attach(Exercise)
The following objects are masked from Exercise (pos = 6):

    age, Analyse_result, birth_date, br_cr, br_dy, breed,
    Breed_Type, Gender, herdsize, ht, ID, kkrpct, krypct, mlkpct,
    n_cattle_1km, n_cattle_5km, n_cattle1km, n_cattle5km,
    n_goat_1km, n_goat_5km, n_goat1km, n_goat5km, n_herd_1km,
    n_herd_5km, n_movement, n_sheep_1km, n_sheep_5km, n_sheep1km,
    n_sheep5km, n_total1km, n_total5km, newres, prodtype, res,
    sex, slaughter_date
### Descriptive Analysis
summary(Exercise) #Basic summary
       ID            Analyse_result      birth_date                 
 Min.   :1.010e+09   Min.   : -2.990   Min.   :1994-11-20 00:00:00  
 1st Qu.:3.105e+09   1st Qu.:  2.045   1st Qu.:2010-03-04 18:00:00  
 Median :4.840e+09   Median :  4.660   Median :2011-04-02 12:00:00  
 Mean   :4.989e+09   Mean   : 12.083   Mean   :2010-03-04 20:36:36  
 3rd Qu.:6.443e+09   3rd Qu.:  8.693   3rd Qu.:2011-07-09 06:00:00  
 Max.   :1.173e+10   Max.   :402.000   Max.   :2012-01-25 00:00:00  
                                                                    
    Gender          slaughter_date                  n_movement    
 Length:800         Min.   :2012-07-02 00:00:00   Min.   : 2.000  
 Class :character   1st Qu.:2012-08-01 00:00:00   1st Qu.: 2.000  
 Mode  :character   Median :2012-08-21 00:00:00   Median : 2.000  
                    Mean   :2012-08-24 03:41:24   Mean   : 2.839  
                    3rd Qu.:2012-09-19 00:00:00   3rd Qu.: 3.000  
                    Max.   :2012-10-16 00:00:00   Max.   :11.000  
                                                                  
    herdsize          mlkpct            krypct            kkrpct      
 Min.   :   1.0   Min.   :  0.000   Min.   :  0.000   Min.   :  0.00  
 1st Qu.:  23.0   1st Qu.:  0.000   1st Qu.:  1.912   1st Qu.:  0.00  
 Median :  56.0   Median :  7.572   Median : 15.305   Median : 20.80  
 Mean   : 119.3   Mean   : 34.314   Mean   : 27.599   Mean   : 38.09  
 3rd Qu.: 133.0   3rd Qu.: 79.663   3rd Qu.: 46.733   3rd Qu.: 82.11  
 Max.   :1792.0   Max.   :100.000   Max.   :100.000   Max.   :100.00  
 NA's   :3                                                            
   prodtype           n_herd_1km      n_cattle_1km    n_sheep_1km    
 Length:800         Min.   : 0.000   Min.   :0.000   Min.   :0.0000  
 Class :character   1st Qu.: 1.000   1st Qu.:1.000   1st Qu.:0.0000  
 Mode  :character   Median : 2.000   Median :2.000   Median :0.0000  
                    Mean   : 2.612   Mean   :1.933   Mean   :0.6388  
                    3rd Qu.: 4.000   3rd Qu.:3.000   3rd Qu.:1.0000  
                    Max.   :12.000   Max.   :8.000   Max.   :5.0000  
                                                                     
   n_goat_1km      n_herd_5km      n_cattle_5km    n_sheep_5km   
 Min.   :0.000   Min.   :  0.00   Min.   : 0.00   Min.   : 0.00  
 1st Qu.:0.000   1st Qu.: 41.00   1st Qu.:28.00   1st Qu.: 8.00  
 Median :0.000   Median : 53.00   Median :39.00   Median :12.00  
 Mean   :0.335   Mean   : 52.94   Mean   :39.06   Mean   :13.23  
 3rd Qu.:1.000   3rd Qu.: 65.00   3rd Qu.:49.00   3rd Qu.:17.00  
 Max.   :5.000   Max.   :101.00   Max.   :76.00   Max.   :47.00  
                                                                 
   n_goat_5km          age             res             Breed_Type       
 Min.   : 0.000   Min.   : 0.611   Length:800         Length:800        
 1st Qu.: 4.000   1st Qu.: 1.110   Class :character   Class :character  
 Median : 5.000   Median : 1.390   Mode  :character   Mode  :character  
 Mean   : 6.051   Mean   : 2.475                                        
 3rd Qu.: 8.000   3rd Qu.: 2.489                                        
 Max.   :22.000   Max.   :17.805                                        
                                                                        
     newres         breed                sex            br_dy      
 Min.   :1.000   Length:800         Min.   :1.000   Min.   :1.000  
 1st Qu.:1.000   Class :character   1st Qu.:1.000   1st Qu.:1.000  
 Median :1.000   Mode  :character   Median :1.000   Median :1.000  
 Mean   :1.055                      Mean   :1.384   Mean   :1.331  
 3rd Qu.:1.000                      3rd Qu.:2.000   3rd Qu.:2.000  
 Max.   :2.000                      Max.   :2.000   Max.   :2.000  
                                                                   
     br_cr        n_cattle1km       n_sheep1km       n_goat1km      
 Min.   :1.000   Min.   :   0.0   Min.   :  0.00   Min.   :  0.000  
 1st Qu.:1.000   1st Qu.:   4.0   1st Qu.:  0.00   1st Qu.:  0.000  
 Median :1.000   Median :  42.0   Median :  0.00   Median :  0.000  
 Mean   :1.284   Mean   : 178.2   Mean   : 11.09   Mean   :  2.039  
 3rd Qu.:2.000   3rd Qu.: 258.0   3rd Qu.:  6.25   3rd Qu.:  0.000  
 Max.   :2.000   Max.   :1399.0   Max.   :800.00   Max.   :586.000  
                                                                    
  n_cattle5km      n_sheep5km       n_goat5km         n_total1km     
 Min.   :    0   Min.   :   0.0   Min.   :   0.00   Min.   :   0.00  
 1st Qu.: 1441   1st Qu.:  87.0   1st Qu.:  11.00   1st Qu.:  10.75  
 Median : 3218   Median : 158.5   Median :  21.00   Median :  57.50  
 Mean   : 3851   Mean   : 289.7   Mean   :  42.11   Mean   : 191.37  
 3rd Qu.: 5689   3rd Qu.: 311.0   3rd Qu.:  37.00   3rd Qu.: 277.75  
 Max.   :12292   Max.   :3623.0   Max.   :2005.00   Max.   :1422.00  
                                                                     
   n_total5km         ht           
 Min.   :    0   Length:800        
 1st Qu.: 1764   Class :character  
 Median : 3481   Mode  :character  
 Mean   : 4183                     
 3rd Qu.: 5959                     
 Max.   :13034                     
                                   
library(psych)
describe(Exercise[ , c(6:10, 16:21, 24, 28:35)]) #Accessing only numerical variables

#Numerical data visualization - Histogram. Box plot,Violin Plot, Scatter Plot, Line Plot,Heat map 

library(ggplot2)
ggplot(data = Exercise, aes(x=herdsize))+
geom_histogram(binwidth = , color = "black", fill = "lightblue", alpha =0.5)+
labs(title = "Histogram of Herd Size", x = "Herd Size", y = "No of Animal")+
theme_minimal()


#Box plot (Single axis)
ggplot(data = Exercise, aes(y= age))+
  geom_boxplot()+
  labs(title = "Box Plot of Age" )

#Box plot (X-axis = cat, Y-axis = num)
ggplot(data = Exercise, aes(x=prodtype, y=mlkpct, fill = prodtype ))+
  geom_boxplot(color = "black")+
  scale_fill_manual(values = c("k"= "purple", "m"= "yellow", "x"="red"))

# Box plot (as.factor issue)
ggplot(data = Exercise, aes(x=as.factor(sex), y=age, fill = as.factor(sex)  ))+
  geom_boxplot(color = "black")+
  scale_fill_manual(values = c("1"= "purple", "2"= "yellow"))+
  labs(title = "Box Plot of Age", x = "Sex of Cattle", y= "age" )

#Violin plot (X-axis = cat, Y-axis = num)
ggplot(data = Exercise, aes(x=prodtype, y=mlkpct, fill = prodtype ))+
  geom_violin(color = "black")+
  scale_fill_manual(values = c("k"= "purple", "m"= "yellow", "x"="red"))  


# Violin plot (as.factor issue)
ggplot(data = Exercise, aes(x=as.factor(sex), y=age, fill = as.factor(sex)  ))+
  geom_violin(color = "black")+
  scale_fill_manual(values = c("1"= "purple", "2"= "yellow"))+
  labs(title = "Box Plot of Age", x = "Sex of Cattle", y= "age")

#Scatter Plot
ggplot(data = Exercise, aes(x=prodtype, y=mlkpct, color = prodtype ))+
  geom_point()+
  scale_color_manual(values = c("k"= "purple", "m"= "yellow", "x"="red")) 


#Scatter Plot
ggplot(data = Exercise, aes(x=mlkpct, y=kkrpct, color = mlkpct ))+
  geom_point()

  #scale_color_manual(values = c("k"= "purple", "m"= "yellow", "x"="red"))   


#Heat Map
age_kkrpct= cor(Exercise[3:10,6:10])
age_kkrpct
            n_movement   herdsize     mlkpct     krypct      kkrpct
n_movement  1.00000000  0.6604868  0.3771081 -0.3082160  0.05298212
herdsize    0.66048685  1.0000000  0.5968764 -0.1641058 -0.31157441
mlkpct      0.37710813  0.5968764  1.0000000 -0.5859320 -0.14213575
krypct     -0.30821598 -0.1641058 -0.5859320  1.0000000 -0.71885087
kkrpct      0.05298212 -0.3115744 -0.1421357 -0.7188509  1.00000000
ggcorrplot(age_kkrpct)

detach(Exercise)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmF0dGFjaChFeGVyY2lzZSkNCiMjIyBEZXNjcmlwdGl2ZSBBbmFseXNpcw0Kc3VtbWFyeShFeGVyY2lzZSkgI0Jhc2ljIHN1bW1hcnkNCmxpYnJhcnkocHN5Y2gpDQpkZXNjcmliZShFeGVyY2lzZVsgLCBjKDY6MTAsIDE2OjIxLCAyNCwgMjg6MzUpXSkgI0FjY2Vzc2luZyBvbmx5IG51bWVyaWNhbCB2YXJpYWJsZXMNCg0KI051bWVyaWNhbCBkYXRhIHZpc3VhbGl6YXRpb24gLSBIaXN0b2dyYW0uIEJveCBwbG90LFZpb2xpbiBQbG90LCBTY2F0dGVyIFBsb3QsIExpbmUgUGxvdCxIZWF0IG1hcCANCg0KbGlicmFyeShnZ3Bsb3QyKQ0KZ2dwbG90KGRhdGEgPSBFeGVyY2lzZSwgYWVzKHg9aGVyZHNpemUpKSsNCmdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gLCBjb2xvciA9ICJibGFjayIsIGZpbGwgPSAibGlnaHRibHVlIiwgYWxwaGEgPTAuNSkrDQpsYWJzKHRpdGxlID0gIkhpc3RvZ3JhbSBvZiBIZXJkIFNpemUiLCB4ID0gIkhlcmQgU2l6ZSIsIHkgPSAiTm8gb2YgQW5pbWFsIikrDQp0aGVtZV9taW5pbWFsKCkNCg0KI0JveCBwbG90IChTaW5nbGUgYXhpcykNCmdncGxvdChkYXRhID0gRXhlcmNpc2UsIGFlcyh5PSBhZ2UpKSsNCiAgZ2VvbV9ib3hwbG90KCkrDQogIGxhYnModGl0bGUgPSAiQm94IFBsb3Qgb2YgQWdlIiApDQojQm94IHBsb3QgKFgtYXhpcyA9IGNhdCwgWS1heGlzID0gbnVtKQ0KZ2dwbG90KGRhdGEgPSBFeGVyY2lzZSwgYWVzKHg9cHJvZHR5cGUsIHk9bWxrcGN0LCBmaWxsID0gcHJvZHR5cGUgKSkrDQogIGdlb21fYm94cGxvdChjb2xvciA9ICJibGFjayIpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCJrIj0gInB1cnBsZSIsICJtIj0gInllbGxvdyIsICJ4Ij0icmVkIikpDQojIEJveCBwbG90IChhcy5mYWN0b3IgaXNzdWUpDQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1hcy5mYWN0b3Ioc2V4KSwgeT1hZ2UsIGZpbGwgPSBhcy5mYWN0b3Ioc2V4KSAgKSkrDQogIGdlb21fYm94cGxvdChjb2xvciA9ICJibGFjayIpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCIxIj0gInB1cnBsZSIsICIyIj0gInllbGxvdyIpKSsNCiAgbGFicyh0aXRsZSA9ICJCb3ggUGxvdCBvZiBBZ2UiLCB4ID0gIlNleCBvZiBDYXR0bGUiLCB5PSAiYWdlIiApDQojVmlvbGluIHBsb3QgKFgtYXhpcyA9IGNhdCwgWS1heGlzID0gbnVtKQ0KZ2dwbG90KGRhdGEgPSBFeGVyY2lzZSwgYWVzKHg9cHJvZHR5cGUsIHk9bWxrcGN0LCBmaWxsID0gcHJvZHR5cGUgKSkrDQogIGdlb21fdmlvbGluKGNvbG9yID0gImJsYWNrIikrDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoImsiPSAicHVycGxlIiwgIm0iPSAieWVsbG93IiwgIngiPSJyZWQiKSkgIA0KDQojIFZpb2xpbiBwbG90IChhcy5mYWN0b3IgaXNzdWUpDQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1hcy5mYWN0b3Ioc2V4KSwgeT1hZ2UsIGZpbGwgPSBhcy5mYWN0b3Ioc2V4KSAgKSkrDQogIGdlb21fdmlvbGluKGNvbG9yID0gImJsYWNrIikrDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoIjEiPSAicHVycGxlIiwgIjIiPSAieWVsbG93IikpKw0KICBsYWJzKHRpdGxlID0gIkJveCBQbG90IG9mIEFnZSIsIHggPSAiU2V4IG9mIENhdHRsZSIsIHk9ICJhZ2UiKQ0KI1NjYXR0ZXIgUGxvdA0KZ2dwbG90KGRhdGEgPSBFeGVyY2lzZSwgYWVzKHg9cHJvZHR5cGUsIHk9bWxrcGN0LCBjb2xvciA9IHByb2R0eXBlICkpKw0KICBnZW9tX3BvaW50KCkrDQogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJrIj0gInB1cnBsZSIsICJtIj0gInllbGxvdyIsICJ4Ij0icmVkIikpIA0KDQojU2NhdHRlciBQbG90DQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1tbGtwY3QsIHk9a2tycGN0LCBjb2xvciA9IG1sa3BjdCApKSsNCiAgZ2VvbV9wb2ludCgpDQogICNzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygiayI9ICJwdXJwbGUiLCAibSI9ICJ5ZWxsb3ciLCAieCI9InJlZCIpKSAgIA0KDQoNCiNIZWF0IE1hcA0KYWdlX2trcnBjdD0gY29yKEV4ZXJjaXNlWzM6MTAsNjoxMF0pDQphZ2Vfa2tycGN0DQpnZ2NvcnJwbG90KGFnZV9ra3JwY3QpDQpkZXRhY2goRXhlcmNpc2UpDQpgYGANCg0K