Study Guide: Understanding Overfitting and Regularization in
Machine Learning (integrating theory, mathematical foundations,
and practical examples to regularization techniques to help understand
their impact on overfitting in machine learning.
1. Overfitting
- Definition: Overfitting occurs when a model is
overly tailored to the training data, leading to poor performance on
unseen data.
- Symptoms:
- High accuracy on training data but poor performance on
validation/test data.
- The model captures noise and specific patterns of the training
data.
- Key Issue: Overfitted models have low bias but high
variance.
3. Regularization: Core Concept
- Definition: Adding a penalty term to the loss
function to discourage complex models.
- Mathematical Representation: \[
\text{Loss Function} = \underbrace{\sum (y_i -
\hat{y}_i)^2}_{\text{Squared Loss}} + \underbrace{\lambda \cdot
\text{Penalty}}_{\text{Regularization Term}}
\]
- \(\lambda\): Regularization
strength (hyperparameter).
- \(\text{Penalty}\): Function of
model parameters to constrain them.
4. Types of Regularization
L1 Regularization (LASSO):
- Penalty: \(\lambda \sum |w_i|\)
(absolute values of coefficients).
- Use Case: Feature selection (some coefficients are
driven to 0, creating sparse models).
- Interpretation: Encourages sparsity by setting weak
feature coefficients to 0.
\[
\text{Loss} = \sum (y_i - \hat{y}_i)^2 + \lambda \sum |w_i|
\]
L2 Regularization (Ridge):
- Penalty: \(\lambda \sum w_i^2\)
(squared values of coefficients).
- Use Case: Generalized overfitting prevention
without sparsity.
- Interpretation: Penalizes large coefficients more
strongly, but all features remain non-zero.
\[
\text{Loss} = \sum (y_i - \hat{y}_i)^2 + \lambda \sum w_i^2
\]
5. Comparison: L1 vs. L2
Penalty Function |
Absolute (\(|w_i|\)) |
Squared (\(w_i^2\)) |
Behavior |
Sparse coefficients |
Uniform coefficient shrinkage |
Use Case |
Feature selection |
Prevent overfitting |
Geometry of Penalty |
Diamond-shaped exclusion zone |
Circular exclusion zone |
6. Practical Implementation: Python Examples
Data Preprocessing:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X) # Normalize features
L1 Regularization (LASSO):
from sklearn.linear_model import Lasso
lasso = Lasso(alpha=0.1) # Set regularization strength
lasso.fit(X_scaled, y)
print("Coefficients:", lasso.coef_)
L2 Regularization (Ridge):
from sklearn.linear_model import Ridge
ridge = Ridge(alpha=1.0) # Set regularization strength
ridge.fit(X_scaled, y)
print("Coefficients:", ridge.coef_)
Tuning Regularization Strength (\(\lambda\)):
from sklearn.model_selection import cross_val_score
alphas = [0.01, 0.1, 1, 10, 100]
for alpha in alphas:
model = Ridge(alpha=alpha)
scores = cross_val_score(model, X_scaled, y, cv=5, scoring='neg_mean_squared_error')
print(f"Alpha: {alpha}, Score: {-scores.mean()}")
7. Bias-Variance Tradeoff
- High Bias (Underfitting): Model is too simple,
failing to capture data patterns.
- High Variance (Overfitting): Model is too complex,
capturing noise in the data.
- Regularization: Balances bias and variance to
achieve a generalizable model.
8. Key Takeaways
- Regularization Strength (\(\lambda\)):
- Controls the impact of the penalty.
- Needs to be tuned experimentally.
- Interpret Coefficients:
- Importance of scaling features to ensure comparability.
- Validation:
- Use cross-validation to determine optimal \(\lambda\).
- L1 vs. L2:
- L1 for feature selection, L2 for preventing overfitting.
Questions from the Lecture
Conceptual Question:
What is the key difference between L1 (LASSO) and L2 (Ridge)
regularization, and how does it affect model coefficients?
Analytical Question:
How does increasing the regularization strength (\(\lambda\)) affect the bias-variance
tradeoff in a machine learning model?
Practical Question:
Why is it important to scale features before applying regularization,
and how does it impact the interpretation of model
coefficients?
Takeaways from the Lecture
Understanding Overfitting:
Overfitting occurs when a model performs exceptionally well on training
data but poorly on unseen data. Regularization is a critical tool to
combat overfitting by constraining model complexity.
Role of Regularization Techniques:
- L1 (LASSO) regularization introduces sparsity by driving weak
feature coefficients to zero, making it ideal for feature
selection.
- L2 (Ridge) regularization uniformly shrinks coefficients, preventing
overfitting without eliminating features.
Importance of Hyperparameter Tuning:
The regularization strength (\(\lambda\)) must be carefully tuned (e.g.,
using cross-validation) to balance model bias and variance, ensuring
optimal performance on unseen data.
LS0tDQp0aXRsZTogIjczMzMgUVRXIC0gTW9kdWxlIDIiDQphdXRob3I6IEplc3NpY2EgTWNQaGF1bCANCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojIyMgKipTdHVkeSBHdWlkZTogVW5kZXJzdGFuZGluZyBPdmVyZml0dGluZyBhbmQgUmVndWxhcml6YXRpb24gaW4gTWFjaGluZSBMZWFybmluZyoqIChpbnRlZ3JhdGluZyB0aGVvcnksIG1hdGhlbWF0aWNhbCBmb3VuZGF0aW9ucywgYW5kIHByYWN0aWNhbCBleGFtcGxlcyB0byByZWd1bGFyaXphdGlvbiB0ZWNobmlxdWVzIHRvIGhlbHAgdW5kZXJzdGFuZCB0aGVpciBpbXBhY3Qgb24gb3ZlcmZpdHRpbmcgaW4gbWFjaGluZSBsZWFybmluZy4NCg0KLS0tDQoNCiMjIyMgKioxLiBPdmVyZml0dGluZyoqDQotICoqRGVmaW5pdGlvbioqOiBPdmVyZml0dGluZyBvY2N1cnMgd2hlbiBhIG1vZGVsIGlzIG92ZXJseSB0YWlsb3JlZCB0byB0aGUgdHJhaW5pbmcgZGF0YSwgbGVhZGluZyB0byBwb29yIHBlcmZvcm1hbmNlIG9uIHVuc2VlbiBkYXRhLg0KLSAqKlN5bXB0b21zKio6DQogIC0gSGlnaCBhY2N1cmFjeSBvbiB0cmFpbmluZyBkYXRhIGJ1dCBwb29yIHBlcmZvcm1hbmNlIG9uIHZhbGlkYXRpb24vdGVzdCBkYXRhLg0KICAtIFRoZSBtb2RlbCBjYXB0dXJlcyBub2lzZSBhbmQgc3BlY2lmaWMgcGF0dGVybnMgb2YgdGhlIHRyYWluaW5nIGRhdGEuDQotICoqS2V5IElzc3VlKio6IE92ZXJmaXR0ZWQgbW9kZWxzIGhhdmUgbG93IGJpYXMgYnV0IGhpZ2ggdmFyaWFuY2UuDQoNCiMjIyMgKioyLiBUb29scyB0byBDb21iYXQgT3ZlcmZpdHRpbmcqKg0KLSAqKlZhbGlkYXRpb24gU2V0Kio6IE1vbml0b3IgcGVyZm9ybWFuY2UgZHVyaW5nIHRyYWluaW5nLg0KLSAqKlJlZ3VsYXJpemF0aW9uKio6IEludHJvZHVjZSBwZW5hbHRpZXMgdG8gdGhlIGxvc3MgZnVuY3Rpb24uDQoNCi0tLQ0KDQojIyMjICoqMy4gUmVndWxhcml6YXRpb246IENvcmUgQ29uY2VwdCoqDQotICoqRGVmaW5pdGlvbioqOiBBZGRpbmcgYSBwZW5hbHR5IHRlcm0gdG8gdGhlIGxvc3MgZnVuY3Rpb24gdG8gZGlzY291cmFnZSBjb21wbGV4IG1vZGVscy4NCi0gKipNYXRoZW1hdGljYWwgUmVwcmVzZW50YXRpb24qKjoNCiAgXFsNCiAgXHRleHR7TG9zcyBGdW5jdGlvbn0gPSBcdW5kZXJicmFjZXtcc3VtICh5X2kgLSBcaGF0e3l9X2kpXjJ9X3tcdGV4dHtTcXVhcmVkIExvc3N9fSArIFx1bmRlcmJyYWNle1xsYW1iZGEgXGNkb3QgXHRleHR7UGVuYWx0eX19X3tcdGV4dHtSZWd1bGFyaXphdGlvbiBUZXJtfX0NCiAgXF0NCiAgLSBcKCBcbGFtYmRhIFwpOiBSZWd1bGFyaXphdGlvbiBzdHJlbmd0aCAoaHlwZXJwYXJhbWV0ZXIpLg0KICAtIFwoIFx0ZXh0e1BlbmFsdHl9IFwpOiBGdW5jdGlvbiBvZiBtb2RlbCBwYXJhbWV0ZXJzIHRvIGNvbnN0cmFpbiB0aGVtLg0KICANCi0tLQ0KDQojIyMjICoqNC4gVHlwZXMgb2YgUmVndWxhcml6YXRpb24qKg0KLSAqKkwxIFJlZ3VsYXJpemF0aW9uIChMQVNTTykqKjoNCiAgLSBQZW5hbHR5OiBcKCBcbGFtYmRhIFxzdW0gfHdfaXwgXCkgKGFic29sdXRlIHZhbHVlcyBvZiBjb2VmZmljaWVudHMpLg0KICAtICoqVXNlIENhc2UqKjogRmVhdHVyZSBzZWxlY3Rpb24gKHNvbWUgY29lZmZpY2llbnRzIGFyZSBkcml2ZW4gdG8gMCwgY3JlYXRpbmcgc3BhcnNlIG1vZGVscykuDQogIC0gKipJbnRlcnByZXRhdGlvbioqOiBFbmNvdXJhZ2VzIHNwYXJzaXR5IGJ5IHNldHRpbmcgd2VhayBmZWF0dXJlIGNvZWZmaWNpZW50cyB0byAwLg0KICANCiAgXFsNCiAgXHRleHR7TG9zc30gPSBcc3VtICh5X2kgLSBcaGF0e3l9X2kpXjIgKyBcbGFtYmRhIFxzdW0gfHdfaXwNCiAgXF0NCg0KLSAqKkwyIFJlZ3VsYXJpemF0aW9uIChSaWRnZSkqKjoNCiAgLSBQZW5hbHR5OiBcKCBcbGFtYmRhIFxzdW0gd19pXjIgXCkgKHNxdWFyZWQgdmFsdWVzIG9mIGNvZWZmaWNpZW50cykuDQogIC0gKipVc2UgQ2FzZSoqOiBHZW5lcmFsaXplZCBvdmVyZml0dGluZyBwcmV2ZW50aW9uIHdpdGhvdXQgc3BhcnNpdHkuDQogIC0gKipJbnRlcnByZXRhdGlvbioqOiBQZW5hbGl6ZXMgbGFyZ2UgY29lZmZpY2llbnRzIG1vcmUgc3Ryb25nbHksIGJ1dCBhbGwgZmVhdHVyZXMgcmVtYWluIG5vbi16ZXJvLg0KDQogIFxbDQogIFx0ZXh0e0xvc3N9ID0gXHN1bSAoeV9pIC0gXGhhdHt5fV9pKV4yICsgXGxhbWJkYSBcc3VtIHdfaV4yDQogIFxdDQoNCi0tLQ0KDQojIyMjICoqNS4gQ29tcGFyaXNvbjogTDEgdnMuIEwyKioNCnwgQXNwZWN0ICAgICAgICAgICAgICAgIHwgTDEgKExBU1NPKSAgICAgICAgICAgICAgICAgICB8IEwyIChSaWRnZSkgICAgICAgICAgICAgICAgICAgIHwNCnwtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLXwNCnwgKipQZW5hbHR5IEZ1bmN0aW9uKiogICB8IEFic29sdXRlIChcKCB8d19pfCBcKSkgICAgICB8IFNxdWFyZWQgKFwoIHdfaV4yIFwpKSAgICAgICAgIHwNCnwgKipCZWhhdmlvcioqICAgICAgICAgICB8IFNwYXJzZSBjb2VmZmljaWVudHMgICAgICAgICB8IFVuaWZvcm0gY29lZmZpY2llbnQgc2hyaW5rYWdlIHwNCnwgKipVc2UgQ2FzZSoqICAgICAgICAgICB8IEZlYXR1cmUgc2VsZWN0aW9uICAgICAgICAgICB8IFByZXZlbnQgb3ZlcmZpdHRpbmcgICAgICAgICAgIHwNCnwgKipHZW9tZXRyeSBvZiBQZW5hbHR5Kip8IERpYW1vbmQtc2hhcGVkIGV4Y2x1c2lvbiB6b25lIHwgQ2lyY3VsYXIgZXhjbHVzaW9uIHpvbmUgICAgICB8DQoNCi0tLQ0KDQojIyMjICoqNi4gUHJhY3RpY2FsIEltcGxlbWVudGF0aW9uOiBQeXRob24gRXhhbXBsZXMqKg0KDQotICoqRGF0YSBQcmVwcm9jZXNzaW5nKio6DQogIGBgYHB5dGhvbg0KICBmcm9tIHNrbGVhcm4ucHJlcHJvY2Vzc2luZyBpbXBvcnQgU3RhbmRhcmRTY2FsZXINCiAgc2NhbGVyID0gU3RhbmRhcmRTY2FsZXIoKQ0KICBYX3NjYWxlZCA9IHNjYWxlci5maXRfdHJhbnNmb3JtKFgpICAjIE5vcm1hbGl6ZSBmZWF0dXJlcw0KICBgYGANCg0KLSAqKkwxIFJlZ3VsYXJpemF0aW9uIChMQVNTTykqKjoNCiAgYGBgcHl0aG9uDQogIGZyb20gc2tsZWFybi5saW5lYXJfbW9kZWwgaW1wb3J0IExhc3NvDQogIGxhc3NvID0gTGFzc28oYWxwaGE9MC4xKSAgIyBTZXQgcmVndWxhcml6YXRpb24gc3RyZW5ndGgNCiAgbGFzc28uZml0KFhfc2NhbGVkLCB5KQ0KICBwcmludCgiQ29lZmZpY2llbnRzOiIsIGxhc3NvLmNvZWZfKQ0KICBgYGANCg0KLSAqKkwyIFJlZ3VsYXJpemF0aW9uIChSaWRnZSkqKjoNCiAgYGBgcHl0aG9uDQogIGZyb20gc2tsZWFybi5saW5lYXJfbW9kZWwgaW1wb3J0IFJpZGdlDQogIHJpZGdlID0gUmlkZ2UoYWxwaGE9MS4wKSAgIyBTZXQgcmVndWxhcml6YXRpb24gc3RyZW5ndGgNCiAgcmlkZ2UuZml0KFhfc2NhbGVkLCB5KQ0KICBwcmludCgiQ29lZmZpY2llbnRzOiIsIHJpZGdlLmNvZWZfKQ0KICBgYGANCg0KLSAqKlR1bmluZyBSZWd1bGFyaXphdGlvbiBTdHJlbmd0aCAoXChcbGFtYmRhXCkpKio6DQogIGBgYHB5dGhvbg0KICBmcm9tIHNrbGVhcm4ubW9kZWxfc2VsZWN0aW9uIGltcG9ydCBjcm9zc192YWxfc2NvcmUNCiAgYWxwaGFzID0gWzAuMDEsIDAuMSwgMSwgMTAsIDEwMF0NCiAgZm9yIGFscGhhIGluIGFscGhhczoNCiAgICAgIG1vZGVsID0gUmlkZ2UoYWxwaGE9YWxwaGEpDQogICAgICBzY29yZXMgPSBjcm9zc192YWxfc2NvcmUobW9kZWwsIFhfc2NhbGVkLCB5LCBjdj01LCBzY29yaW5nPSduZWdfbWVhbl9zcXVhcmVkX2Vycm9yJykNCiAgICAgIHByaW50KGYiQWxwaGE6IHthbHBoYX0sIFNjb3JlOiB7LXNjb3Jlcy5tZWFuKCl9IikNCiAgYGBgDQoNCi0tLQ0KDQojIyMjICoqNy4gQmlhcy1WYXJpYW5jZSBUcmFkZW9mZioqDQotICoqSGlnaCBCaWFzIChVbmRlcmZpdHRpbmcpKio6IE1vZGVsIGlzIHRvbyBzaW1wbGUsIGZhaWxpbmcgdG8gY2FwdHVyZSBkYXRhIHBhdHRlcm5zLg0KLSAqKkhpZ2ggVmFyaWFuY2UgKE92ZXJmaXR0aW5nKSoqOiBNb2RlbCBpcyB0b28gY29tcGxleCwgY2FwdHVyaW5nIG5vaXNlIGluIHRoZSBkYXRhLg0KLSAqKlJlZ3VsYXJpemF0aW9uKio6IEJhbGFuY2VzIGJpYXMgYW5kIHZhcmlhbmNlIHRvIGFjaGlldmUgYSBnZW5lcmFsaXphYmxlIG1vZGVsLg0KDQotLS0NCg0KIyMjIyAqKjguIEtleSBUYWtlYXdheXMqKg0KMS4gKipSZWd1bGFyaXphdGlvbiBTdHJlbmd0aCAoXCggXGxhbWJkYSBcKSkqKjoNCiAgIC0gQ29udHJvbHMgdGhlIGltcGFjdCBvZiB0aGUgcGVuYWx0eS4NCiAgIC0gTmVlZHMgdG8gYmUgdHVuZWQgZXhwZXJpbWVudGFsbHkuDQoyLiAqKkludGVycHJldCBDb2VmZmljaWVudHMqKjoNCiAgIC0gSW1wb3J0YW5jZSBvZiBzY2FsaW5nIGZlYXR1cmVzIHRvIGVuc3VyZSBjb21wYXJhYmlsaXR5Lg0KMy4gKipWYWxpZGF0aW9uKio6DQogICAtIFVzZSBjcm9zcy12YWxpZGF0aW9uIHRvIGRldGVybWluZSBvcHRpbWFsIFwoIFxsYW1iZGEgXCkuDQo0LiAqKkwxIHZzLiBMMioqOg0KICAgLSBMMSBmb3IgZmVhdHVyZSBzZWxlY3Rpb24sIEwyIGZvciBwcmV2ZW50aW5nIG92ZXJmaXR0aW5nLg0KDQotLS0NCg0KIyMjIyAqKjkuIFZpc3VhbGl6YXRpb24gYW5kIFRvb2xzKioNCi0gVmlzdWFsaXplIHBlbmFsdGllcyBhbmQgZGF0YSBmaXQ6DQogIGBgYHB5dGhvbg0KICBpbXBvcnQgbWF0cGxvdGxpYi5weXBsb3QgYXMgcGx0DQogIHBsdC5wbG90KGFscGhhcywgc2NvcmVzKQ0KICBwbHQueGxhYmVsKCdBbHBoYSAozrspJykNCiAgcGx0LnlsYWJlbCgnQ3Jvc3MtVmFsaWRhdGlvbiBMb3NzJykNCiAgcGx0LnRpdGxlKCdUdW5pbmcgUmVndWxhcml6YXRpb24gU3RyZW5ndGgnKQ0KICBwbHQuc2hvdygpDQogIGBgYA0KDQoNCiMjIyAqKlF1ZXN0aW9ucyBmcm9tIHRoZSBMZWN0dXJlKioNCjEuICoqQ29uY2VwdHVhbCBRdWVzdGlvbioqOiAgDQogICBXaGF0IGlzIHRoZSBrZXkgZGlmZmVyZW5jZSBiZXR3ZWVuIEwxIChMQVNTTykgYW5kIEwyIChSaWRnZSkgcmVndWxhcml6YXRpb24sIGFuZCBob3cgZG9lcyBpdCBhZmZlY3QgbW9kZWwgY29lZmZpY2llbnRzPw0KDQoyLiAqKkFuYWx5dGljYWwgUXVlc3Rpb24qKjogIA0KICAgSG93IGRvZXMgaW5jcmVhc2luZyB0aGUgcmVndWxhcml6YXRpb24gc3RyZW5ndGggKFwoXGxhbWJkYVwpKSBhZmZlY3QgdGhlIGJpYXMtdmFyaWFuY2UgdHJhZGVvZmYgaW4gYSBtYWNoaW5lIGxlYXJuaW5nIG1vZGVsPw0KDQozLiAqKlByYWN0aWNhbCBRdWVzdGlvbioqOiAgDQogICBXaHkgaXMgaXQgaW1wb3J0YW50IHRvIHNjYWxlIGZlYXR1cmVzIGJlZm9yZSBhcHBseWluZyByZWd1bGFyaXphdGlvbiwgYW5kIGhvdyBkb2VzIGl0IGltcGFjdCB0aGUgaW50ZXJwcmV0YXRpb24gb2YgbW9kZWwgY29lZmZpY2llbnRzPw0KDQotLS0NCg0KIyMjICoqVGFrZWF3YXlzIGZyb20gdGhlIExlY3R1cmUqKg0KMS4gKipVbmRlcnN0YW5kaW5nIE92ZXJmaXR0aW5nKio6ICANCiAgIE92ZXJmaXR0aW5nIG9jY3VycyB3aGVuIGEgbW9kZWwgcGVyZm9ybXMgZXhjZXB0aW9uYWxseSB3ZWxsIG9uIHRyYWluaW5nIGRhdGEgYnV0IHBvb3JseSBvbiB1bnNlZW4gZGF0YS4gUmVndWxhcml6YXRpb24gaXMgYSBjcml0aWNhbCB0b29sIHRvIGNvbWJhdCBvdmVyZml0dGluZyBieSBjb25zdHJhaW5pbmcgbW9kZWwgY29tcGxleGl0eS4NCg0KMi4gKipSb2xlIG9mIFJlZ3VsYXJpemF0aW9uIFRlY2huaXF1ZXMqKjogIA0KICAgLSBMMSAoTEFTU08pIHJlZ3VsYXJpemF0aW9uIGludHJvZHVjZXMgc3BhcnNpdHkgYnkgZHJpdmluZyB3ZWFrIGZlYXR1cmUgY29lZmZpY2llbnRzIHRvIHplcm8sIG1ha2luZyBpdCBpZGVhbCBmb3IgZmVhdHVyZSBzZWxlY3Rpb24uICANCiAgIC0gTDIgKFJpZGdlKSByZWd1bGFyaXphdGlvbiB1bmlmb3JtbHkgc2hyaW5rcyBjb2VmZmljaWVudHMsIHByZXZlbnRpbmcgb3ZlcmZpdHRpbmcgd2l0aG91dCBlbGltaW5hdGluZyBmZWF0dXJlcy4NCg0KMy4gKipJbXBvcnRhbmNlIG9mIEh5cGVycGFyYW1ldGVyIFR1bmluZyoqOiAgDQogICBUaGUgcmVndWxhcml6YXRpb24gc3RyZW5ndGggKFwoXGxhbWJkYVwpKSBtdXN0IGJlIGNhcmVmdWxseSB0dW5lZCAoZS5nLiwgdXNpbmcgY3Jvc3MtdmFsaWRhdGlvbikgdG8gYmFsYW5jZSBtb2RlbCBiaWFzIGFuZCB2YXJpYW5jZSwgZW5zdXJpbmcgb3B0aW1hbCBwZXJmb3JtYW5jZSBvbiB1bnNlZW4gZGF0YS4NCg==