779495e-07 -1.082753e-06 -7.988149e-07 -9.821659e-07
[11] -1.833556e-06 -1.173786e-06  2.887816e-07  7.564088e-07  5.103014e-07
[16]  5.277807e-07  1.384689e-07 -7.545013e-08 -9.728782e-08 -1.768062e-06
[21] -3.468388e-07  1.302562e-07  4.650969e-07  5.774091e-07 -1.514119e-07
[26]  6.715157e-08  9.373391e-08  7.528135e-07  2.262343e-06  1.707758e-06
[31]  2.345920e-06  2.339573e-06  1.670455e-06  1.737014e-06  1.945235e-06
[36]  1.644669e-06  1.720923e-06  2.265488e-06
Parameter:
 [1] 0.8191214 1.2379908 0.7394477 1.9507574 0.9979113 0.6721179 0.8945478
 [8] 0.9182840 0.8300386 0.9279893 1.1265320 0.9921519 0.6951047 0.6812562
[15] 0.2966706 0.7915962 0.9461634 0.4641415 0.8801108 0.9761817 0.4709599
[22] 0.6733682 0.4990924 0.6078092 0.4840210 0.5536825 0.3761795 0.5901024
[29] 0.4165305 0.1583314 0.5166027 0.4655559 0.1956413 0.2662101 0.2494775
[36] 0.1710897 0.1735764 0.3887793
Function Value
[1] 0.434402
Gradient:
 [1]  2.031442e-07  5.772772e-07 -1.746159e-08  1.062623e-06  1.529870e-06
 [6] -1.022116e-07  3.397815e-07  3.182343e-07  3.419132e-07  3.671730e-07
[11]  1.149624e-06  1.240164e-06 -2.474465e-07  1.668354e-07  1.788081e-07
[16] -2.063061e-07  2.190781e-07  2.140457e-06 -3.856471e-07  2.893206e-06
[21]  3.542411e-06 -1.550760e-07  8.473222e-07  1.935518e-07  5.518661e-06
[26]  3.854872e-07 -3.537082e-07 -8.348522e-07  8.046186e-07  8.366161e-06
[31]  5.455014e-06  5.953602e-06 -3.593907e-06  4.571277e-07 -1.126743e-07
[36]  2.647589e-06 -8.724221e-07 -1.519634e-05

iteration = 49
Step:
 [1] -1.615526e-06 -2.529724e-06 -1.230725e-06 -1.057239e-05 -6.767033e-06
 [6] -3.476119e-06 -4.169357e-07 -8.254346e-07 -6.060549e-07 -1.040817e-06
[11] -1.901935e-06 -1.627039e-06  9.367186e-08  3.824945e-07  2.622792e-07
[16]  4.267138e-07  5.590737e-08 -2.532350e-07  1.605021e-07 -2.743590e-06
[21] -4.832965e-07  1.863969e-07  1.093543e-07  3.123962e-07 -1.271376e-06
[26]  1.540610e-07  5.314538e-07  8.133939e-07  1.445520e-06  1.278075e-06
[31]  9.691341e-07  1.570171e-06  1.187167e-06  8.117267e-07  1.041994e-06
[36]  9.064908e-07  1.063366e-06  1.535179e-06
Parameter:
 [1] 0.8191198 1.2379883 0.7394464 1.9507468 0.9979045 0.6721144 0.8945474
 [8] 0.9182832 0.8300380 0.9279882 1.1265301 0.9921503 0.6951048 0.6812566
[15] 0.2966709 0.7915966 0.9461634 0.4641413 0.8801110 0.9761789 0.4709594
[22] 0.6733684 0.4990925 0.6078095 0.4840197 0.5536826 0.3761800 0.5901032
[29] 0.4165319 0.1583326 0.5166036 0.4655575 0.1956424 0.2662109 0.2494786
[36] 0.1710906 0.1735775 0.3887808
Function Value
[1] 0.434402
Gradient:
 [1] -3.728573e-08 -1.302722e-07 -4.344969e-08 -3.265151e-07  8.250467e-07
 [6] -4.106404e-07  4.846790e-07 -6.117773e-08  3.505818e-07  6.474288e-07
[11]  8.361347e-07  1.203748e-06  4.278533e-07  8.869172e-07  3.439737e-07
[16]  4.854606e-07  6.145129e-07  1.050005e-07 -4.210321e-07  8.387957e-08
[21]  2.258673e-06  1.368861e-07  6.114576e-07  5.960921e-07  2.527010e-06
[26]  7.081091e-07  5.334755e-07  4.895462e-07  5.621104e-07 -6.264322e-07
[31]  2.921041e-06  3.321343e-06 -5.094591e-07  2.442313e-07  6.932588e-07
[36]  1.365841e-06 -1.212541e-06 -6.523866e-06

iteration = 50
Step:
 [1] -1.742659e-07 -1.779785e-07 -8.132006e-08 -2.217431e-06 -2.128865e-06
 [6]  1.356454e-07 -2.047126e-07 -7.461373e-08 -2.132816e-07 -5.996206e-07
[11] -8.841211e-07 -9.775672e-07 -1.629381e-07 -1.900974e-07  2.725808e-08
[16] -6.108531e-08 -3.039901e-07 -1.358154e-08  2.701984e-07 -7.803253e-07
[21] -5.220923e-07  6.789385e-08 -5.380042e-09 -4.492903e-08 -6.204105e-07
[26] -1.167926e-07  1.005925e-07  1.463100e-07 -4.630734e-08  2.769049e-07
[31] -1.169249e-08  4.218309e-07  1.473494e-07 -9.119917e-08  8.421040e-08
[36]  1.103733e-07  2.303373e-07  3.684573e-07
Parameter:
 [1] 0.8191196 1.2379881 0.7394464 1.9507446 0.9979024 0.6721146 0.8945472
 [8] 0.9182831 0.8300377 0.9279876 1.1265293 0.9921493 0.6951047 0.6812564
[15] 0.2966709 0.7915966 0.9461631 0.4641412 0.8801113 0.9761782 0.4709589
[22] 0.6733685 0.4990925 0.6078095 0.4840191 0.5536825 0.3761801 0.5901034
[29] 0.4165319 0.1583329 0.5166036 0.4655579 0.1956426 0.2662108 0.2494786
[36] 0.1710907 0.1735777 0.3887812
Function Value
[1] 0.434402
Gradient:
 [1] -2.177281e-07 -2.562254e-07 -1.053913e-07 -4.731137e-07  5.296386e-07
 [6] -2.533440e-07  3.663914e-07  6.803447e-09  1.973888e-07  5.090151e-07
[11]  4.685581e-07  7.709922e-07  2.015277e-07  5.313616e-07  2.175682e-07
[16]  4.222045e-07  3.868372e-07 -1.157652e-07 -1.993428e-07 -6.631318e-07
[21]  6.739675e-07  1.488942e-07  4.152945e-07  3.178613e-07  9.579360e-07
[26]  2.750511e-07  2.802381e-07  4.587442e-07  1.698375e-07 -1.506795e-06
[31]  1.035509e-06  7.242029e-07  1.354117e-07 -1.895017e-07  6.223821e-07
[36]  2.208012e-07 -6.265921e-07 -1.703562e-06

iteration = 51
Step:
 [1]  2.058384e-07  2.693253e-07  1.662787e-07 -4.137795e-07 -1.124731e-06
 [6]  6.265770e-07 -2.564626e-07 -2.549231e-08 -1.559782e-07 -5.781499e-07
[11] -6.792431e-07 -8.488666e-07 -1.343126e-07 -2.680030e-07 -3.223647e-08
[16] -2.183234e-07 -3.601499e-07 -1.556621e-08  2.435717e-07  7.341504e-08
[21] -2.712009e-07  1.548222e-08 -1.208807e-07 -7.272277e-08 -5.209405e-07
[26] -6.324879e-08  4.745079e-08 -3.757526e-08 -2.512313e-07  9.251128e-08
[31] -1.335355e-07  3.071463e-07 -1.720765e-08 -1.645736e-07 -4.871062e-08
[36]  4.090384e-09  1.017760e-07  1.682881e-07
Parameter:
 [1] 0.8191198 1.2379884 0.7394465 1.9507442 0.9979013 0.6721152 0.8945469
 [8] 0.9182831 0.8300376 0.9279870 1.1265286 0.9921485 0.6951045 0.6812561
[15] 0.2966709 0.7915963 0.9461628 0.4641412 0.8801115 0.9761782 0.4709586
[22] 0.6733685 0.4990924 0.6078094 0.4840186 0.5536825 0.3761802 0.5901033
[29] 0.4165316 0.1583330 0.5166035 0.4655582 0.1956426 0.2662107 0.2494786
[36] 0.1710907 0.1735778 0.3887814
Function Value
[1] 0.434402
Gradient:
 [1] -2.545342e-07 -2.475444e-07 -1.423928e-07 -3.445000e-07  3.362466e-07
 [6] -3.531397e-08  9.084289e-08 -4.414247e-08  1.902478e-08  2.938449e-07
[11]  2.587281e-07  2.924416e-07 -7.068124e-08  5.385914e-08 -3.623768e-09
[16]  1.227463e-07  4.138911e-08 -3.502976e-08  1.234568e-08 -5.458034e-07
[21] -1.772804e-07  5.226042e-08 -2.357226e-08  2.993161e-08 -3.611333e-07
[26] -5.311307e-09  2.380318e-08  1.059242e-07 -5.167422e-08 -9.478285e-07
[31] -4.670042e-07 -9.126921e-07  3.564260e-07 -1.319300e-07 -6.146195e-08
[36] -4.513367e-07  2.831158e-07  1.040874e-06

iteration = 52
Parameter:
 [1] 0.8191200 1.2379886 0.7394467 1.9507446 0.9979010 0.6721154 0.8945468
 [8] 0.9182831 0.8300375 0.9279867 1.1265282 0.9921481 0.6951046 0.6812560
[15] 0.2966709 0.7915962 0.9461626 0.4641411 0.8801116 0.9761786 0.4709585
[22] 0.6733685 0.4990924 0.6078094 0.4840184 0.5536824 0.3761802 0.5901033
[29] 0.4165315 0.1583330 0.5166035 0.4655584 0.1956425 0.2662106 0.2494786
[36] 0.1710907 0.1735778 0.3887815
Function Value
[1] 0.434402
Gradient:
 [1] -1.941380e-07 -1.934640e-07 -1.448086e-07 -2.266586e-07  2.532730e-07
 [6]  4.572343e-08 -3.932854e-08  1.461942e-08 -3.545608e-08  1.612932e-07
[11]  1.584884e-07  1.091571e-07 -9.663381e-08 -1.142908e-07 -3.961276e-08
[16] -4.757084e-08 -1.088374e-07  1.218581e-08  5.861978e-08 -1.739231e-07
[21] -4.764367e-07 -1.877609e-08 -8.268941e-08 -8.256507e-08 -5.334577e-07
[26] -1.166534e-07 -1.181633e-07 -5.471179e-08 -9.526602e-08 -4.096457e-07
[31] -7.377210e-07 -1.117755e-06  3.048939e-07 -1.385736e-07 -1.938893e-07
[36] -4.005152e-07  3.779199e-07  1.362945e-06

Successive iterates within tolerance.
Current iterate is probably solution.

We can safely ignore the warning messages again in this case, as explained above.

Check the code first to see if the minimization terminated normally (see the help page for the meaning of different code):

f_ml_min$code
[1] 2

Compare with lavaan Output

mod_cfa <-
"
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ x9 + x10 + x11 + x12
f4 =~ x13 + x14 + x15 + x16
"
fit_cfa <- cfa(model = mod_cfa,
               data = dat)
summary(fit_cfa)
lavaan 0.6-19 ended normally after 47 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        38

  Number of observations                           400

Model Test User Model:
                                                      
  Test statistic                               173.761
  Degrees of freedom                                98
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  f1 =~                                               
    x1                1.000                           
    x2                0.819    0.095    8.651    0.000
    x3                1.238    0.113   10.939    0.000
    x4                0.739    0.095    7.776    0.000
  f2 =~                                               
    x5                1.000                           
    x6                1.951    0.314    6.211    0.000
    x7                0.998    0.199    5.004    0.000
    x8                0.672    0.174    3.867    0.000
  f3 =~                                               
    x9                1.000                           
    x10               0.895    0.083   10.764    0.000
    x11               0.918    0.078   11.761    0.000
    x12               0.830    0.078   10.621    0.000
  f4 =~                                               
    x13               1.000                           
    x14               0.928    0.082   11.373    0.000
    x15               1.127    0.085   13.255    0.000
    x16               0.992    0.086   11.577    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  f1 ~~                                               
    f2                0.196    0.037    5.235    0.000
    f3                0.266    0.040    6.659    0.000
    f4                0.249    0.038    6.635    0.000
  f2 ~~                                               
    f3                0.171    0.034    5.047    0.000
    f4                0.174    0.034    5.178    0.000
  f3 ~~                                               
    f4                0.389    0.046    8.534    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .x1                0.695    0.058   12.011    0.000
   .x2                0.681    0.054   12.722    0.000
   .x3                0.297    0.044    6.712    0.000
   .x4                0.792    0.060   13.162    0.000
   .x5                0.946    0.071   13.326    0.000
   .x6                0.464    0.071    6.549    0.000
   .x7                0.880    0.066   13.267    0.000
   .x8                0.976    0.071   13.789    0.000
   .x9                0.471    0.045   10.501    0.000
   .x10               0.673    0.055   12.135    0.000
   .x11               0.499    0.044   11.261    0.000
   .x12               0.608    0.050   12.229    0.000
   .x13               0.484    0.042   11.480    0.000
   .x14               0.554    0.046   12.153    0.000
   .x15               0.376    0.039    9.767    0.000
   .x16               0.590    0.049   12.005    0.000
    f1                0.417    0.069    6.078    0.000
    f2                0.158    0.047    3.384    0.001
    f3                0.517    0.068    7.560    0.000
    f4                0.466    0.063    7.414    0.000

Compare the parameter estimates from the two methods:

round(f_ml_min$estimate, 3)
 [1] 0.819 1.238 0.739 1.951 0.998 0.672 0.895 0.918 0.830 0.928 1.127 0.992
[13] 0.695 0.681 0.297 0.792 0.946 0.464 0.880 0.976 0.471 0.673 0.499 0.608
[25] 0.484 0.554 0.376 0.590 0.417 0.158 0.517 0.466 0.196 0.266 0.249 0.171
[37] 0.174 0.389
coef(fit_cfa)
  f1=~x2   f1=~x3   f1=~x4   f2=~x6   f2=~x7   f2=~x8  f3=~x10  f3=~x11 
   0.819    1.238    0.739    1.951    0.998    0.672    0.895    0.918 
 f3=~x12  f4=~x14  f4=~x15  f4=~x16   x1~~x1   x2~~x2   x3~~x3   x4~~x4 
   0.830    0.928    1.127    0.992    0.695    0.681    0.297    0.792 
  x5~~x5   x6~~x6   x7~~x7   x8~~x8   x9~~x9 x10~~x10 x11~~x11 x12~~x12 
   0.946    0.464    0.880    0.976    0.471    0.673    0.499    0.608 
x13~~x13 x14~~x14 x15~~x15 x16~~x16   f1~~f1   f2~~f2   f3~~f3   f4~~f4 
   0.484    0.554    0.376    0.590    0.417    0.158    0.517    0.466 
  f1~~f2   f1~~f3   f1~~f4   f2~~f3   f2~~f4   f3~~f4 
   0.196    0.266    0.249    0.171    0.174    0.389 

Compute the differences:

f_ml_min$estimate - coef(fit_cfa)
  f1=~x2   f1=~x3   f1=~x4   f2=~x6   f2=~x7   f2=~x8  f3=~x10  f3=~x11 
       0        0        0        0        0        0        0        0 
 f3=~x12  f4=~x14  f4=~x15  f4=~x16   x1~~x1   x2~~x2   x3~~x3   x4~~x4 
       0        0        0        0        0        0        0        0 
  x5~~x5   x6~~x6   x7~~x7   x8~~x8   x9~~x9 x10~~x10 x11~~x11 x12~~x12 
       0        0        0        0        0        0        0        0 
x13~~x13 x14~~x14 x15~~x15 x16~~x16   f1~~f1   f2~~f2   f3~~f3   f4~~f4 
       0        0        0        0        0        0        0        0 
  f1~~f2   f1~~f3   f1~~f4   f2~~f3   f2~~f4   f3~~f4 
       0        0        0        0        0        0 

Compare the values of the discrepancy function:

lavInspect(fit_cfa, "optim")$fx
[1] 0.217201
f_ml_min$minimum / 2
[1] 0.217201

A Structural Equation Model

mod_sem <-
"
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ x9 + x10 + x11 + x12
f4 =~ x13 + x14 + x15 + x16
f3 ~ f1 + f2
f4 ~ f3
"

Write a Function to Create the Model Matrices

# Parameters in thetas in this order (as in lavaan)
# (lambda1 .... lambda12, b31, b32, b43, ev1 .... ev16, v1, v2, d3, d4, v21)
# b?? is the regression coefficient of a path
# ev?? is the error variance of an item
# v? is the variance of a factor
# d? is the error variance of a factor
# v?? is the covariance between two factors
# - 1:12: lambda1 .... lambda12,
# - 13:15: b31, b32, b43,
# - 16:31: ev1 .... ev16,
# - 32:35: v1, v2, d3, d4,
# - 36: v21
matrices_sem <- function(thetas) {
    vnames <- paste0("x", 1:16)
    fnames <- c("f1", "f2", "f3", "f4")
    # Create the 16x4 lambda matrix
    lambda <- matrix(c(        1,         0,         0,         0,
                       thetas[1],         0,         0,         0,
                       thetas[2],         0,         0,         0,
                       thetas[3],         0,         0,         0,
                               0,         1,         0,         0,
                               0, thetas[4],         0,         0,
                               0, thetas[5],         0,         0,
                               0, thetas[6],         0,         0,
                               0,         0,         1,         0,
                               0,         0, thetas[7],         0,
                               0,         0, thetas[8],         0,
                               0,         0, thetas[9],         0,
                               0,         0,         0,         1,
                               0,         0,         0, thetas[10],
                               0,         0,         0, thetas[11],
                               0,         0,         0, thetas[12]),
                     byrow = TRUE,
                     nrow = 16,
                     ncol = 4)
    rownames(lambda) <- vnames
    colnames(lambda) <- fnames

    # Create the 4x4 beta matrix
    beta <- matrix(c(         0,          0,          0, 0,
                              0,          0,          0, 0,
                     thetas[13], thetas[14],          0, 0,
                              0,          0, thetas[15], 0),
                   byrow = TRUE,
                   nrow = 4,
                   ncol = 4)
    rownames(beta) <- fnames
    colnames(beta) <- fnames

    # Create the 16x16 theta matrix
    theta <- diag(thetas[16:31])
    rownames(theta) <- vnames
    colnames(theta) <- vnames

    # Create the 4x4 psi matrix
    psi <- diag(thetas[32:35])
    psi[2, 1] <- psi[1, 2] <- thetas[36]
    rownames(psi) <- fnames
    colnames(psi) <- fnames

    # Return the matrices as a list
    out <- list(lambda = lambda,
                beta = beta,
                theta = theta,
                psi = psi)
    return(out)
  }

Test the function by using arbitrary numbers:

matrices_sem(thetas = 1:36)
$lambda
    f1 f2 f3 f4
x1   1  0  0  0
x2   1  0  0  0
x3   2  0  0  0
x4   3  0  0  0
x5   0  1  0  0
x6   0  4  0  0
x7   0  5  0  0
x8   0  6  0  0
x9   0  0  1  0
x10  0  0  7  0
x11  0  0  8  0
x12  0  0  9  0
x13  0  0  0  1
x14  0  0  0 10
x15  0  0  0 11
x16  0  0  0 12

$beta
   f1 f2 f3 f4
f1  0  0  0  0
f2  0  0  0  0
f3 13 14  0  0
f4  0  0 15  0

$theta
    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
x1  16  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0
x2   0 17  0  0  0  0  0  0  0   0   0   0   0   0   0   0
x3   0  0 18  0  0  0  0  0  0   0   0   0   0   0   0   0
x4   0  0  0 19  0  0  0  0  0   0   0   0   0   0   0   0
x5   0  0  0  0 20  0  0  0  0   0   0   0   0   0   0   0
x6   0  0  0  0  0 21  0  0  0   0   0   0   0   0   0   0
x7   0  0  0  0  0  0 22  0  0   0   0   0   0   0   0   0
x8   0  0  0  0  0  0  0 23  0   0   0   0   0   0   0   0
x9   0  0  0  0  0  0  0  0 24   0   0   0   0   0   0   0
x10  0  0  0  0  0  0  0  0  0  25   0   0   0   0   0   0
x11  0  0  0  0  0  0  0  0  0   0  26   0   0   0   0   0
x12  0  0  0  0  0  0  0  0  0   0   0  27   0   0   0   0
x13  0  0  0  0  0  0  0  0  0   0   0   0  28   0   0   0
x14  0  0  0  0  0  0  0  0  0   0   0   0   0  29   0   0
x15  0  0  0  0  0  0  0  0  0   0   0   0   0   0  30   0
x16  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0  31

$psi
   f1 f2 f3 f4
f1 32 36  0  0
f2 36 33  0  0
f3  0  0 34  0
f4  0  0  0 35

Write a Function to Compute the Implied Covariance Matrices

implied_cov_sem <- function(thetas) {
    # Create the matrices
    m <- matrices_sem(thetas)
    lambda <- m$lambda
    beta <- m$beta
    theta <- m$theta
    psi <- m$psi

    # Compute the implied covariance matrix
    sigma_implied <- lambda %*% solve(diag(4) - beta) %*%
                        psi %*% t(solve(diag(4) - beta)) %*%
                        t(lambda) + theta
    sigma_implied
  }

Write the ML Discrepancy Function

Again, no need. The discrepancy can be used again. We only need to tell it how to compute the implied covariance matrix by setting implied.

Find the Solution

We can use the item level covariance matrix created above for the CFA model:

round(my_data_items_cov, 3)
       x1     x2    x3     x4    x5    x6     x7     x8    x9   x10   x11   x12
x1  1.112  0.445 0.491  0.418 0.023 0.420  0.091  0.009 0.195 0.223 0.155 0.134
x2  0.445  0.961 0.396  0.340 0.041 0.339  0.039 -0.002 0.143 0.166 0.173 0.121
x3  0.491  0.396 0.935  0.344 0.237 0.531  0.227  0.161 0.377 0.325 0.361 0.295
x4  0.418  0.340 0.344  1.019 0.044 0.264 -0.005  0.093 0.193 0.170 0.143 0.143
x5  0.023  0.041 0.237  0.044 1.104 0.290  0.297  0.193 0.162 0.184 0.183 0.150
x6  0.420  0.339 0.531  0.264 0.290 1.067  0.287  0.174 0.314 0.223 0.296 0.310
x7  0.091  0.039 0.227 -0.005 0.297 0.287  1.038  0.176 0.140 0.196 0.207 0.176
x8  0.009 -0.002 0.161  0.093 0.193 0.174  0.176  1.048 0.134 0.181 0.146 0.214
x9  0.195  0.143 0.377  0.193 0.162 0.314  0.140  0.134 0.988 0.441 0.497 0.425
x10 0.223  0.166 0.325  0.170 0.184 0.223  0.196  0.181 0.441 1.087 0.410 0.390
x11 0.155  0.173 0.361  0.143 0.183 0.296  0.207  0.146 0.497 0.410 0.935 0.396
x12 0.134  0.121 0.295  0.143 0.150 0.310  0.176  0.214 0.425 0.390 0.396 0.964
x13 0.208  0.175 0.346  0.200 0.275 0.294  0.174  0.172 0.383 0.398 0.369 0.319
x14 0.203  0.137 0.308  0.140 0.229 0.322  0.228  0.073 0.325 0.309 0.321 0.301
x15 0.236  0.204 0.360  0.183 0.202 0.337  0.256  0.168 0.482 0.453 0.374 0.363
x16 0.256  0.126 0.353  0.139 0.183 0.314  0.256  0.166 0.349 0.340 0.309 0.304
      x13   x14   x15   x16
x1  0.208 0.203 0.236 0.256
x2  0.175 0.137 0.204 0.126
x3  0.346 0.308 0.360 0.353
x4  0.200 0.140 0.183 0.139
x5  0.275 0.229 0.202 0.183
x6  0.294 0.322 0.337 0.314
x7  0.174 0.228 0.256 0.256
x8  0.172 0.073 0.168 0.166
x9  0.383 0.325 0.482 0.349
x10 0.398 0.309 0.453 0.340
x11 0.369 0.321 0.374 0.309
x12 0.319 0.301 0.363 0.304
x13 0.950 0.451 0.505 0.462
x14 0.451 0.955 0.480 0.432
x15 0.505 0.480 0.967 0.536
x16 0.462 0.432 0.536 1.048

Set the starting values:

  • Positive numbers for variances or error variances.
# Parameters in thetas in this order (as in lavaan)
# - 1:12: lambda1 .... lambda12,
# - 13:15: b31, b32, b43,
# - 16:31: ev1 .... ev16,
# - 32:35: v1, v2, d3, d4,
# - 36: v21
start <- rep(.6, 36)
start[1:12] <- .80
start[16:31] <- .50
start[32:35] <- 1
start
 [1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.5 0.5 0.5 0.5
[20] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.6

Put the starting values into the matrices:

matrices_sem(thetas = start)
$lambda
     f1  f2  f3  f4
x1  1.0 0.0 0.0 0.0
x2  0.8 0.0 0.0 0.0
x3  0.8 0.0 0.0 0.0
x4  0.8 0.0 0.0 0.0
x5  0.0 1.0 0.0 0.0
x6  0.0 0.8 0.0 0.0
x7  0.0 0.8 0.0 0.0
x8  0.0 0.8 0.0 0.0
x9  0.0 0.0 1.0 0.0
x10 0.0 0.0 0.8 0.0
x11 0.0 0.0 0.8 0.0
x12 0.0 0.0 0.8 0.0
x13 0.0 0.0 0.0 1.0
x14 0.0 0.0 0.0 0.8
x15 0.0 0.0 0.0 0.8
x16 0.0 0.0 0.0 0.8

$beta
    f1  f2  f3 f4
f1 0.0 0.0 0.0  0
f2 0.0 0.0 0.0  0
f3 0.6 0.6 0.0  0
f4 0.0 0.0 0.6  0

$theta
     x1  x2  x3  x4  x5  x6  x7  x8  x9 x10 x11 x12 x13 x14 x15 x16
x1  0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x2  0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x3  0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x4  0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x5  0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x6  0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x7  0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x8  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x9  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
x11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
x12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
x13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
x14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
x15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
x16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

$psi
    f1  f2 f3 f4
f1 1.0 0.6  0  0
f2 0.6 1.0  0  0
f3 0.0 0.0  1  0
f4 0.0 0.0  0  1

We use nlm() again. The call is nearly the same. We use the item level covariance this time, and use implied_cov_sem() to compute the implied covariance matrix.

f_ml_min <- nlm(f = f_ml,
                p = start,
                data_cov = my_data_items_cov,
                implied = implied_cov_sem,
                print.level = 2)
iteration = 0
Step:
 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Parameter:
 [1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.5 0.5 0.5 0.5
[20] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.6
Function Value
[1] 2.185797
Gradient:
 [1]  0.07170679 -0.07912282  0.09101749 -0.05131903  0.08907650  0.29651604
 [7]  0.13209417  0.21259447  0.30476247  0.22887000  0.01687442  0.06809838
[13]  0.38813082  0.30578360 -0.02664099 -0.20518877 -0.32920460  0.01483169
[19] -0.59456861 -0.81583696 -0.79122645 -0.90033001 -1.27192723  0.03359370
[25] -0.47254402  0.00684150 -0.25668534  0.09197354 -0.07471056  0.21487352
[31] -0.19258366  0.21731919  0.36083593  0.36243739  0.48513248  0.02778078

iteration = 1
Step:
 [1] -0.07170679  0.07912282 -0.09101749  0.05131903 -0.08907650 -0.29651604
 [7] -0.13209417 -0.21259447 -0.30476247 -0.22887000 -0.01687442 -0.06809838
[13] -0.38813082 -0.30578360  0.02664099  0.20518877  0.32920460 -0.01483169
[19]  0.59456861  0.81583696  0.79122645  0.90033001  1.27192723 -0.03359370
[25]  0.47254402 -0.00684150  0.25668534 -0.09197354  0.07471056 -0.21487352
[31]  0.19258366 -0.21731919 -0.36083593 -0.36243739 -0.48513248 -0.02778078
Parameter:
 [1] 0.7282932 0.8791228 0.7089825 0.8513190 0.7109235 0.5034840 0.6679058
 [8] 0.5874055 0.4952375 0.5711300 0.7831256 0.7319016 0.2118692 0.2942164
[15] 0.6266410 0.7051888 0.8292046 0.4851683 1.0945686 1.3158370 1.2912264
[22] 1.4003300 1.7719272 0.4664063 0.9725440 0.4931585 0.7566853 0.4080265
[29] 0.5747106 0.2851265 0.6925837 0.7826808 0.6391641 0.6375626 0.5148675
[36] 0.5722192
Function Value
[1] 1.701483
Gradient:
 [1]  0.0665906725 -0.0772163276  0.1017474425  0.0004215863  0.1247777561
 [6]  0.0818862240  0.0043334261 -0.4236611169 -0.2458907460 -0.2864450082
[11] -0.4969814853  0.0138367398 -0.2768040090 -0.2510263570 -0.2008304705
[16]  0.1364858946  0.2276742954  0.2608040823  0.2565509384  0.1913207233
[21]  0.3474669549  0.2478669147  0.2469692908  0.2303726774  0.2545073947
[26] -0.1731594566  0.1428490677 -0.1856606389 -0.0637451514 -0.8981019981
[31]  0.1502703526  0.1305765309  0.2683399210  0.1047250144  0.3120960343
[36] -0.0091478682

iteration = 2
Step:
 [1] -0.048464147  0.055730088 -0.071898065  0.005702814 -0.085555365
 [6] -0.083779379 -0.017945233  0.230704384  0.112846378  0.146101715
[11]  0.297620223 -0.016245381  0.121803677  0.115823581  0.124152405
[16] -0.058455650 -0.099028395 -0.158933534 -0.085632566 -0.020627884
[21] -0.117609073 -0.044906084 -0.001231214 -0.142767406 -0.098564938
[26]  0.103585863 -0.056313800  0.101239690  0.047097543  0.516431382
[31] -0.068228039 -0.103936839 -0.203639150 -0.105198466 -0.244443139
[36]  0.002289606
Parameter:
 [1] 0.6798291 0.9348529 0.6370844 0.8570218 0.6253681 0.4197046 0.6499606
 [8] 0.8181099 0.6080839 0.7172317 1.0807458 0.7156562 0.3336729 0.4100400
[15] 0.7507934 0.6467331 0.7301762 0.3262348 1.0089360 1.2952091 1.1736174
[22] 1.3554239 1.7706960 0.3236389 0.8739791 0.5967444 0.7003715 0.5092661
[29] 0.6218081 0.8015579 0.6243556 0.6787440 0.4355249 0.5323641 0.2704244
[36] 0.5745088
Function Value
[1] 1.449853
Gradient:
 [1]  0.003220514 -0.313758271  0.035147863 -0.081325215  0.123500453
 [6]  0.064465798 -0.089759421  0.122932690 -0.114827856 -0.131629097
[11]  0.274682980 -0.230414191  0.052608474  0.064407345  0.146005487
[16] -0.098307424  0.055042648 -0.175118110  0.193177724  0.079894712
[21]  0.336391004  0.195498967  0.236316033 -0.327978807  0.175565550
[26]  0.198868566  0.090807706  0.208593111  0.107600435  0.487775157
[31] -0.017343872 -0.496717806 -0.286216647  0.241401057  0.299799634
[36]  1.118726740

iteration = 3
Step:
 [1] -0.012797633  0.074410266 -0.025229849  0.015934726 -0.046231899
 [6] -0.028888545  0.015533659  0.048970637  0.062890691  0.073772451
[11]  0.034058662  0.041376947  0.035504959  0.029325425  0.007277524
[16] -0.003493858 -0.048030665 -0.012091987 -0.077704978 -0.042895844
[21] -0.119715542 -0.074401062 -0.079380372  0.022484033 -0.074851504
[26] -0.007972560 -0.040588070 -0.008274870 -0.008983068  0.061857900
[31] -0.021563195  0.071050371  0.005423215 -0.067381449 -0.115799634
[36] -0.213668854
Parameter:
 [1] 0.6670314 1.0092632 0.6118546 0.8729566 0.5791362 0.3908160 0.6654943
 [8] 0.8670805 0.6709746 0.7910042 1.1148045 0.7570332 0.3691778 0.4393654
[15] 0.7580709 0.6432393 0.6821455 0.3141428 0.9312311 1.2523132 1.0539018
[22] 1.2810229 1.6913156 0.3461229 0.7991276 0.5887718 0.6597835 0.5009913
[29] 0.6128250 0.8634158 0.6027924 0.7497943 0.4409481 0.4649827 0.1546247
[36] 0.3608400
Function Value
[1] 1.2685
Gradient:
 [1] -0.0182374542  0.0730685081  0.0119734906 -0.0506178139 -0.0087350500
 [6] -0.0007115162 -0.1236033249  0.1660697606 -0.0613440676 -0.0929077260
[11]  0.1870811694 -0.2371021601  0.0382837264 -0.0022535396  0.0817270767
[16] -0.0121440316  0.0212669491 -0.0266993858  0.1623722881  0.2116460721
[21]  0.3046946164  0.2338750992  0.2465039299 -0.3928235408  0.1110296175
[26]  0.1913565377  0.0479129909  0.1343827876  0.0868633130  0.4970480632
[31] -0.0982750592  0.3040509107  0.2675720481  0.2819969680 -0.0594503398
[36] -0.3167596780

iteration = 4
Step:
 [1] -0.002813620  0.060593711 -0.046640233  0.061962721 -0.065715138
 [6] -0.025076664  0.133961762 -0.019881887  0.184735845  0.222583192
[11] -0.074867760  0.260575757  0.068806881  0.083070501 -0.048524905
[16] -0.017328095 -0.130071506 -0.005712399 -0.313150225 -0.311011432
[21] -0.513757958 -0.389140272 -0.437919738  0.342913402 -0.257769814
[26] -0.158326985 -0.130252015 -0.106406187 -0.087575132 -0.245170149
[31]  0.021593976 -0.109448919 -0.181075523 -0.307029917 -0.113302279
[36] -0.098752259
Parameter:
 [1] 0.66421781 1.06985689 0.56521436 0.93491930 0.51342110 0.36573937
 [7] 0.79945602 0.84719866 0.85571044 1.01358735 1.03993671 1.01760895
[13] 0.43798470 0.52243591 0.70954601 0.62591117 0.55207403 0.30843038
[19] 0.61808084 0.94130180 0.54014387 0.89188259 1.25339590 0.68903633
[25] 0.54135776 0.43044482 0.52953145 0.39458509 0.52524991 0.61824561
[31] 0.62438640 0.64034543 0.25987261 0.15795278 0.04132247 0.26208771
Function Value
[1] 1.083706
Gradient:
 [1] -0.084331653  0.181588087 -0.148195312 -0.329380651 -0.133784443
 [6] -0.054697001 -0.160223500 -0.100157862  0.074346936 -0.083459810
[11] -0.179628853 -0.102700149  0.072529204 -0.166067117 -0.685247336
[16] -0.114941280 -0.380814434 -0.080821884 -0.418873555  0.052334819
[21] -0.348484392 -0.008390721  0.172073752  0.266291085 -0.485039685
[26] -0.500652817 -0.304314529 -0.636958582 -0.170757630  0.320050763
[31] -0.046795428  0.284648110 -0.686938431 -1.389838971 -2.559883669
[36] -0.132765056

iteration = 5
Step:
 [1]  0.007712389 -0.001423237  0.004899262  0.026460630  0.001174501
 [6]  0.007645280  0.034641076 -0.009483340  0.026672847  0.038013631
[11] -0.022824357  0.053195405  0.006675321  0.020078919  0.017376629
[16]  0.003630390 -0.002799810  0.013738930 -0.038016321 -0.067892503
[21] -0.077941362 -0.078794477 -0.104805165  0.056369056 -0.022436564
[26] -0.009268862 -0.008275418  0.007871000 -0.011046276 -0.088196914
[31]  0.007200791 -0.020614620  0.022692380  0.027429135  0.129093955
[36] -0.016462479
Parameter:
 [1] 0.6719302 1.0684337 0.5701136 0.9613799 0.5145956 0.3733847 0.8340971
 [8] 0.8377153 0.8823833 1.0516010 1.0171123 1.0708044 0.4446600 0.5425148
[15] 0.7269226 0.6295416 0.5492742 0.3221693 0.5800645 0.8734093 0.4622025
[22] 0.8130881 1.1485907 0.7454054 0.5189212 0.4211760 0.5212560 0.4024561
[29] 0.5142036 0.5300487 0.6315872 0.6197308 0.2825650 0.1853819 0.1704164
[36] 0.2456252
Function Value
[1] 0.9661629
Gradient:
 [1] -0.109696778  0.149659615 -0.192456227 -0.392674853 -0.154417698
 [6] -0.057980532 -0.145339765 -0.174097458  0.075934249  0.123731361
[11] -0.093079923  0.090614869  0.269076438  0.044380329 -0.069094796
[16] -0.074688533 -0.365063212 -0.047366420 -0.558331681 -0.006009977
[21] -0.616881053 -0.112911255  0.129415311  0.330966934 -0.528879696
[26] -0.487315489 -0.263869850 -0.280275639 -0.037588890  0.279417694
[31]  0.094312060  0.288131297 -0.499659571 -0.718924962  0.157155977
[36] -0.252871672

iteration = 6
Step:
 [1]  0.0371190204 -0.0514715408  0.0627126818  0.1041126122  0.0553181516
 [6]  0.0295261501  0.0426299745  0.0129974697 -0.0355807201 -0.0552312152
[11] -0.0198426401 -0.0220931731 -0.0898221604 -0.0289943208 -0.0058226872
[16]  0.0265577522  0.1103002294  0.0345874614  0.1594398180 -0.0003958867
[21]  0.1794226469  0.0323403443 -0.0405972517 -0.0651893462  0.1536067483
[26]  0.1135524678  0.0771087780  0.0566061738  0.0012161789 -0.1513110302
[31] -0.0161723156 -0.0684750578  0.1568198652  0.2000588880 -0.0273244399
[36]  0.0812655309
Parameter:
 [1] 0.7090492 1.0169621 0.6328263 1.0654925 0.5699137 0.4029108 0.8767271
 [8] 0.8507128 0.8468026 0.9963698 0.9972697 1.0487112 0.3548379 0.5135205
[15] 0.7211000 0.6560993 0.6595745 0.3567568 0.7395043 0.8730134 0.6416252
[22] 0.8454285 1.1079935 0.6802160 0.6725279 0.5347284 0.5983648 0.4590623
[29] 0.5154198 0.3787377 0.6154149 0.5512557 0.4393849 0.3854408 0.1430920
[36] 0.3268908
Function Value
[1] 0.6493205
Gradient:
 [1] -0.053255530 -0.072068539 -0.066661276 -0.029323007 -0.081500499
 [6] -0.023855087  0.062466359  0.033564802  0.124844941  0.085040178
[11] -0.263792405  0.088012555  0.112516513  0.081671583 -0.103898298
[16]  0.017112868 -0.012882740  0.036120344 -0.060458397  0.007083354
[21]  0.148118282 -0.027658981  0.112059671  0.310660095  0.014997457
[26]  0.055347936 -0.004178094 -0.064214575 -0.075993736 -0.175184354
[31]  0.060162900  0.037930306  0.220327223  0.317531775 -0.122119967
[36] -0.122877744

iteration = 7
Step:
 [1]  0.047063077  0.061187792  0.067116138  0.051340195  0.069241080
 [6]  0.015700053 -0.046323557 -0.035751920 -0.123286068 -0.103280142
[11]  0.162219247 -0.086734981 -0.132057644 -0.093864466  0.064181833
[16]  0.013886065  0.064229552  0.004014211  0.132714436  0.054893496
[21]  0.012079186  0.091232412 -0.016745737 -0.258162152  0.067895804
[26] -0.002721569  0.042710789  0.054012603  0.058107864  0.059606520
[31] -0.043916304  0.017343379 -0.059958830 -0.152321227  0.053234988
[36]  0.008002211
Parameter:
 [1] 0.7561123 1.0781499 0.6999424 1.1168327 0.6391548 0.4186109 0.8304035
 [8] 0.8149609 0.7235165 0.8930896 1.1594890 0.9619762 0.2227802 0.4196560
[15] 0.7852818 0.6699854 0.7238040 0.3607710 0.8722188 0.9279069 0.6537043
[22] 0.9366609 1.0912478 0.4220539 0.7404237 0.5320069 0.6410756 0.5130749
[29] 0.5735277 0.4383442 0.5714986 0.5685991 0.3794260 0.2331196 0.1963270
[36] 0.3348930
Function Value
[1] 0.6459101
Gradient:
 [1]  0.032547231  0.063858537  0.040516753 -0.034162772 -0.018109514
 [6] -0.019264405 -0.092777704 -0.197757462 -0.163687830 -0.028699674
[11]  0.129772990 -0.041075147 -0.378993004 -0.353402790 -0.033357978
[16]  0.019251839  0.096135267  0.163060420  0.117765698  0.031330721
[21]  0.180737040  0.070783660  0.098845518 -0.215871548  0.066151429
[26] -0.012026568  0.001003926  0.108592637  0.047675535  0.256883364
[31] -0.033774921  0.191328802  0.042490832 -0.601101938  0.353075599
[36] -0.166446583

iteration = 8
Step:
 [1]  0.007052650  0.023808487  0.005436343  0.042516111  0.019703991
 [6]  0.012247441  0.037853265  0.056762924  0.046034763  0.014515084
[11]  0.004332987  0.026639827  0.101750604  0.107564043  0.038897383
[16] -0.003207546 -0.034779112 -0.049011585 -0.052054844 -0.050272967
[21] -0.159234738 -0.068157409 -0.135941168  0.027591930 -0.047609892
[26] -0.019953089 -0.008855259 -0.026649295 -0.007341365 -0.104404994
[31] -0.006118198 -0.042206302 -0.031315167  0.128484697 -0.069634599
[36] -0.013084416
Parameter:
 [1] 0.7631649 1.1019584 0.7053788 1.1593488 0.6588588 0.4308583 0.8682568
 [8] 0.8717238 0.7695513 0.9076047 1.1638219 0.9886160 0.3245308 0.5272201
[15] 0.8241792 0.6667778 0.6890249 0.3117594 0.8201639 0.8776339 0.4944696
[22] 0.8685035 0.9553066 0.4496458 0.6928139 0.5120538 0.6322203 0.4864256
[29] 0.5661863 0.3339392 0.5653804 0.5263928 0.3481109 0.3616043 0.1266924
[36] 0.3218086
Function Value
[1] 0.5401939
Gradient:
 [1]  0.012044797 -0.042948798  0.026409332 -0.161260420 -0.026625827
 [6] -0.027398503  0.018694340  0.009269790 -0.021180618  0.012766094
[11]  0.078201630  0.021431728  0.079020985  0.058380834  0.238216074
[16] -0.014853928  0.027277462 -0.018967892  0.050736556 -0.037645940
[21] -0.094997521 -0.008749584 -0.019797216 -0.109064139  0.022047033
[26] -0.029352989  0.013539978 -0.015148075 -0.002351676 -0.136670032
[31] -0.085216087  0.055904948 -0.090898737  0.314178266 -0.132116746
[36]  0.122180193

iteration = 9
Step:
 [1] -0.0072649856  0.0024128248 -0.0127063676  0.0476576853  0.0046735992
 [6]  0.0078629255  0.0067515094  0.0169107091  0.0264057975  0.0088905315
[11] -0.0331666777  0.0044041196  0.0106122089  0.0151203432 -0.0615594074
[16]  0.0011669903 -0.0164135103 -0.0071450666 -0.0290912296 -0.0016480158
[21]  0.0103817298 -0.0141136740 -0.0100152447  0.0561515989 -0.0134959038
[26]  0.0142970227 -0.0058902744 -0.0001625374 -0.0051059844  0.0199481593
[31]  0.0261108664 -0.0358444711  0.0262194169 -0.0330094776  0.0179676087
[36] -0.0174328023
Parameter:
 [1] 0.7559000 1.1043712 0.6926724 1.2070065 0.6635324 0.4387212 0.8750083
 [8] 0.8886345 0.7959571 0.9164952 1.1306553 0.9930201 0.3351430 0.5423404
[15] 0.7626198 0.6679448 0.6726114 0.3046143 0.7910727 0.8759859 0.5048513
[22] 0.8543898 0.9452913 0.5057974 0.6793180 0.5263508 0.6263301 0.4862630
[29] 0.5610803 0.3538874 0.5914912 0.4905484 0.3743303 0.3285948 0.1446600
[36] 0.3043758
Function Value
[1] 0.5133186
Gradient:
 [1] -0.0159833213 -0.0939924690 -0.0037100492 -0.0608985489 -0.0236173285
 [6] -0.0242751312  0.0247987302  0.0421777067  0.0115353274 -0.0026916034
[11] -0.0163275569  0.0108031308  0.0744655715  0.0609192377  0.0051420272
[16] -0.0141602641 -0.0060687135 -0.0757366116  0.0104896962 -0.0296503018
[21] -0.0107178906 -0.0167918621 -0.0261686317  0.0664394584  0.0070576576
[26]  0.0386316614  0.0226664909  0.0032323406  0.0023724063 -0.0689410449
[31] -0.0057164087 -0.0005617942  0.1718356266  0.1929300311 -0.0227852510
[36] -0.0700183804

iteration = 10
Step:
 [1]  0.0050839636  0.0714334286 -0.0047966225  0.0797559840  0.0177153652
 [6]  0.0195929440 -0.0026391338  0.0044634268  0.0196209704  0.0095786485
[11] -0.0207082257 -0.0024682299 -0.0144030509 -0.0002393794 -0.0130463524
[16]  0.0180075960  0.0025687335  0.0450957223 -0.0107373476  0.0333871768
[21]  0.0256632281  0.0137500014  0.0202427665 -0.0116137442  0.0044699413
[26]  0.0004472779 -0.0076581571 -0.0002222382 -0.0062075897  0.0203863575
[31]  0.0176743947 -0.0101826774 -0.0704567139 -0.0355225556  0.0192894851
[36]  0.0072045968
Parameter:
 [1] 0.7609839 1.1758046 0.6878758 1.2867625 0.6812478 0.4583142 0.8723692
 [8] 0.8930979 0.8155780 0.9260739 1.1099470 0.9905519 0.3207400 0.5421010
[15] 0.7495734 0.6859524 0.6751801 0.3497101 0.7803354 0.9093731 0.5305146
[22] 0.8681398 0.9655341 0.4941837 0.6837879 0.5267981 0.6186719 0.4860408
[29] 0.5548727 0.3742737 0.6091656 0.4803657 0.3038736 0.2930722 0.1639495
[36] 0.3115804
Function Value
[1] 0.5053238
Gradient:
 [1] -0.028845971  0.055720257 -0.025880915 -0.084718331 -0.025431852
 [6] -0.021163245 -0.006958135  0.004829353  0.005148145  0.002799382
[11] -0.038551331  0.009581065 -0.003452250 -0.025997341 -0.076337400
[16] -0.005113403 -0.015562293  0.172848086 -0.015940778 -0.024859538
[21]  0.022155508 -0.024921675 -0.012156935  0.038011223  0.009462561
[26]  0.044860730  0.012536681  0.018020614  0.002628109  0.005243553
[31]  0.040169606 -0.071209133 -0.263203624  0.026412259  0.086645215
[36]  0.448313010

iteration = 11
Step:
 [1]  0.023000768  0.015902726  0.012603424  0.103530734  0.038896818
 [6]  0.030414892  0.003687282 -0.002415680  0.007794707  0.007417760
[11]  0.026202573 -0.003401880 -0.010812791  0.018211475  0.054072395
[16]  0.010900249  0.013474514 -0.050683596  0.001828664  0.026409937
[21] -0.006422933  0.017524293  0.013936831 -0.043632085  0.002164404
[26] -0.027740969 -0.010873343 -0.001965069 -0.003136726  0.013446089
[31] -0.004276884 -0.044274364 -0.023225367 -0.051066279 -0.002395276
[36] -0.064032232
Parameter:
 [1] 0.7839847 1.1917074 0.7004792 1.3902932 0.7201446 0.4887291 0.8760564
 [8] 0.8906823 0.8233727 0.9334917 1.1361496 0.9871500 0.3099272 0.5603125
[15] 0.8036458 0.6968527 0.6886546 0.2990265 0.7821640 0.9357830 0.5240916
[22] 0.8856641 0.9794709 0.4505516 0.6859523 0.4990571 0.6077986 0.4840757
[29] 0.5517360 0.3877198 0.6048888 0.4360913 0.2806482 0.2420060 0.1615542
[36] 0.2475481
Function Value
[1] 0.4929997
Gradient:
 [1] -0.008719596 -0.013015894 -0.020112079 -0.015187249 -0.023903851
 [6] -0.019244929 -0.039709828 -0.073385138 -0.031874482  0.014606204
[11]  0.036317145  0.006565561 -0.058448375 -0.065709720  0.021281512
[16]  0.010153471  0.013138898  0.008823637 -0.012660060  0.021204329
[21]  0.062792779  0.013210663  0.009163262 -0.137289586 -0.004868642
[26] -0.063311873 -0.024445445  0.011943893 -0.002198764  0.077464453
[31]  0.029421493  0.054650101  0.150400581 -0.208496438  0.149054319
[36] -0.265486168

iteration = 12
Step:
 [1]  0.0121124600  0.0108882510  0.0172063903  0.0281620426  0.0164211696
 [6]  0.0125546300  0.0134708061  0.0189882509  0.0028379833 -0.0079842479
[11]  0.0026634051 -0.0045781376  0.0006483338  0.0109859203 -0.0051266862
[16] -0.0021219236 -0.0035301839 -0.0244090295  0.0055938614 -0.0111581997
[21] -0.0463318643 -0.0080040370 -0.0165857818  0.0504580784 -0.0068161292
[26]  0.0179752333  0.0070350040  0.0038906399  0.0083988626 -0.0152357264
[31] -0.0198594848  0.0067675544 -0.0123090417  0.0302458983 -0.0110941426
[36]  0.0054338316
Parameter:
 [1] 0.7960972 1.2025956 0.7176856 1.4184553 0.7365658 0.5012837 0.8895272
 [8] 0.9096705 0.8262107 0.9255074 1.1388130 0.9825719 0.3105755 0.5712984
[15] 0.7985191 0.6947307 0.6851244 0.2746174 0.7877579 0.9246248 0.4777598
[22] 0.8776600 0.9628852 0.5010097 0.6791362 0.5170323 0.6148336 0.4879664
[29] 0.5601349 0.3724841 0.5850293 0.4428589 0.2683392 0.2722519 0.1504600
[36] 0.2529820
Function Value
[1] 0.4793253
Gradient:
 [1]  0.009586671 -0.030327966  0.004759848 -0.055459836 -0.018728763
 [6] -0.014525725 -0.016638459 -0.011450833 -0.012930986  0.005428166
[11]  0.020444223 -0.009809998 -0.021794552 -0.024792584  0.006899924
[16] -0.003064699  0.002519357 -0.091079311 -0.008188870  0.001477712
[21] -0.024060686 -0.001081808 -0.010394718  0.031185049 -0.004016655
[26]  0.005796252 -0.002475357  0.015121341  0.009320772  0.019788377
[31] -0.019377840  0.038865917  0.014280509  0.003653259  0.057413718
[36] -0.095141324

iteration = 13
Step:
 [1]  0.0034541920  0.0339142658  0.0065622737  0.0812762139  0.0295966156
 [6]  0.0236572768  0.0187931851  0.0163207157  0.0136363028 -0.0034150764
[11] -0.0060238734  0.0066628300  0.0181564554  0.0310985716  0.0066638367
[16]  0.0042471547 -0.0053480657  0.0367583927  0.0002531248 -0.0029671252
[21] -0.0207675174 -0.0046243143 -0.0069491869 -0.0053258870 -0.0087525265
[26] -0.0058859763  0.0002268070 -0.0064604419 -0.0008923154 -0.0147171792
[31]  0.0057702361 -0.0215176694  0.0055115301 -0.0053091710 -0.0072087486
[36]  0.0092800549
Parameter:
 [1] 0.7995513 1.2365099 0.7242479 1.4997315 0.7661624 0.5249410 0.9083204
 [8] 0.9259912 0.8398470 0.9220923 1.1327891 0.9892347 0.3287320 0.6023970
[15] 0.8051830 0.6989779 0.6797764 0.3113758 0.7880110 0.9216577 0.4569923
[22] 0.8730357 0.9559360 0.4956838 0.6703836 0.5111464 0.6150604 0.4815059
[29] 0.5592426 0.3577669 0.5907995 0.4213412 0.2738507 0.2669427 0.1432513
[36] 0.2622620
Function Value
[1] 0.4764828
Gradient:
 [1] -0.0241878411  0.0005565002 -0.0179116100 -0.0181525737 -0.0050582827
 [6] -0.0043952042  0.0038684682  0.0134361109  0.0059004606  0.0013689068
[11] -0.0096440541  0.0027528451  0.0376897660  0.0257098236  0.0039846455
[16]  0.0008224781 -0.0096205852  0.0617312494 -0.0080903604 -0.0109372671
[21] -0.0350727554 -0.0097151798 -0.0189195930  0.0065055126 -0.0178677482
[26] -0.0118239178 -0.0015887025 -0.0114160628  0.0008758292 -0.0560180133
[31] -0.0086767535 -0.0793403743  0.0589580402  0.0092741210 -0.0302193577
[36]  0.1756385473

iteration = 14
Step:
 [1]  0.0152103620  0.0267464248  0.0115123779  0.0865640275  0.0318568660
 [6]  0.0248617323  0.0129597566  0.0110537321  0.0131578913 -0.0022774438
[11] -0.0029613921  0.0016846092  0.0010232082  0.0206786778  0.0058537662
[16]  0.0041885184  0.0014439412 -0.0079374069  0.0036459423  0.0138849267
[21]  0.0103768484  0.0100550694  0.0201348255 -0.0030432455  0.0061654760
[26]  0.0022543110  0.0011038844 -0.0012303768 -0.0027109600  0.0195146870
[31]  0.0142294556 -0.0079954524 -0.0622762088 -0.0030172066  0.0002720054
[36] -0.0338966984
Parameter:
 [1] 0.8147617 1.2632563 0.7357603 1.5862955 0.7980193 0.5498027 0.9212802
 [8] 0.9370450 0.8530049 0.9198149 1.1298278 0.9909193 0.3297552 0.6230757
[15] 0.8110367 0.7031664 0.6812203 0.3034384 0.7916569 0.9355426 0.4673691
[22] 0.8830908 0.9760708 0.4926405 0.6765491 0.5134007 0.6161643 0.4802755
[29] 0.5565316 0.3772816 0.6050290 0.4133457 0.2115745 0.2639255 0.1435233
[36] 0.2283653
Function Value
[1] 0.4712777
Gradient:
 [1] -0.0076948758  0.0441056688 -0.0062302163 -0.0641951571 -0.0191194047
 [6] -0.0116273497  0.0065665446  0.0114588445  0.0090252996 -0.0084187235
[11] -0.0007935645  0.0060025229  0.0089642356 -0.0054876850 -0.0062068040
[16]  0.0036543213 -0.0062883814  0.0664602169 -0.0031753302 -0.0025939322
[21] -0.0464108112 -0.0053297029 -0.0003525606 -0.0056533658 -0.0042872728
[26] -0.0009535341  0.0031134348 -0.0074692075 -0.0034226098  0.0218590444
[31]  0.0240740334  0.0214807265 -0.2481522081  0.0079998799 -0.0166959921
[36]  0.1313253328

iteration = 15
Step:
 [1]  0.0150977638  0.0076343946  0.0111825619  0.0490610537  0.0228034520
 [6]  0.0169341042 -0.0027511753 -0.0062736506 -0.0019547581  0.0040476231
[11]  0.0034734383 -0.0038695707 -0.0103217734  0.0024065616  0.0097801111
[16] -0.0026709342  0.0002234791 -0.0248854656 -0.0027542383  0.0033090817
[21]  0.0100148585  0.0026427010  0.0057598992  0.0042640313  0.0010622268
[26] -0.0016774216 -0.0040457181  0.0005783117  0.0010003744 -0.0001974349
[31] -0.0125386816 -0.0095260354  0.0067188267 -0.0038014143  0.0006716260
[36] -0.0063415851
Parameter:
 [1] 0.8298595 1.2708907 0.7469428 1.6353566 0.8208227 0.5667368 0.9185290
 [8] 0.9307713 0.8510502 0.9238625 1.1333012 0.9870498 0.3194334 0.6254823
[15] 0.8208168 0.7004955 0.6814438 0.2785530 0.7889027 0.9388517 0.4773840
[22] 0.8857335 0.9818307 0.4969046 0.6776113 0.5117232 0.6121185 0.4808539
[29] 0.5575320 0.3770841 0.5924903 0.4038197 0.2182933 0.2601241 0.1441949
[36] 0.2220237
Function Value
[1] 0.4674551
Gradient:
 [1]  0.0050893938  0.0016383584  0.0017909692 -0.0125730560 -0.0115303855
 [6] -0.0062832051 -0.0022737972 -0.0072438304 -0.0014615011  0.0011804921
[11]  0.0128318786 -0.0006920438 -0.0150719224 -0.0180749531  0.0139494531
[16] -0.0062830132 -0.0069950481 -0.0376839289 -0.0088945598  0.0054727920
[21]  0.0221541399  0.0045766768  0.0081146787  0.0031168703 -0.0045557158
[26] -0.0115071117 -0.0069857435 -0.0059310956  0.0012163923  0.0252285091
[31] -0.0031788829  0.0203316866  0.0556025483 -0.0075086177  0.0050459192
[36] -0.0807964291

iteration = 16
Step:
 [1]  1.087869e-02  1.177282e-02  1.068483e-02  7.081064e-02  3.078262e-02
 [6]  2.194925e-02  6.381053e-03  6.524988e-03  4.312492e-03  5.632258e-04
[11] -3.174589e-03 -5.682515e-04  3.073657e-03  2.037285e-02 -1.589908e-03
[16]  5.670841e-03  5.403456e-03  8.161789e-04  5.031248e-03 -1.127325e-03
[21] -1.830520e-02 -3.262505e-03 -1.011734e-02 -3.011479e-03  1.235096e-03
[26]  5.442300e-03  1.873036e-03  5.137074e-03  8.718874e-05 -1.357552e-02
[31] -3.688969e-03 -1.204744e-02 -1.698468e-02 -8.348649e-03  5.492606e-07
[36] -9.114737e-03
Parameter:
 [1] 0.8407382 1.2826635 0.7576277 1.7061672 0.8516053 0.5886860 0.9249101
 [8] 0.9372963 0.8553626 0.9244257 1.1301266 0.9864815 0.3225071 0.6458551
[15] 0.8192269 0.7061663 0.6868473 0.2793691 0.7939340 0.9377244 0.4590788
[22] 0.8824710 0.9717134 0.4938931 0.6788464 0.5171655 0.6139916 0.4859909
[29] 0.5576192 0.3635086 0.5888013 0.3917723 0.2013086 0.2517754 0.1441955
[36] 0.2129090
Function Value
[1] 0.4658235
Gradient:
 [1]  0.0084232390 -0.0060346470  0.0053586753 -0.0173221544 -0.0085377145
 [6] -0.0045181601 -0.0001186642 -0.0018418547 -0.0014973196  0.0012358541
[11] -0.0126235656 -0.0045965365 -0.0157491193 -0.0179486968 -0.0131015057
[16] -0.0016805863  0.0016955468 -0.0365689381 -0.0025803999 -0.0013496937
[21] -0.0136885951 -0.0020823414 -0.0032113370 -0.0096066337 -0.0028081857
[26]  0.0031841978 -0.0033046668  0.0046698538 -0.0004523883 -0.0322204912
[31] -0.0123242287 -0.0247856384 -0.0394861210 -0.0590863145 -0.0209003552
[36]  0.0225441958

iteration = 17
Step:
 [1]  1.190607e-02  1.962068e-02  1.332835e-02  1.190712e-01  5.651518e-02
 [6]  3.900852e-02  7.522835e-03  6.358755e-03  4.335885e-03 -5.425566e-03
[11]  4.683331e-03 -6.553502e-04  1.289826e-02  3.968855e-02  1.035006e-03
[16]  6.606240e-03  3.779343e-03  2.287294e-02  8.360705e-03  1.897412e-03
[21] -1.553619e-02  1.585626e-03 -1.552017e-03  6.484041e-03  1.280215e-03
[26] -9.948209e-04  3.403941e-03 -2.512523e-03 -9.749701e-05  1.210121e-02
[31]  5.016655e-03 -5.250360e-03 -2.003713e-02  1.015984e-02 -4.895357e-03
[36] -1.226547e-02
Parameter:
 [1] 0.8526442 1.3022842 0.7709560 1.8252384 0.9081205 0.6276946 0.9324329
 [8] 0.9436550 0.8596985 0.9190002 1.1348099 0.9858262 0.3354053 0.6855437
[15] 0.8202619 0.7127726 0.6906266 0.3022421 0.8022947 0.9396218 0.4435426
[22] 0.8840566 0.9701613 0.5003771 0.6801267 0.5161707 0.6173955 0.4834784
[29] 0.5575217 0.3756098 0.5938180 0.3865219 0.1812715 0.2619353 0.1393001
[36] 0.2006435
Function Value
[1] 0.4647371
Gradient:
 [1]  0.0032741880  0.0319229396  0.0037579788 -0.0169923233 -0.0041686405
 [6] -0.0015668249  0.0142427794  0.0151421382  0.0105584803 -0.0099084296
[11]  0.0055394580 -0.0059505290  0.0094272110  0.0045228639 -0.0016941790
[16]  0.0131318671  0.0150166919  0.0648713687  0.0138004950 -0.0045512003
[21] -0.0271342913 -0.0010943708 -0.0054745328  0.0097873496  0.0026359963
[26]  0.0039860240  0.0064189507 -0.0009673542 -0.0030468783  0.0179360846
[31] -0.0030659955  0.0296107387 -0.0228509158  0.0166531464 -0.0473004889
[36] -0.0130845095

iteration = 18
Step:
 [1] -0.0003190154 -0.0002901824  0.0001327677  0.0330944194  0.0136185359
 [6]  0.0091272205 -0.0068395374 -0.0051888681 -0.0037181494  0.0017215085
[11] -0.0034084348  0.0016003149 -0.0006258905  0.0060083489 -0.0004766189
[16] -0.0036006158 -0.0076332251 -0.0148838892 -0.0038684614  0.0075877484
[21]  0.0126013866  0.0046280273  0.0076147053 -0.0053796170 -0.0002638931
[26] -0.0032261774 -0.0024603100 -0.0050214471  0.0002150435 -0.0023161565
[31]  0.0036031075 -0.0008051534 -0.0071078409  0.0024425187  0.0032038571
[36]  0.0012990645
Parameter:
 [1] 0.8523252 1.3019940 0.7710888 1.8583328 0.9217390 0.6368218 0.9255934
 [8] 0.9384662 0.8559804 0.9207217 1.1314015 0.9874265 0.3347794 0.6915520
[15] 0.8197853 0.7091719 0.6829934 0.2873582 0.7984262 0.9472096 0.4561439
[22] 0.8886847 0.9777760 0.4949975 0.6798628 0.5129445 0.6149352 0.4784570
[29] 0.5577367 0.3732937 0.5974211 0.3857168 0.1741637 0.2643778 0.1425040
[36] 0.2019426
Function Value
[1] 0.4637526
Gradient:
 [1]  0.0061461520  0.0089838118  0.0077211979 -0.0112251572 -0.0030730831
 [6] -0.0011516441  0.0087572118  0.0081879818  0.0079076976 -0.0030774814
[11]  0.0040489390  0.0018117063  0.0057846634 -0.0023957334  0.0082583895
[16]  0.0003347864 -0.0050765010 -0.0016264785  0.0041294612 -0.0006473257
[21] -0.0069783468  0.0011689245  0.0012515962 -0.0015863861  0.0011719550
[26] -0.0045398849  0.0005687362 -0.0152702633 -0.0009078427  0.0074127797
[31]  0.0063986398 -0.0529344355 -0.1366345970  0.0161038223 -0.0235980195
[36]  0.1949483632

iteration = 19
Step:
 [1] -0.0064542311 -0.0133863943 -0.0066817944  0.0055921175  0.0077264601
 [6]  0.0039086723 -0.0123425613 -0.0085663485 -0.0085016483  0.0057159105
[11] -0.0044381274  0.0017169555 -0.0034333797  0.0030189192 -0.0067321718
[16] -0.0089870429 -0.0057927190 -0.0060739383 -0.0081772299 -0.0029637938
[21]  0.0090631194 -0.0041733209  0.0001165527 -0.0043740597  0.0002996121
[26]  0.0046056626 -0.0023345626  0.0061985196 -0.0002615859 -0.0116095120
[31] -0.0015047220  0.0042290667  0.0004745296 -0.0026247927  0.0040313879
[36] -0.0084415967
Parameter:
 [1] 0.8458710 1.2886076 0.7644070 1.8639249 0.9294655 0.6407305 0.9132508
 [8] 0.9298998 0.8474787 0.9264376 1.1269634 0.9891434 0.3313461 0.6945709
[15] 0.8130531 0.7001849 0.6772007 0.2812842 0.7902490 0.9442458 0.4652071
[22] 0.8845113 0.9778926 0.4906235 0.6801624 0.5175502 0.6126006 0.4846555
[29] 0.5574751 0.3616842 0.5959164 0.3899458 0.1746382 0.2617530 0.1465354
[36] 0.1935010
Function Value
[1] 0.4637351
Gradient:
 [1]  0.0063338241  0.0053504775  0.0063304597  0.0029089396 -0.0041539110
 [6] -0.0020173765 -0.0026695446  0.0006058336 -0.0015825208  0.0073038002
[11] -0.0159787089  0.0050688627 -0.0116393934 -0.0128712756 -0.0019136763
[16] -0.0077609563 -0.0122169048 -0.0288367268 -0.0047840025  0.0017367512
[21]  0.0301238501  0.0024975719  0.0037576946 -0.0100825268 -0.0011454055
[26]  0.0068485306 -0.0054616756  0.0012648727  0.0006460539 -0.0403705869
[31]  0.0050228941  0.0328474563  0.1106555096 -0.0221361098 -0.0011041088
[36] -0.1683079951

iteration = 20
Step:
 [1]  5.825382e-04 -3.525786e-04  2.817743e-04  2.928849e-02  1.286762e-02
 [6]  8.636039e-03  1.059454e-03 -1.603563e-03 -3.643244e-04 -3.667569e-03
[11]  3.157553e-03 -3.041700e-03  3.218513e-03  1.115678e-02 -1.811946e-03
[16]  5.617796e-03  7.583313e-03  6.269627e-03  3.792124e-03  2.735834e-03
[21] -1.119278e-02  1.044754e-03 -1.786850e-03  3.314424e-03  9.741435e-04
[26] -2.977076e-03  2.325560e-03  6.488505e-04 -5.450394e-04  9.362056e-03
[31] -4.332447e-03 -9.811320e-06 -4.112833e-03  2.253696e-03 -1.103024e-03
[36]  1.679702e-03
Parameter:
 [1] 0.8464535 1.2882550 0.7646888 1.8932134 0.9423331 0.6493665 0.9143103
 [8] 0.9282963 0.8471144 0.9227700 1.1301209 0.9861017 0.3345646 0.7057277
[15] 0.8112412 0.7058027 0.6847840 0.2875539 0.7940411 0.9469816 0.4540143
[22] 0.8855561 0.9761057 0.4939379 0.6811365 0.5145731 0.6149262 0.4853043
[29] 0.5569301 0.3710462 0.5915839 0.3899360 0.1705254 0.2640067 0.1454323
[36] 0.1951807
Function Value
[1] 0.4624658
Gradient:
 [1]  0.0060274381  0.0054931040  0.0053603983 -0.0022879280 -0.0017387904
 [6] -0.0005844143  0.0019146178  0.0002015277  0.0015881625 -0.0003374190
[11] -0.0011055019 -0.0025044358 -0.0015764066 -0.0054447824 -0.0013143442
[16]  0.0009482086  0.0017262529 -0.0046886548  0.0002556781  0.0009381047
[21]  0.0062966095  0.0010759358  0.0008084058  0.0002644285  0.0011665833
[26] -0.0012143389  0.0001374119  0.0056012617 -0.0012092620  0.0011023573
[31] -0.0052265996 -0.0009451782  0.0231076775 -0.0120534160 -0.0046212172
[36] -0.0255453649

iteration = 21
Step:
 [1] -0.0031498984 -0.0045963377 -0.0024386150  0.0441785138  0.0206411588
 [6]  0.0134125321 -0.0036847506 -0.0024371400 -0.0036771508 -0.0005779876
[11]  0.0006011947  0.0009225740  0.0008955921  0.0152381601 -0.0032001878
[16] -0.0003997782 -0.0005156318  0.0031677318  0.0007963247  0.0009166070
[21] -0.0054571502 -0.0002875816 -0.0012264353 -0.0014229308 -0.0005628938
[26]  0.0010576235 -0.0001527682 -0.0042233007  0.0009695610 -0.0006886701
[31]  0.0030936619  0.0035239016 -0.0082987840  0.0047471283  0.0002603165
[36] -0.0024492868
Parameter:
 [1] 0.8433036 1.2836587 0.7622501 1.9373920 0.9629743 0.6627790 0.9106255
 [8] 0.9258591 0.8434373 0.9221920 1.1307221 0.9870243 0.3354602 0.7209659
[15] 0.8080410 0.7054029 0.6842683 0.2907216 0.7948374 0.9478982 0.4485571
[22] 0.8852685 0.9748793 0.4925149 0.6805736 0.5156308 0.6147734 0.4810810
[29] 0.5578996 0.3703576 0.5946776 0.3934599 0.1622266 0.2687538 0.1456927
[36] 0.1927314
Function Value
[1] 0.4621288
Gradient:
 [1]  4.906589e-03  1.021401e-02  5.134961e-03 -7.239384e-03 -9.899530e-04
 [6] -2.594938e-04  1.846541e-03  2.961215e-03  1.372790e-03 -3.418528e-04
[11]  5.062683e-05  4.128253e-04  1.215710e-03 -3.354906e-03  8.589218e-04
[16]  2.032518e-03  1.357392e-03  5.443017e-03  1.715318e-03 -1.234856e-03
[21] -5.426841e-03 -1.001951e-03 -1.244519e-03 -3.442047e-04  3.249205e-04
[26]  2.754458e-03 -2.565237e-04 -7.571810e-03  6.857768e-04 -1.579490e-03
[31]  1.528544e-03 -5.350778e-03 -5.060993e-02  1.927646e-03 -3.521603e-03
[36]  3.360356e-02

iteration = 22
Step:
 [1] -9.593541e-03 -1.590923e-02 -8.881403e-03  4.004505e-02  2.005048e-02
 [6]  1.212172e-02 -8.848163e-03 -8.342836e-03 -7.647687e-03 -9.625687e-04
[11] -7.160060e-04 -1.115516e-05 -1.020582e-04  1.679095e-02 -7.224899e-03
[16] -2.565642e-03 -1.125816e-03  1.820964e-03 -9.444454e-04  2.183365e-03
[21] -4.960041e-03  2.499088e-04  7.399841e-04 -2.692328e-03  2.981555e-04
[26] -1.328686e-03  8.622692e-04  2.868268e-03 -3.360975e-04  9.863614e-04
[31]  1.056187e-03  9.134592e-03 -2.252701e-03  5.617026e-03  5.970171e-04
[36]  1.437093e-03
Parameter:
 [1] 0.8337101 1.2677495 0.7533687 1.9774370 0.9830248 0.6749008 0.9017773
 [8] 0.9175163 0.8357896 0.9212295 1.1300061 0.9870132 0.3353581 0.7377568
[15] 0.8008161 0.7028373 0.6831425 0.2925426 0.7938930 0.9500816 0.4435971
[22] 0.8855184 0.9756193 0.4898226 0.6808718 0.5143021 0.6156357 0.4839493
[29] 0.5575635 0.3713439 0.5957338 0.4025945 0.1599739 0.2743708 0.1462897
[36] 0.1941685
Function Value
[1] 0.4618409
Gradient:
 [1]  1.835829e-03  4.132040e-03  2.631079e-03 -6.088225e-04  2.259661e-03
 [6]  1.541082e-03  8.741594e-04  1.072426e-03  8.724541e-04 -1.764910e-03
[11] -4.730554e-04  8.902141e-04  7.267655e-03  1.595065e-03  5.480025e-04
[16]  1.683670e-03 -3.426592e-05  2.259291e-03  7.590231e-04 -5.950156e-04
[21] -5.027385e-03 -8.001741e-04 -7.331096e-04 -2.145661e-03 -1.521059e-04
[26] -9.628209e-04  1.368917e-03  1.684647e-03 -1.733866e-04  3.508841e-03
[31]  4.214591e-03 -1.651901e-02 -1.066742e-02  7.972560e-03 -1.042551e-03
[36]  6.178922e-02

iteration = 23
Step:
 [1] -0.0086273271 -0.0148700961 -0.0088061224  0.0439100124  0.0194115625
 [6]  0.0121372063 -0.0065612912 -0.0063615941 -0.0050637467  0.0014182471
[11]  0.0010539108 -0.0006796506 -0.0027750433  0.0172628692 -0.0037611213
[16] -0.0031047936 -0.0006511411  0.0019005013 -0.0017585277  0.0022895555
[21] -0.0009169787  0.0003759793  0.0013283464  0.0010479017  0.0006277529
[26] -0.0012027704 -0.0002075821  0.0008010023 -0.0003618854 -0.0001420625
[31] -0.0040360705  0.0030633897 -0.0096387825  0.0022065661  0.0011988956
[36] -0.0063986126
Parameter:
 [1] 0.8250828 1.2528794 0.7445626 2.0213470 1.0024363 0.6870380 0.8952160
 [8] 0.9111547 0.8307258 0.9226477 1.1310600 0.9863335 0.3325831 0.7550197
[15] 0.7970550 0.6997325 0.6824914 0.2944431 0.7921344 0.9523711 0.4426801
[22] 0.8858944 0.9769476 0.4908705 0.6814995 0.5130993 0.6154281 0.4847503
[29] 0.5572017 0.3712019 0.5916977 0.4056579 0.1503351 0.2765774 0.1474886
[36] 0.1877699
Function Value
[1] 0.4617251
Gradient:
 [1] -0.0008845120 -0.0003347585 -0.0006376553 -0.0049166705  0.0011157470
 [6]  0.0006642082 -0.0034970959 -0.0055062017 -0.0026517384  0.0002008775
[11]  0.0018420675 -0.0016552519  0.0015049935 -0.0021549873  0.0005035119
[16]  0.0010734098  0.0001591047  0.0011801831 -0.0009561241 -0.0002714842
[21] -0.0062642513 -0.0010156711  0.0002456737  0.0041640611  0.0000365965
[26] -0.0053660685  0.0005487735  0.0038759786 -0.0003295888  0.0046194515
[31] -0.0044538453 -0.0131299096 -0.0461829508  0.0037473491  0.0084233633
[36]  0.0177883521

iteration = 24
Step:
 [1] -4.885761e-04 -2.365020e-03 -8.468853e-04 -9.752266e-03 -5.562397e-03
 [6] -3.808688e-03  1.898205e-03  2.580177e-03  1.373878e-03  4.894905e-04
[11]  4.324068e-04  8.687006e-04 -2.022709e-03 -1.570547e-03  9.401783e-04
[16] -1.176093e-03  1.196459e-04 -5.307102e-04 -9.381877e-05 -1.077984e-03
[21]  1.448337e-03 -2.579899e-04 -3.851519e-04 -7.646463e-04 -9.874366e-05
[26]  2.843902e-03 -4.118639e-04 -2.922619e-03  4.352144e-04 -1.212352e-03
[31]  1.304783e-03  5.236674e-03  3.683178e-03 -2.087595e-03  2.542938e-04
[36]  2.826556e-03
Parameter:
 [1] 0.8245942 1.2505144 0.7437157 2.0115948 0.9968739 0.6832293 0.8971143
 [8] 0.9137349 0.8320997 0.9231372 1.1314924 0.9872022 0.3305603 0.7534491
[15] 0.7979952 0.6985564 0.6826110 0.2939124 0.7920406 0.9512931 0.4441285
[22] 0.8856364 0.9765625 0.4901059 0.6814008 0.5159432 0.6150163 0.4818277
[29] 0.5576369 0.3699895 0.5930025 0.4108946 0.1540183 0.2744898 0.1477429
[36] 0.1905964
Function Value
[1] 0.461632
Gradient:
 [1]  9.093881e-04  2.545867e-03  2.360636e-04 -3.235705e-05  1.249362e-03
 [6]  7.046808e-04 -2.995975e-03 -2.087408e-03 -2.832980e-03  1.082206e-03
[11]  1.548667e-03  1.947953e-05  3.763329e-03 -3.821938e-04 -2.467004e-05
[16]  3.483898e-04  1.202608e-03  2.150600e-04 -5.354970e-04 -1.775362e-04
[21]  1.000668e-03 -4.091838e-04  2.341167e-04  5.427374e-04 -5.575984e-05
[26]  3.026052e-03 -3.308287e-04 -5.456442e-03  7.868408e-04 -5.729675e-04
[31] -1.410086e-03  6.022379e-03  1.834136e-02 -4.114575e-04  1.140696e-02
[36] -1.773182e-02

iteration = 25
Step:
 [1]  1.391171e-05 -1.706676e-04  2.072776e-04  4.630960e-04 -1.770650e-03
 [6] -9.584864e-04  3.231833e-03  2.590215e-03  2.825577e-03 -6.790937e-05
[11] -7.825467e-04  9.119994e-04 -2.961023e-03  4.203233e-04  1.967011e-03
[16] -2.090203e-04 -9.304139e-04 -8.213827e-05 -2.440203e-05  1.974693e-05
[21] -1.391488e-04  2.504474e-04 -2.177721e-04 -2.697099e-04 -5.454196e-04
[26] -1.103886e-03 -7.885161e-05  3.310640e-03  4.499957e-05 -1.137412e-04
[31]  2.120388e-03  5.311179e-04 -1.372731e-04 -3.875476e-04 -1.425740e-03
[36]  3.447768e-04
Parameter:
 [1] 0.8246081 1.2503437 0.7439230 2.0120578 0.9951033 0.6822708 0.9003461
 [8] 0.9163251 0.8349253 0.9230693 1.1307099 0.9881142 0.3275993 0.7538695
[15] 0.7999622 0.6983474 0.6816806 0.2938302 0.7920162 0.9513129 0.4439893
[22] 0.8858868 0.9763447 0.4898362 0.6808554 0.5148393 0.6149374 0.4851383
[29] 0.5576819 0.3698758 0.5951229 0.4114257 0.1538810 0.2741023 0.1463171
[36] 0.1909412
Function Value
[1] 0.4615905
Gradient:
 [1]  9.757954e-04  3.270161e-03  6.902781e-04 -3.389460e-04  8.386003e-04
 [6]  5.093490e-04 -1.158622e-03 -8.447465e-04 -9.181100e-04  4.825651e-05
[11] -2.465273e-03  1.150241e-03  2.488974e-03 -8.799752e-04 -5.091501e-04
[16]  1.488694e-04 -4.243468e-04 -5.156267e-04 -5.396892e-04 -3.865068e-04
[21]  2.474216e-04 -4.956107e-04 -1.369784e-04 -1.831292e-03 -5.662777e-04
[26] -1.618474e-04 -2.530491e-04  4.273911e-03  4.894218e-04 -1.872678e-03
[31]  3.105946e-03  4.941519e-03  7.055764e-03  2.631236e-03  1.307825e-04
[36] -7.158931e-03

iteration = 26
Step:
 [1] -2.088289e-03 -3.990933e-03 -1.785835e-03  6.244684e-03  5.705686e-04
 [6]  4.177172e-04  1.964472e-03  1.636550e-03  1.777386e-03  2.183380e-04
[11]  9.040542e-04  7.679319e-05 -3.823775e-03  3.553154e-03  1.215111e-03
[16] -5.463998e-04 -3.723794e-04  9.454532e-04  1.684776e-04  8.173509e-04
[21] -6.394597e-04  6.376741e-04  1.999146e-04  7.528125e-04  1.346470e-04
[26] -8.707736e-05  1.978904e-04 -8.636442e-04 -3.519661e-04  2.766964e-04
[31] -7.344269e-04  6.978120e-04 -9.259570e-04 -7.940747e-04 -2.547619e-04
[36] -1.847992e-04
Parameter:
 [1] 0.8225198 1.2463528 0.7421372 2.0183025 0.9956738 0.6826885 0.9023106
 [8] 0.9179616 0.8367027 0.9232876 1.1316139 0.9881910 0.3237755 0.7574226
[15] 0.8011773 0.6978010 0.6813082 0.2947757 0.7921847 0.9521302 0.4433498
[22] 0.8865245 0.9765446 0.4905890 0.6809900 0.5147522 0.6151353 0.4842747
[29] 0.5573299 0.3701525 0.5943884 0.4121235 0.1529550 0.2733082 0.1460624
[36] 0.1907564
Function Value
[1] 0.461554
Gradient:
 [1] -1.686580e-04  6.847300e-04  2.174261e-06 -6.844902e-05  6.319318e-04
 [6]  3.849578e-04 -5.790319e-04 -6.206768e-04 -3.583729e-04 -2.438085e-04
[11] -9.177731e-04  5.475087e-04  9.610481e-04 -1.368441e-03 -3.613359e-04
[16]  2.845155e-04 -8.174190e-04 -4.388383e-04 -1.166178e-04 -2.671996e-05
[21] -5.936904e-04 -2.070877e-04 -1.270948e-04 -8.449490e-04 -1.008758e-04
[26] -4.369447e-04  4.039507e-04  1.426180e-03 -4.572414e-04 -6.875744e-04
[31]  1.329997e-03 -2.181096e-03 -2.237819e-04  2.446239e-03 -9.235883e-04
[36]  2.392184e-03

iteration = 27
Step:
 [1] -2.510119e-03 -6.031006e-03 -2.465328e-03  9.465213e-03  1.089181e-03
 [6]  7.483883e-04  2.620828e-03  2.331402e-03  2.283706e-03  6.806599e-04
[11]  8.962639e-04  5.410125e-05 -4.861537e-03  6.860176e-03  1.708138e-03
[16] -1.386752e-03  1.525583e-04  9.618377e-04 -4.681896e-05  7.865539e-04
[21]  2.066227e-04  7.639300e-04  4.605109e-04  1.241332e-03  7.492952e-05
[26]  1.341512e-05 -4.204107e-04 -3.369127e-04  3.242852e-04  8.693303e-05
[31] -1.028382e-03  3.712559e-03 -1.424170e-03 -2.116939e-03 -1.999311e-04
[36]  1.863516e-04
Parameter:
 [1] 0.8200097 1.2403218 0.7396718 2.0277677 0.9967630 0.6834369 0.9049314
 [8] 0.9202930 0.8389864 0.9239683 1.1325102 0.9882451 0.3189140 0.7642828
[15] 0.8028854 0.6964142 0.6814608 0.2957375 0.7921379 0.9529168 0.4435565
[22] 0.8872885 0.9770051 0.4918303 0.6810649 0.5147657 0.6147149 0.4839378
[29] 0.5576542 0.3702394 0.5933600 0.4158361 0.1515309 0.2711912 0.1458624
[36] 0.1909428
Function Value
[1] 0.4615367
Gradient:
 [1]  1.684910e-04  1.916335e-04  1.127276e-05  7.966314e-05 -8.146728e-05
 [6] -8.961720e-05 -1.189342e-04 -3.966996e-04 -2.812222e-04  2.671854e-04
[11]  1.380480e-04 -3.779519e-04  5.204477e-04 -1.441325e-03 -5.726299e-04
[16] -2.574758e-04  2.138059e-04 -1.309068e-04  2.717044e-04  1.830252e-04
[21] -5.259402e-04  1.687255e-04  1.464890e-04  7.707328e-04  1.874270e-04
[26] -6.035243e-04 -3.582130e-04  1.158860e-04  5.218439e-04 -1.383214e-04
[31] -1.014559e-03 -3.026202e-05 -8.630920e-03 -2.252477e-03 -8.125234e-04
[36]  6.904084e-03

iteration = 28
Step:
 [1] -4.407722e-04 -9.176381e-04 -3.221423e-04 -1.977223e-03 -1.165949e-03
 [6] -7.785845e-04  5.444335e-04  5.491149e-04  5.471523e-04 -1.689687e-04
[11]  2.009082e-05  2.171136e-04 -1.606241e-03  7.175124e-04  3.125654e-04
[16] -6.020327e-05 -1.576742e-04  2.820458e-04 -2.329972e-04 -2.629033e-04
[21] -3.089342e-05 -1.538684e-04 -2.131541e-04 -3.001620e-04 -2.079181e-04
[26]  2.364656e-04  1.085113e-04 -2.851771e-04 -2.825112e-04  1.751819e-04
[31]  4.922208e-04 -2.453281e-04  4.524757e-04  1.342745e-04 -1.340608e-04
[36] -4.269355e-05
Parameter:
 [1] 0.8195689 1.2394041 0.7393497 2.0257905 0.9955971 0.6826583 0.9054758
 [8] 0.9208422 0.8395335 0.9237993 1.1325303 0.9884622 0.3173078 0.7650003
[15] 0.8031980 0.6963540 0.6813031 0.2960196 0.7919049 0.9526539 0.4435256
[22] 0.8871346 0.9767920 0.4915301 0.6808570 0.5150021 0.6148234 0.4836526
[29] 0.5573717 0.3704146 0.5938523 0.4155907 0.1519833 0.2713255 0.1457284
[36] 0.1909001
Function Value
[1] 0.4615333
Gradient:
 [1] -3.809895e-04 -8.260791e-04 -3.707541e-04  7.390409e-04 -8.174439e-05
 [6] -8.284573e-05  2.146301e-04  2.820890e-04  2.007532e-04 -1.593357e-04
[11]  2.753413e-04  7.565504e-05 -1.012666e-04 -1.352820e-03 -3.314859e-04
[16]  1.093987e-04  1.692833e-04 -3.976197e-05  1.105036e-04  1.315392e-04
[21]  2.834888e-04  1.390781e-04 -1.290346e-05 -2.937561e-04 -7.521450e-05
[26]  1.975593e-04  2.778933e-05 -7.396643e-04 -2.826646e-04  4.126690e-04
[31]  5.835332e-05 -3.590443e-04  3.478199e-03 -2.596074e-04 -1.711516e-03
[36] -3.478597e-03

iteration = 29
Step:
 [1]  2.899527e-04  5.549009e-04  3.415829e-04 -1.077619e-03 -1.299025e-04
 [6] -6.593748e-05 -2.213982e-04 -2.202689e-04 -1.876886e-04 -9.718512e-05
[11] -1.739463e-04 -1.451842e-04 -8.253432e-05  6.287653e-04 -7.690945e-05
[16]  2.925388e-05 -1.309098e-04 -6.196701e-05 -2.354820e-05 -1.065685e-04
[21]  2.313320e-04 -6.323144e-05 -1.121282e-05  5.884180e-06  5.221993e-05
[26] -6.461159e-05  5.240091e-05  1.069742e-04 -2.586072e-05 -9.812776e-05
[31] -2.136571e-05 -7.683650e-06  1.167839e-04  3.987253e-05  1.059118e-04
[36]  1.208291e-04
Parameter:
 [1] 0.8198589 1.2399590 0.7396913 2.0247129 0.9954672 0.6825924 0.9052544
 [8] 0.9206219 0.8393458 0.9237021 1.1323563 0.9883170 0.3172252 0.7656291
[15] 0.8031211 0.6963833 0.6811722 0.2959576 0.7918813 0.9525473 0.4437569
[22] 0.8870714 0.9767808 0.4915360 0.6809092 0.5149375 0.6148758 0.4837596
[29] 0.5573458 0.3703164 0.5938309 0.4155830 0.1521001 0.2713654 0.1458343
[36] 0.1910209
Function Value
[1] 0.4615309
Gradient:
 [1] -2.661906e-04 -2.873581e-04 -1.910330e-04  6.207901e-04 -6.862422e-05
 [6] -7.927170e-05  1.833094e-04  1.658940e-04  1.833236e-04 -1.035865e-04
[11]  1.674458e-04  7.224088e-05  1.804352e-04 -1.182322e-03 -2.348095e-04
[16]  2.832934e-05 -1.030394e-04  1.574350e-04  7.270273e-05  5.464429e-05
[21]  2.310436e-04  9.100987e-05 -3.897327e-06 -1.387193e-04 -8.324008e-06
[26]  2.054534e-05  1.367191e-04 -3.450218e-04 -3.295426e-04  4.498801e-05
[31]  2.592415e-05  2.961613e-04  2.441265e-03 -1.923475e-04 -1.099362e-03
[36] -2.105519e-03

iteration = 30
Step:
 [1]  7.394667e-04  9.610198e-04  8.202070e-04 -3.356673e-03 -3.667912e-04
 [6] -1.290251e-04 -6.271391e-04 -5.104602e-04 -5.414105e-04 -3.638958e-04
[11] -7.871111e-04 -5.729448e-04 -2.079935e-03  4.971998e-03 -3.794950e-05
[16]  5.451791e-06 -9.967177e-05 -1.339692e-04 -1.735493e-04 -1.888437e-04
[21]  8.615360e-04 -1.184075e-04  4.214175e-05 -4.980854e-05  7.281031e-05
[26] -2.005243e-05 -1.247669e-04  2.078023e-04  3.011021e-04 -4.754218e-05
[31]  4.938932e-05 -4.820185e-05  2.239786e-04 -1.499818e-05  3.232822e-04
[36]  2.743906e-04
Parameter:
 [1] 0.8205983 1.2409200 0.7405115 2.0213562 0.9951004 0.6824633 0.9046273
 [8] 0.9201114 0.8388044 0.9233382 1.1315692 0.9877441 0.3151453 0.7706011
[15] 0.8030831 0.6963887 0.6810725 0.2958236 0.7917078 0.9523585 0.4446184
[22] 0.8869529 0.9768229 0.4914862 0.6809821 0.5149175 0.6147510 0.4839674
[29] 0.5576469 0.3702689 0.5938803 0.4155348 0.1523241 0.2713504 0.1461576
[36] 0.1912953
Function Value
[1] 0.4615243
Gradient:
 [1]  1.517293e-04  5.032381e-04  2.583249e-04  1.546081e-04 -7.007017e-05
 [6] -1.026912e-04  5.397283e-05  6.587797e-05 -3.787193e-05  2.285567e-04
[11] -2.079945e-04  5.148948e-05  7.499352e-04 -5.296670e-04  1.656488e-04
[16] -1.589200e-04 -2.611777e-04  2.478622e-04 -1.367653e-04 -6.741274e-05
[21] -2.859082e-04  1.144329e-05  1.101732e-04  2.664180e-05  1.721290e-05
[26]  1.313438e-05 -1.232401e-04  6.652101e-04  5.514345e-04 -2.015383e-04
[31]  1.879457e-04  1.255739e-03 -9.302461e-04  2.135181e-05  9.112817e-04
[36]  1.320988e-03

iteration = 31
Step:
 [1]  1.884579e-04  6.115165e-06  2.183788e-04 -2.290585e-03 -2.938095e-04
 [6] -3.108388e-05 -1.850612e-04 -1.944181e-04 -3.062229e-05 -4.529563e-04
[11] -4.593584e-04 -4.331353e-04 -3.328416e-03  6.101402e-03  1.879839e-04
[16] -9.342212e-05 -1.084315e-04  4.150072e-05 -1.196089e-04 -1.305973e-04
[21]  9.244166e-04 -1.316339e-04 -1.194198e-04  6.721304e-05  2.431545e-05
[26] -1.324038e-04  9.760876e-05 -6.018646e-05 -3.731509e-04 -6.318195e-05
[31] -3.958437e-05  4.175347e-05  7.661209e-05 -1.908992e-04  2.277594e-04
[36]  1.337982e-04
Parameter:
 [1] 0.8207868 1.2409262 0.7407299 2.0190656 0.9948066 0.6824323 0.9044422
 [8] 0.9199170 0.8387738 0.9228853 1.1311099 0.9873109 0.3118169 0.7767025
[15] 0.8032711 0.6962953 0.6809641 0.2958651 0.7915882 0.9522279 0.4455429
[22] 0.8868213 0.9767035 0.4915534 0.6810064 0.5147851 0.6148486 0.4839072
[29] 0.5572738 0.3702057 0.5938407 0.4155766 0.1524007 0.2711595 0.1463853
[36] 0.1914291
Function Value
[1] 0.4615204
Gradient:
 [1]  2.572804e-04  6.481268e-04  3.832881e-04 -2.119594e-05 -1.400799e-04
 [6] -1.624514e-04  2.320988e-05 -1.289031e-04  6.719247e-05 -4.011014e-06
[11] -1.441960e-04  4.324363e-05  5.914949e-04 -1.212754e-04  4.275300e-04
[16] -2.012008e-04 -3.326868e-04  3.389751e-04 -2.226734e-04 -1.516902e-04
[21] -3.806129e-04 -9.563905e-05  5.683987e-05  2.420073e-04  1.808331e-06
[26] -3.564828e-04  1.873062e-04  7.197194e-04 -3.862510e-04 -5.375753e-04
[31]  1.003464e-04  1.460034e-03 -1.501991e-03  2.940048e-04  2.076273e-03
[36]  1.555318e-03

iteration = 32
Step:
 [1] -1.029674e-04 -1.919536e-04 -1.738451e-04 -9.105141e-04  1.396086e-04
 [6]  2.645280e-04 -7.834744e-05 -1.852192e-05 -5.056159e-05 -9.057256e-05
[11] -2.794403e-04 -2.288481e-04 -2.640909e-03  4.848612e-03  1.655253e-04
[16]  2.991446e-05  2.760163e-05  3.253349e-05  1.994513e-05  1.110866e-04
[21]  6.297255e-04  3.281341e-05 -2.659853e-06 -3.392936e-05  2.648654e-05
[26]  1.421668e-04 -1.101262e-04 -1.249438e-04  4.237777e-04  1.700937e-04
[31] -4.916450e-06 -2.255495e-04 -7.499525e-05 -1.840099e-04 -3.902512e-05
[36] -7.070102e-05
Parameter:
 [1] 0.8206838 1.2407342 0.7405560 2.0181551 0.9949462 0.6826968 0.9043639
 [8] 0.9198985 0.8387232 0.9227947 1.1308304 0.9870821 0.3091760 0.7815511
[15] 0.8034366 0.6963252 0.6809917 0.2958977 0.7916081 0.9523390 0.4461726
[22] 0.8868541 0.9767008 0.4915195 0.6810329 0.5149272 0.6147385 0.4837822
[29] 0.5576975 0.3703758 0.5938358 0.4153510 0.1523257 0.2709755 0.1463463
[36] 0.1913584
Function Value
[1] 0.4615185
Gradient:
 [1]  9.708145e-05  1.866304e-04  1.891571e-04 -6.674117e-05 -1.534630e-04
 [6] -1.744702e-04  1.840306e-06 -6.409095e-06 -2.092548e-05  1.859384e-04
[11] -2.663364e-04 -1.067200e-04  2.910951e-04  1.230873e-04  4.961223e-04
[16] -6.378897e-05 -2.430234e-04  2.457021e-04 -1.867946e-04 -2.663469e-05
[21] -4.159553e-04 -2.154010e-05  1.060023e-04  5.860201e-05 -8.064660e-07
[26]  1.223910e-05 -2.813039e-05  4.807568e-04  7.225616e-04 -1.520561e-05
[31]  5.166356e-05  4.359819e-04 -8.482282e-04  4.289511e-04  1.825160e-03
[36]  7.440910e-04

iteration = 33
Step:
 [1] -1.319904e-04 -1.331543e-04 -2.461272e-04  6.784299e-04  4.567580e-04
 [6]  4.170148e-04  6.329399e-05  5.611362e-05  7.058375e-05 -1.327668e-06
[11]  2.211743e-04  1.603111e-04 -7.180657e-04  1.330265e-03 -1.818882e-05
[16]  2.377177e-05  1.776385e-04 -7.012265e-05  8.648212e-05  5.935114e-05
[21]  1.782418e-04 -1.029388e-05 -9.942425e-05  1.781805e-05 -1.760783e-05
[26]  3.692848e-05 -1.604135e-05 -9.441209e-05 -3.313731e-04  2.849066e-05
[31]  3.275821e-05 -6.611756e-05 -1.533715e-04 -1.124766e-04 -1.072348e-04
[36] -1.137328e-04
Parameter:
 [1] 0.8205518 1.2406010 0.7403099 2.0188336 0.9954029 0.6831138 0.9044272
 [8] 0.9199546 0.8387938 0.9227934 1.1310516 0.9872424 0.3084579 0.7828813
[15] 0.8034185 0.6963490 0.6811693 0.2958275 0.7916946 0.9523983 0.4463508
[22] 0.8868438 0.9766014 0.4915373 0.6810153 0.5149641 0.6147225 0.4836878
[29] 0.5573662 0.3704043 0.5938685 0.4152849 0.1521723 0.2708630 0.1462391
[36] 0.1912447
Function Value
[1] 0.4615179
Gradient:
 [1]  6.769341e-05 -9.919010e-05  4.093437e-05 -3.054987e-06 -1.501590e-04
 [6] -1.611795e-04 -1.135092e-05 -2.167155e-07 -2.558664e-05 -1.442331e-04
[11] -9.552940e-05 -6.076561e-05  1.022471e-05  5.470113e-05  3.249383e-04
[16] -2.150813e-05  5.576339e-05 -2.394884e-05 -1.068443e-04  1.000444e-05
[21] -2.875744e-04 -2.062706e-05  2.197709e-05  5.826450e-07 -4.522605e-05
[26]  6.859580e-05 -6.335199e-05  8.819256e-05 -1.810676e-04  7.613465e-05
[31]  1.027445e-04  2.550848e-06 -4.553300e-04  2.231140e-04  1.070934e-03
[36]  2.767564e-05

iteration = 34
Step:
 [1] -8.658355e-05  9.218412e-05 -1.209802e-04  4.164366e-04  3.691433e-04
 [6]  3.406695e-04  3.392886e-05 -1.964993e-06  4.881617e-05  2.032690e-04
[11]  2.537676e-04  1.940598e-04 -1.237922e-05  1.212243e-04 -1.237287e-04
[16]  6.287790e-05  3.363007e-05 -4.046225e-05  9.971063e-05  1.099875e-05
[21]  1.095631e-04 -1.268585e-05 -5.983658e-05  1.835429e-05  1.528434e-05
[26] -4.511845e-05  7.729600e-05 -2.680436e-05  6.262975e-05 -2.157100e-05
[31] -3.721541e-05 -7.886755e-05 -5.827163e-05 -3.023431e-05 -1.280176e-04
[36] -6.227695e-05
Parameter:
 [1] 0.8204652 1.2406932 0.7401889 2.0192500 0.9957721 0.6834545 0.9044611
 [8] 0.9199526 0.8388426 0.9229966 1.1313054 0.9874365 0.3084455 0.7830026
[15] 0.8032947 0.6964119 0.6812030 0.2957871 0.7917943 0.9524093 0.4464604
[22] 0.8868311 0.9765416 0.4915557 0.6810305 0.5149190 0.6147998 0.4836610
[29] 0.5574288 0.3703827 0.5938313 0.4152061 0.1521141 0.2708328 0.1461110
[36] 0.1911824
Function Value
[1] 0.4615176
Gradient:
 [1] -3.030465e-05 -1.235997e-04 -6.103207e-05  9.441412e-05 -1.143405e-04
 [6] -1.222737e-04  8.348877e-06 -4.775913e-05  5.067946e-05 -1.046523e-04
[11] -1.065558e-04 -9.644197e-05 -9.706014e-05 -1.465494e-05  1.356888e-04
[16]  3.662848e-05  6.110312e-05 -1.630696e-06 -6.039613e-06  2.103917e-05
[21] -4.029488e-05 -5.304202e-06 -2.109246e-05  1.137224e-05 -1.689315e-05
[26] -1.031815e-04  9.803003e-05 -1.426628e-04 -4.132517e-05  4.725109e-07
[31] -9.130474e-07 -1.405489e-04  3.825207e-04  1.392522e-04  3.026521e-04
[36] -5.374297e-04

iteration = 35
Step:
 [1]  1.257063e-05  2.451553e-04  2.987749e-06  2.547690e-04  4.544404e-04
 [6]  4.222353e-04 -4.521116e-05 -1.697200e-05 -7.601039e-05  2.213847e-04
[11]  3.024472e-04  2.559495e-04  1.595583e-04  7.986099e-05 -1.836473e-04
[16]  6.841748e-05  1.545493e-05 -7.977673e-05  7.048191e-05  1.473772e-05
[21]  1.062654e-04 -1.634283e-06 -1.241420e-05 -1.274874e-05  1.717349e-05
[26]  9.119769e-05 -5.050529e-05  7.160377e-05 -2.308865e-06 -4.220699e-06
[31] -1.024428e-05 -8.225467e-05 -5.548275e-05 -2.907448e-05 -1.180226e-04
[36] -4.500202e-05
Parameter:
 [1] 0.8204778 1.2409384 0.7401919 2.0195048 0.9962265 0.6838767 0.9044159
 [8] 0.9199357 0.8387666 0.9232180 1.1316078 0.9876924 0.3086051 0.7830824
[15] 0.8031111 0.6964803 0.6812184 0.2957073 0.7918648 0.9524241 0.4465667
[22] 0.8868295 0.9765292 0.4915429 0.6810477 0.5150102 0.6147493 0.4837326
[29] 0.5574265 0.3703785 0.5938211 0.4151238 0.1520586 0.2708037 0.1459930
[36] 0.1911374
Function Value
[1] 0.4615174
Gradient:
 [1] -6.305001e-05 -4.173000e-05 -8.441958e-05  9.230877e-05 -5.641354e-05
 [6] -6.446399e-05 -1.055511e-05  2.814105e-05 -3.092993e-05 -9.753975e-05
[11] -5.571719e-05 -7.300827e-05 -3.828049e-05 -2.041389e-05  6.483702e-06
[16]  5.056222e-05  1.462652e-05 -3.981526e-05  4.823875e-05  3.369038e-05
[21]  5.682210e-05  2.681233e-05 -1.193712e-05 -3.687717e-05  7.673862e-07
[26]  1.244835e-04 -4.622080e-05 -8.138556e-05 -5.756817e-05  6.347989e-05
[31] -1.606537e-05 -1.545288e-04  3.475442e-04 -1.913492e-05 -2.128964e-04
[36] -3.317133e-04

iteration = 36
Step:
 [1]  6.032324e-05  8.385407e-05  7.589694e-05 -2.101970e-04  1.437048e-04
 [6]  1.667830e-04 -2.845169e-05 -4.400560e-05 -1.356974e-05  1.336606e-04
[11]  1.356022e-04  1.323709e-04 -2.527306e-05  1.427352e-04 -1.270574e-04
[16] -3.525758e-06  2.044913e-05 -1.901025e-05 -7.281479e-06 -3.973116e-05
[21]  7.847080e-05 -3.736089e-05 -2.336592e-05  5.574602e-06  1.013287e-05
[26] -5.791578e-05  2.764788e-05  2.984279e-05  2.676731e-05 -3.593401e-05
[31]  3.296270e-06  7.981923e-06  1.448365e-05  2.264073e-06 -2.055565e-05
[36]  1.776803e-05
Parameter:
 [1] 0.8205381 1.2410222 0.7402678 2.0192946 0.9963702 0.6840435 0.9043874
 [8] 0.9198917 0.8387531 0.9233517 1.1317434 0.9878248 0.3085798 0.7832252
[15] 0.8029840 0.6964768 0.6812389 0.2956883 0.7918575 0.9523843 0.4466451
[22] 0.8867921 0.9765058 0.4915485 0.6810578 0.5149523 0.6147769 0.4837625
[29] 0.5574533 0.3703426 0.5938244 0.4151318 0.1520731 0.2708060 0.1459725
[36] 0.1911552
Function Value
[1] 0.4615174
Gradient:
 [1] -1.344347e-05  2.841834e-05 -3.323208e-05  6.325512e-05 -2.443912e-05
 [6] -3.144507e-05 -7.034373e-07 -2.261302e-05  1.481482e-06 -2.631850e-05
[11] -5.604954e-05 -3.011280e-05 -5.446310e-06 -6.401990e-06 -3.884537e-05
[16]  1.955058e-05  4.826006e-05 -3.989342e-05  3.953105e-05  3.549161e-06
[21]  6.818013e-05  7.013057e-06 -1.996625e-05  4.966694e-06  1.743317e-05
[26] -4.074607e-05  1.928768e-05 -6.273737e-05  2.368239e-05 -2.971490e-05
[31]  8.217427e-06 -1.244160e-05  2.327276e-04 -2.780709e-05 -2.020961e-04
[36] -1.459455e-04

iteration = 37
Step:
 [1]  1.305382e-05 -3.433195e-05  4.111206e-05 -2.597650e-04 -4.960021e-06
 [6]  3.136305e-05 -4.387602e-06  6.773762e-06 -8.113641e-07  5.000533e-05
[11]  5.938917e-05  5.156199e-05 -7.655118e-05  9.682753e-05 -3.670830e-05
[16] -1.810758e-05 -4.173174e-05  2.543222e-05 -2.994590e-05 -1.295670e-05
[21]  3.496107e-05 -9.530372e-06  1.140186e-05 -2.229449e-06 -8.759535e-06
[26]  1.133335e-05 -6.858820e-06  3.231107e-05 -1.157291e-05 -1.066970e-05
[31] -1.706243e-05  2.732574e-05  2.362712e-05 -4.793852e-06  5.444463e-06
[36]  2.454124e-05
Parameter:
 [1] 0.8205512 1.2409879 0.7403089 2.0190348 0.9963653 0.6840749 0.9043830
 [8] 0.9198984 0.8387523 0.9234017 1.1318028 0.9878763 0.3085033 0.7833220
[15] 0.8029473 0.6964586 0.6811971 0.2957137 0.7918276 0.9523714 0.4466801
[22] 0.8867826 0.9765172 0.4915463 0.6810491 0.5149636 0.6147701 0.4837948
[29] 0.5574417 0.3703319 0.5938073 0.4151591 0.1520967 0.2708012 0.1459779
[36] 0.1911797
Function Value
[1] 0.4615173
Gradient:
 [1] -5.947243e-06  4.947796e-05 -1.165290e-06  2.833676e-05 -1.117684e-05
 [6] -1.603340e-05 -5.559997e-06 -2.756906e-06 -1.485034e-06  4.618528e-07
[11] -1.689402e-05 -1.003286e-05  1.580247e-05  1.062972e-05 -1.540457e-05
[16]  9.219292e-06 -1.126210e-05  4.035883e-06  1.430678e-05 -1.886491e-06
[21]  3.889866e-05  5.101697e-06 -1.460165e-06  3.304024e-06  2.337686e-06
[26]  3.694822e-07  9.549694e-06  1.227107e-05  4.806822e-06 -2.830092e-05
[31] -1.535483e-05  3.084821e-05  7.730350e-05 -3.232969e-06 -5.302780e-05
[36] -7.815970e-08

iteration = 38
Step:
 [1] -1.466794e-06 -6.068012e-05  3.929093e-06 -1.453976e-04 -3.170783e-05
 [6] -7.094035e-06  1.154376e-05  8.412202e-06  7.826414e-06  1.287737e-05
[11]  1.576615e-05  1.915285e-05 -3.444857e-05 -1.158977e-05 -3.732864e-06
[16] -1.822101e-05 -2.194031e-06  1.551037e-05 -1.770750e-05 -4.130408e-06
[21] -4.193722e-06 -5.959812e-06  1.442982e-06  1.408837e-06  6.169865e-07
[26] -3.296365e-06 -8.264141e-06  1.442517e-06 -2.611337e-06  2.169906e-06
[31]  6.659287e-06  1.863238e-05  1.500806e-05 -3.349694e-06  4.591087e-06
[36]  1.224908e-05
Parameter:
 [1] 0.8205497 1.2409272 0.7403128 2.0188894 0.9963336 0.6840678 0.9043946
 [8] 0.9199068 0.8387601 0.9234146 1.1318186 0.9878955 0.3084688 0.7833104
[15] 0.8029436 0.6964404 0.6811950 0.2957292 0.7918099 0.9523672 0.4466759
[22] 0.8867767 0.9765186 0.4915477 0.6810497 0.5149603 0.6147618 0.4837962
[29] 0.5574391 0.3703341 0.5938140 0.4151777 0.1521117 0.2707978 0.1459825
[36] 0.1911919
Function Value
[1] 0.4615173
Gradient:
 [1]  6.529888e-06  1.733517e-05  9.425349e-06  8.330593e-06 -6.473044e-06
 [6] -9.482193e-06  7.105427e-08 -3.396394e-06 -4.025225e-06  7.407408e-06
[11]  1.635389e-06  7.833734e-06  1.147882e-05  1.083933e-05 -7.425172e-07
[16] -1.588063e-06 -5.826450e-07 -3.147704e-06 -3.446132e-07 -1.463718e-06
[21]  1.740830e-06  1.090683e-06  2.103206e-06  4.511946e-06  5.744738e-06
[26] -5.080381e-06 -5.105250e-06  1.378808e-05  2.987832e-06 -7.645440e-06
[31]  6.082246e-06  1.461586e-05  4.249046e-06  2.053469e-06  2.331646e-05
[36]  2.054890e-05

iteration = 39
Step:
 [1] -1.209704e-05 -3.599733e-05 -1.243049e-05 -6.384901e-05 -1.886667e-05
 [6] -5.463394e-06  6.838973e-06  8.199442e-06  8.851570e-06  2.380335e-07
[11]  2.356273e-06  2.269548e-07 -8.123484e-06 -3.737175e-05  4.800199e-06
[16] -6.081494e-06 -3.066186e-06  8.617050e-06 -5.002454e-06 -4.752413e-07
[21] -6.591348e-07 -1.359839e-06  6.735955e-08 -1.281069e-06 -5.983060e-06
[26]  2.099469e-06  2.743896e-06 -2.523929e-06 -1.291849e-06  1.817374e-06
[31] -3.526539e-06  1.087329e-05  7.374724e-06 -1.182675e-06 -6.758986e-07
[36]  5.849923e-06
Parameter:
 [1] 0.8205376 1.2408912 0.7403004 2.0188256 0.9963147 0.6840623 0.9044014
 [8] 0.9199150 0.8387689 0.9234148 1.1318209 0.9878957 0.3084607 0.7832730
[15] 0.8029484 0.6964343 0.6811919 0.2957378 0.7918049 0.9523668 0.4466752
[22] 0.8867753 0.9765187 0.4915464 0.6810437 0.5149624 0.6147645 0.4837937
[29] 0.5574378 0.3703359 0.5938105 0.4151886 0.1521191 0.2707966 0.1459818
[36] 0.1911978
Function Value
[1] 0.4615173
Gradient:
 [1]  4.583001e-06  1.196748e-06  5.730527e-06  3.449193e-06 -4.796163e-06
 [6] -6.426859e-06 -1.495692e-06  1.165290e-06  1.172396e-06  5.886847e-06
[11]  6.406569e-06  5.517364e-06  1.584510e-06  4.213518e-06 -1.335820e-06
[16] -1.037392e-06 -1.026734e-06  8.775203e-07 -4.064304e-06  5.968559e-07
[21] -2.216893e-06  9.379164e-07  3.023359e-06 -3.581135e-06 -3.577583e-06
[26]  1.673328e-06  2.163603e-06  5.776712e-06 -7.034373e-07 -7.105427e-08
[31] -2.195577e-06  1.421085e-07 -1.232792e-06  7.094769e-06  1.922018e-05
[36]  4.085621e-06

iteration = 40
Step:
 [1] -8.408480e-06 -1.153472e-05 -9.465225e-06 -3.094277e-05 -5.373911e-06
 [6]  1.638162e-06  3.832465e-06  1.812902e-06  1.341555e-06 -3.715673e-06
[11] -3.104479e-06 -3.338927e-06  2.142687e-06 -2.459210e-05  6.520438e-06
[16] -8.241349e-07  7.494898e-08  1.299549e-06  2.055524e-06 -1.146624e-06
[21]  6.547305e-07 -1.545185e-06 -2.713882e-06  2.804540e-06  1.954137e-06
[26] -1.856586e-07 -1.745532e-06 -2.609388e-06  2.610070e-07  1.191042e-06
[31]  1.851865e-06  4.013246e-06  3.833502e-06 -2.229399e-06 -1.546529e-06
[36]  2.612173e-06
Parameter:
 [1] 0.8205292 1.2408797 0.7402909 2.0187946 0.9963093 0.6840639 0.9044053
 [8] 0.9199169 0.8387703 0.9234111 1.1318178 0.9878924 0.3084628 0.7832484
[15] 0.8029549 0.6964335 0.6811920 0.2957391 0.7918069 0.9523656 0.4466759
[22] 0.8867738 0.9765160 0.4915492 0.6810457 0.5149623 0.6147628 0.4837911
[29] 0.5574380 0.3703371 0.5938123 0.4151926 0.1521229 0.2707944 0.1459803
[36] 0.1912004
Function Value
[1] 0.4615173
Gradient:
 [1]  1.374900e-06 -4.085587e-06  1.715961e-06  2.150499e-06 -3.375078e-06
 [6] -4.266809e-06 -4.902745e-07 -8.562040e-07 -1.453060e-06  3.019807e-06
[11]  5.656378e-06  4.337863e-06 -2.096101e-06  5.790923e-07 -7.212009e-07
[16] -1.136868e-07 -1.126210e-06  1.776357e-06 -1.350031e-06  1.126210e-06
[21] -2.298606e-06  6.252776e-07  1.087130e-06  9.166001e-07  3.765876e-07
[26] -6.572520e-07 -2.614797e-06 -7.069900e-07 -1.115552e-06  1.623590e-06
[31]  6.288303e-07 -5.247358e-06  7.446488e-06  2.486900e-06  4.888534e-06
[36] -9.030998e-06

iteration = 41
Step:
 [1] -4.470553e-06 -1.291806e-06 -5.622677e-06 -1.552752e-05  3.710047e-06
 [6]  7.394137e-06  7.177526e-07  6.489473e-07  1.005105e-06 -5.727716e-06
[11] -6.435736e-06 -6.478358e-06  3.424513e-06 -1.046808e-05  4.351634e-06
[16]  4.677933e-07  1.863346e-06 -2.073116e-06  1.877437e-06 -9.905281e-07
[21]  2.800664e-06 -1.007088e-06 -1.647866e-06 -7.538384e-07 -2.639127e-07
[26]  8.377115e-07  2.233524e-06 -1.872656e-06  7.278887e-07  1.208137e-06
[31]  2.110375e-07  2.589138e-06  1.135522e-06 -1.235421e-06 -3.644323e-07
[36]  1.335347e-06
Parameter:
 [1] 0.8205247 1.2408784 0.7402853 2.0187791 0.9963130 0.6840713 0.9044060
 [8] 0.9199175 0.8387713 0.9234054 1.1318114 0.9878859 0.3084663 0.7832380
[15] 0.8029593 0.6964340 0.6811938 0.2957371 0.7918088 0.9523646 0.4466787
[22] 0.8867727 0.9765143 0.4915485 0.6810454 0.5149631 0.6147650 0.4837892
[29] 0.5574388 0.3703383 0.5938125 0.4151952 0.1521241 0.2707932 0.1459799
[36] 0.1912017
Function Value
[1] 0.4615173
Gradient:
 [1]  6.146195e-07 -3.275345e-06 -3.694822e-07 -4.047615e-08 -1.957545e-06
 [6] -2.337686e-06 -7.815970e-07 -4.405365e-07  2.842171e-08 -2.344791e-07
[11]  1.855127e-06  5.115908e-07 -2.138734e-06 -9.556800e-07 -4.259704e-06
[16] -3.126388e-07  5.009326e-07 -1.062261e-06  3.907985e-08  9.663381e-07
[21] -2.032152e-06  6.785683e-07  2.025047e-07 -2.646772e-06 -5.329071e-08
[26]  1.048051e-06  1.765699e-06 -3.694822e-06 -4.085621e-07  2.586376e-06
[31] -4.227729e-07 -2.650324e-06 -3.197442e-06 -1.087130e-06 -8.910206e-06
[36] -5.382361e-06

iteration = 42
Step:
 [1] -1.233237e-06  2.960946e-06 -8.994970e-07 -3.500689e-06  5.702015e-06
 [6]  6.919623e-06  2.140612e-07  2.557013e-07 -1.861410e-07 -3.172214e-06
[11] -4.570141e-06 -3.976887e-06 -2.333266e-08  1.465113e-06  3.858378e-06
[16]  1.082904e-06  6.541771e-07 -7.761991e-07  1.000529e-06 -1.102142e-06
[21]  2.992900e-06 -1.158435e-06 -1.192494e-06  1.570654e-06 -8.303064e-08
[26] -3.196708e-07 -1.084279e-06  1.628584e-08  1.268876e-07 -3.989030e-07
[31]  2.159552e-07  3.248987e-07  1.687393e-07 -8.975178e-07  5.667488e-07
[36]  4.484801e-07
Parameter:
 [1] 0.8205235 1.2408814 0.7402844 2.0187756 0.9963187 0.6840782 0.9044062
 [8] 0.9199178 0.8387711 0.9234022 1.1318068 0.9878819 0.3084662 0.7832394
[15] 0.8029631 0.6964351 0.6811945 0.2957363 0.7918098 0.9523635 0.4466817
[22] 0.8867716 0.9765132 0.4915500 0.6810453 0.5149628 0.6147639 0.4837892
[29] 0.5574389 0.3703379 0.5938127 0.4151955 0.1521242 0.2707923 0.1459805
[36] 0.1912022
Function Value
[1] 0.4615173
Gradient:
 [1] -4.263256e-07 -7.730253e-08 -9.556800e-07 -7.567294e-08 -9.485746e-07
 [6] -1.111999e-06 -1.268319e-06 -9.308110e-07 -1.197265e-06 -4.014566e-07
[11] -3.233145e-07 -3.623768e-07 -1.438849e-06 -9.947598e-07 -1.925571e-06
[16]  3.019807e-07  5.080381e-07  1.307399e-06  7.922552e-07  1.598721e-07
[21]  2.948752e-07  1.421085e-07 -4.440892e-07  9.627854e-07 -1.953993e-07
[26] -2.593481e-07 -9.201528e-07 -1.758593e-06 -2.877698e-07 -7.851497e-07
[31] -4.405365e-07 -7.105427e-08 -2.525979e-06 -1.069367e-06 -9.141132e-06
[36]  1.030287e-07

iteration = 43
Parameter:
 [1] 0.8205236 1.2408818 0.7402846 2.0187766 0.9963197 0.6840792 0.9044064
 [8] 0.9199179 0.8387712 0.9234020 1.1318065 0.9878817 0.3084662 0.7832402
[15] 0.8029633 0.6964351 0.6811944 0.2957362 0.7918098 0.9523635 0.4466818
[22] 0.8867715 0.9765132 0.4915500 0.6810454 0.5149628 0.6147640 0.4837892
[29] 0.5574389 0.3703379 0.5938128 0.4151955 0.1521240 0.2707922 0.1459806
[36] 0.1912021
Function Value
[1] 0.4615173
Gradient:
 [1] -4.121148e-07  9.448084e-08 -8.419931e-07 -1.460663e-07 -8.597567e-07
 [6] -1.008971e-06 -1.119105e-06 -8.810730e-07 -1.083578e-06 -4.298784e-07
[11] -3.672602e-07 -3.907985e-07 -1.200817e-06 -8.526513e-07 -1.847411e-06
[16]  2.486900e-07  3.659295e-07  1.083578e-06  7.744916e-07  1.172396e-07
[21]  1.776357e-07  1.350031e-07 -4.192202e-07  8.100187e-07 -4.263256e-08
[26] -2.309264e-07 -7.318590e-07 -1.559641e-06 -2.522427e-07 -6.998846e-07
[31] -3.694822e-07  2.167155e-07 -2.788880e-06 -1.111999e-06 -8.395062e-06
[36]  3.588241e-07

Successive iterates within tolerance.
Current iterate is probably solution.

We can safely ignore the warning messages again in this case, as explained above.

Check the code first to see if the minimization terminated normally (see the help page for the meaning of different code):

f_ml_min$code
[1] 2

Compare with lavaan Output

mod_sem <-
"
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ x9 + x10 + x11 + x12
f4 =~ x13 + x14 + x15 + x16
f3 ~ f1 + f2
f4 ~ f3
"
fit_sem <- sem(model = mod_sem,
               data = dat)
summary(fit_sem)
lavaan 0.6-19 ended normally after 49 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           400

Model Test User Model:
                                                      
  Test statistic                               184.607
  Degrees of freedom                               100
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  f1 =~                                               
    x1                1.000                           
    x2                0.821    0.095    8.647    0.000
    x3                1.241    0.114   10.933    0.000
    x4                0.740    0.095    7.770    0.000
  f2 =~                                               
    x5                1.000                           
    x6                2.019    0.333    6.063    0.000
    x7                0.996    0.204    4.884    0.000
    x8                0.684    0.179    3.831    0.000
  f3 =~                                               
    x9                1.000                           
    x10               0.904    0.084   10.703    0.000
    x11               0.920    0.079   11.618    0.000
    x12               0.839    0.079   10.556    0.000
  f4 =~                                               
    x13               1.000                           
    x14               0.923    0.082   11.306    0.000
    x15               1.132    0.085   13.261    0.000
    x16               0.988    0.086   11.516    0.000

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  f3 ~                                                
    f1                0.308    0.143    2.151    0.031
    f2                0.783    0.271    2.890    0.004
  f4 ~                                                
    f3                0.803    0.076   10.600    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  f1 ~~                                               
    f2                0.191    0.037    5.142    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .x1                0.696    0.058   12.028    0.000
   .x2                0.681    0.054   12.725    0.000
   .x3                0.296    0.044    6.698    0.000
   .x4                0.792    0.060   13.166    0.000
   .x5                0.952    0.071   13.357    0.000
   .x6                0.447    0.073    6.112    0.000
   .x7                0.887    0.067   13.304    0.000
   .x8                0.977    0.071   13.789    0.000
   .x9                0.492    0.044   11.085    0.000
   .x10               0.681    0.055   12.354    0.000
   .x11               0.515    0.044   11.682    0.000
   .x12               0.615    0.049   12.440    0.000
   .x13               0.484    0.042   11.443    0.000
   .x14               0.557    0.046   12.161    0.000
   .x15               0.370    0.039    9.603    0.000
   .x16               0.594    0.049   12.010    0.000
    f1                0.415    0.068    6.069    0.000
    f2                0.152    0.046    3.310    0.001
   .f3                0.271    0.043    6.312    0.000
   .f4                0.146    0.029    4.954    0.000

Compare the parameter estimates from the two methods:

round(f_ml_min$estimate, 3)
 [1] 0.821 1.241 0.740 2.019 0.996 0.684 0.904 0.920 0.839 0.923 1.132 0.988
[13] 0.308 0.783 0.803 0.696 0.681 0.296 0.792 0.952 0.447 0.887 0.977 0.492
[25] 0.681 0.515 0.615 0.484 0.557 0.370 0.594 0.415 0.152 0.271 0.146 0.191
coef(fit_sem)
  f1=~x2   f1=~x3   f1=~x4   f2=~x6   f2=~x7   f2=~x8  f3=~x10  f3=~x11 
   0.821    1.241    0.740    2.019    0.996    0.684    0.904    0.920 
 f3=~x12  f4=~x14  f4=~x15  f4=~x16    f3~f1    f3~f2    f4~f3   x1~~x1 
   0.839    0.923    1.132    0.988    0.308    0.783    0.803    0.696 
  x2~~x2   x3~~x3   x4~~x4   x5~~x5   x6~~x6   x7~~x7   x8~~x8   x9~~x9 
   0.681    0.296    0.792    0.952    0.447    0.887    0.977    0.492 
x10~~x10 x11~~x11 x12~~x12 x13~~x13 x14~~x14 x15~~x15 x16~~x16   f1~~f1 
   0.681    0.515    0.615    0.484    0.557    0.370    0.594    0.415 
  f2~~f2   f3~~f3   f4~~f4   f1~~f2 
   0.152    0.271    0.146    0.191 

Compute the differences:

f_ml_min$estimate - coef(fit_sem)
  f1=~x2   f1=~x3   f1=~x4   f2=~x6   f2=~x7   f2=~x8  f3=~x10  f3=~x11 
       0        0        0        0        0        0        0        0 
 f3=~x12  f4=~x14  f4=~x15  f4=~x16    f3~f1    f3~f2    f4~f3   x1~~x1 
       0        0        0        0        0        0        0        0 
  x2~~x2   x3~~x3   x4~~x4   x5~~x5   x6~~x6   x7~~x7   x8~~x8   x9~~x9 
       0        0        0        0        0        0        0        0 
x10~~x10 x11~~x11 x12~~x12 x13~~x13 x14~~x14 x15~~x15 x16~~x16   f1~~f1 
       0        0        0        0        0        0        0        0 
  f2~~f2   f3~~f3   f4~~f4   f1~~f2 
       0        0        0        0 

Compare the values of the discrepancy function:

lavInspect(fit_sem, "optim")$fx
[1] 0.2307587
f_ml_min$minimum / 2
[1] 0.2307587