attach(Exercise)
#Exploring the Data 
names(Exercise) #To check Variable names 
 [1] "ID"             "Analyse_result" "birth_date"     "Gender"         "slaughter_date"
 [6] "n_movement"     "herdsize"       "mlkpct"         "krypct"         "kkrpct"        
[11] "prodtype"       "n_herd_1km"     "n_cattle_1km"   "n_sheep_1km"    "n_goat_1km"    
[16] "n_herd_5km"     "n_cattle_5km"   "n_sheep_5km"    "n_goat_5km"     "age"           
[21] "res"            "Breed_Type"     "newres"         "breed"          "sex"           
[26] "br_dy"          "br_cr"          "n_cattle1km"    "n_sheep1km"     "n_goat1km"     
[31] "n_cattle5km"    "n_sheep5km"     "n_goat5km"      "n_total1km"     "n_total5km"    
[36] "ht"            
str(Exercise) #To Check Variable type
tibble [800 × 36] (S3: tbl_df/tbl/data.frame)
 $ ID            : num [1:800] 1.01e+09 1.02e+09 1.02e+09 1.03e+09 1.05e+09 ...
 $ Analyse_result: num [1:800] 6.77 4.22 14.67 3.88 -2.01 ...
 $ birth_date    : POSIXct[1:800], format: "2011-05-07" "2010-09-13" ...
 $ Gender        : chr [1:800] "Male" "Male" "Male" "Male" ...
 $ slaughter_date: POSIXct[1:800], format: "2012-09-18" "2012-10-01" ...
 $ n_movement    : num [1:800] 3 3 4 2 2 2 2 2 2 2 ...
 $ herdsize      : num [1:800] 14 196 97 5 7 65 13 52 68 28 ...
 $ mlkpct        : num [1:800] 64.4 73 45.1 0 0 ...
 $ krypct        : num [1:800] 22.1 27 17.8 32.5 100 ...
 $ kkrpct        : num [1:800] 13.4 0 37.1 67.5 0 ...
 $ prodtype      : chr [1:800] "m" "m" "m" "k" ...
 $ n_herd_1km    : num [1:800] 0 6 3 2 3 5 5 3 0 7 ...
 $ n_cattle_1km  : num [1:800] 0 4 1 1 2 4 1 2 0 4 ...
 $ n_sheep_1km   : num [1:800] 0 3 1 1 2 2 2 1 0 3 ...
 $ n_goat_1km    : num [1:800] 0 1 1 0 0 1 2 0 0 0 ...
 $ n_herd_5km    : num [1:800] 39 68 50 45 50 91 62 101 41 43 ...
 $ n_cattle_5km  : num [1:800] 16 38 33 25 19 67 33 65 20 21 ...
 $ n_sheep_5km   : num [1:800] 21 24 12 13 30 36 30 47 25 22 ...
 $ n_goat_5km    : num [1:800] 8 10 6 9 11 9 9 10 7 5 ...
 $ age           : num [1:800] 1.37 2.05 0.69 1 1.46 ...
 $ res           : chr [1:800] "Neg" "Neg" "Neg" "Neg" ...
 $ Breed_Type    : chr [1:800] "Dairy" "Dairy" "Dairy" "Beef" ...
 $ newres        : num [1:800] 1 1 1 1 1 1 1 1 1 1 ...
 $ breed         : chr [1:800] "RDM" "RDM" "HOL" "oth" ...
 $ sex           : num [1:800] 1 1 1 1 1 1 1 1 2 2 ...
 $ br_dy         : num [1:800] 2 2 2 1 1 2 1 1 1 1 ...
 $ br_cr         : num [1:800] 1 1 1 1 2 1 1 2 2 2 ...
 $ n_cattle1km   : num [1:800] 0 82 458 21 18 79 4 511 0 48 ...
 $ n_sheep1km    : num [1:800] 0 42 11 11 17 22 6 2 0 164 ...
 $ n_goat1km     : num [1:800] 0 9 1 0 0 9 10 0 0 0 ...
 $ n_cattle5km   : num [1:800] 385 826 4592 1339 320 ...
 $ n_sheep5km    : num [1:800] 367 259 140 642 356 380 658 914 580 394 ...
 $ n_goat5km     : num [1:800] 44 43 14 79 48 48 53 47 102 21 ...
 $ n_total1km    : num [1:800] 0 133 470 32 35 110 20 513 0 212 ...
 $ n_total5km    : num [1:800] 796 1128 4746 2060 724 ...
 $ ht            : chr [1:800] "Beeef" "Beeef" "Beeef" "Beeef" ...
summary(Exercise) # TO find missing values 
       ID            Analyse_result      birth_date                     Gender         
 Min.   :1.010e+09   Min.   : -2.990   Min.   :1994-11-20 00:00:00   Length:800        
 1st Qu.:3.105e+09   1st Qu.:  2.045   1st Qu.:2010-03-04 18:00:00   Class :character  
 Median :4.840e+09   Median :  4.660   Median :2011-04-02 12:00:00   Mode  :character  
 Mean   :4.989e+09   Mean   : 12.083   Mean   :2010-03-04 20:36:36                     
 3rd Qu.:6.443e+09   3rd Qu.:  8.693   3rd Qu.:2011-07-09 06:00:00                     
 Max.   :1.173e+10   Max.   :402.000   Max.   :2012-01-25 00:00:00                     
                                                                                       
 slaughter_date                  n_movement        herdsize          mlkpct       
 Min.   :2012-07-02 00:00:00   Min.   : 2.000   Min.   :   1.0   Min.   :  0.000  
 1st Qu.:2012-08-01 00:00:00   1st Qu.: 2.000   1st Qu.:  23.0   1st Qu.:  0.000  
 Median :2012-08-21 00:00:00   Median : 2.000   Median :  56.0   Median :  7.572  
 Mean   :2012-08-24 03:41:24   Mean   : 2.839   Mean   : 119.3   Mean   : 34.314  
 3rd Qu.:2012-09-19 00:00:00   3rd Qu.: 3.000   3rd Qu.: 133.0   3rd Qu.: 79.663  
 Max.   :2012-10-16 00:00:00   Max.   :11.000   Max.   :1792.0   Max.   :100.000  
                                                NA's   :3                         
     krypct            kkrpct         prodtype           n_herd_1km      n_cattle_1km  
 Min.   :  0.000   Min.   :  0.00   Length:800         Min.   : 0.000   Min.   :0.000  
 1st Qu.:  1.912   1st Qu.:  0.00   Class :character   1st Qu.: 1.000   1st Qu.:1.000  
 Median : 15.305   Median : 20.80   Mode  :character   Median : 2.000   Median :2.000  
 Mean   : 27.599   Mean   : 38.09                      Mean   : 2.612   Mean   :1.933  
 3rd Qu.: 46.733   3rd Qu.: 82.11                      3rd Qu.: 4.000   3rd Qu.:3.000  
 Max.   :100.000   Max.   :100.00                      Max.   :12.000   Max.   :8.000  
                                                                                       
  n_sheep_1km       n_goat_1km      n_herd_5km      n_cattle_5km    n_sheep_5km   
 Min.   :0.0000   Min.   :0.000   Min.   :  0.00   Min.   : 0.00   Min.   : 0.00  
 1st Qu.:0.0000   1st Qu.:0.000   1st Qu.: 41.00   1st Qu.:28.00   1st Qu.: 8.00  
 Median :0.0000   Median :0.000   Median : 53.00   Median :39.00   Median :12.00  
 Mean   :0.6388   Mean   :0.335   Mean   : 52.94   Mean   :39.06   Mean   :13.23  
 3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.: 65.00   3rd Qu.:49.00   3rd Qu.:17.00  
 Max.   :5.0000   Max.   :5.000   Max.   :101.00   Max.   :76.00   Max.   :47.00  
                                                                                  
   n_goat_5km          age             res             Breed_Type            newres     
 Min.   : 0.000   Min.   : 0.611   Length:800         Length:800         Min.   :1.000  
 1st Qu.: 4.000   1st Qu.: 1.110   Class :character   Class :character   1st Qu.:1.000  
 Median : 5.000   Median : 1.390   Mode  :character   Mode  :character   Median :1.000  
 Mean   : 6.051   Mean   : 2.475                                         Mean   :1.055  
 3rd Qu.: 8.000   3rd Qu.: 2.489                                         3rd Qu.:1.000  
 Max.   :22.000   Max.   :17.805                                         Max.   :2.000  
                                                                                        
    breed                sex            br_dy           br_cr        n_cattle1km    
 Length:800         Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :   0.0  
 Class :character   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:   4.0  
 Mode  :character   Median :1.000   Median :1.000   Median :1.000   Median :  42.0  
                    Mean   :1.384   Mean   :1.331   Mean   :1.284   Mean   : 178.2  
                    3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.: 258.0  
                    Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :1399.0  
                                                                                    
   n_sheep1km       n_goat1km        n_cattle5km      n_sheep5km       n_goat5km      
 Min.   :  0.00   Min.   :  0.000   Min.   :    0   Min.   :   0.0   Min.   :   0.00  
 1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.: 1441   1st Qu.:  87.0   1st Qu.:  11.00  
 Median :  0.00   Median :  0.000   Median : 3218   Median : 158.5   Median :  21.00  
 Mean   : 11.09   Mean   :  2.039   Mean   : 3851   Mean   : 289.7   Mean   :  42.11  
 3rd Qu.:  6.25   3rd Qu.:  0.000   3rd Qu.: 5689   3rd Qu.: 311.0   3rd Qu.:  37.00  
 Max.   :800.00   Max.   :586.000   Max.   :12292   Max.   :3623.0   Max.   :2005.00  
                                                                                      
   n_total1km        n_total5km         ht           
 Min.   :   0.00   Min.   :    0   Length:800        
 1st Qu.:  10.75   1st Qu.: 1764   Class :character  
 Median :  57.50   Median : 3481   Mode  :character  
 Mean   : 191.37   Mean   : 4183                     
 3rd Qu.: 277.75   3rd Qu.: 5959                     
 Max.   :1422.00   Max.   :13034                     
                                                     
head(Exercise)   # View the first few rows
#Frequency Table
table(Gender)
Gender
Female   Male 
   307    493 
table(prodtype)
prodtype
  k   m   x 
302 299 199 
table(res)
res
Neg Pos 
756  44 
table(sex)
sex
  1   2 
493 307 
table(br_dy)
br_dy
  1   2 
535 265 
table(br_cr)
br_cr
  1   2 
573 227 
table(ht)
ht
Beeef Dairy 
  716    84 
# 2*2 table
con = table (Gender, res) 
con
        res
Gender   Neg Pos
  Female 279  28
  Male   477  16
ftable(Gender~res + ht, data=Exercise) # a flat contingency table for three or more variables.
          Gender Female Male
res ht                      
Neg Beeef           223  461
    Dairy            56   16
Pos Beeef            17   15
    Dairy            11    1
#Proportion
count = table(Gender)
count
Gender
Female   Male 
   307    493 
Proportion = count/800
Proportion
Gender
 Female    Male 
0.38375 0.61625 
#Another way
prop.table(table(Gender))
Gender
 Female    Male 
0.38375 0.61625 
#Percent

Percent = Proportion * 100
Percent
Gender
Female   Male 
38.375 61.625 
#Ratio
count3 = table(res)
count3
res
Neg Pos 
756  44 
ratio = count3["Neg"]/count3["Pos"]
ratio
     Neg 
17.18182 
#Categorical data visualization, Bar Chart, pie chart, Stacked Bar Chart,Mosaic Plot, Dot Plot

#Bar Chart
library(ggplot2)
ggplot(data = Exercise, aes(x=Gender, y= , fill = Gender))+
  geom_bar()+
  scale_fill_manual(values = c("Female" = "red", "Male"= "green" ))+
labs(title = "Barchart of Male and Female", x = "Gender", y = "Frequency")+
  theme_minimal()

# Pie Chart
pie(Percent, main = "Pie Chart of Prod Type", col = rainbow(length(Percent)))


# Stacked Bar Chart 
ggplot(data = Exercise, aes(x=Gender, fill = res))+
  geom_bar(position = "stack")+
  labs(title = "Barchart of Male and Female", x = "Gender", y = "Frequency", fill = "Status")+
  theme_minimal()

#Dot Plot 

ggplot(data = Exercise, aes(x=Gender,fill = Gender))+
  geom_dotplot()


#Dot Plot 2*2
ggplot(data = Exercise, aes(x=Gender,fill = ht))+
    geom_dotplot()+
labs(fill = "Herd Type")+
theme_minimal()


#Mosaic Plot
mosaicplot(con, main="Mosaic Plot of Gender and Disease Status",xlab = "Gender", ylab = "Status", col= rainbow(length(con)))

detach(Exercise)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBkZl9wcmludDogcGFnZWQNCi0tLQ0KDQoNCmBgYHtyfQ0KYXR0YWNoKEV4ZXJjaXNlKQ0KYGBgDQoNCg0KYGBge3J9DQojRXhwbG9yaW5nIHRoZSBEYXRhIA0KbmFtZXMoRXhlcmNpc2UpICNUbyBjaGVjayBWYXJpYWJsZSBuYW1lcyANCnN0cihFeGVyY2lzZSkgI1RvIENoZWNrIFZhcmlhYmxlIHR5cGUNCnN1bW1hcnkoRXhlcmNpc2UpICMgVE8gZmluZCBtaXNzaW5nIHZhbHVlcyANCmhlYWQoRXhlcmNpc2UpICAgIyBWaWV3IHRoZSBmaXJzdCBmZXcgcm93cw0KYGBgDQoNCg0KYGBge3J9DQojRnJlcXVlbmN5IFRhYmxlDQp0YWJsZShHZW5kZXIpDQp0YWJsZShwcm9kdHlwZSkNCnRhYmxlKHJlcykNCnRhYmxlKHNleCkNCnRhYmxlKGJyX2R5KQ0KdGFibGUoYnJfY3IpDQp0YWJsZShodCkNCg0KIyAyKjIgdGFibGUNCmNvbiA9IHRhYmxlIChHZW5kZXIsIHJlcykgDQpjb24NCmZ0YWJsZShHZW5kZXJ+cmVzICsgaHQsIGRhdGE9RXhlcmNpc2UpICMgYSBmbGF0IGNvbnRpbmdlbmN5IHRhYmxlIGZvciB0aHJlZSBvciBtb3JlIHZhcmlhYmxlcy4NCg0KI1Byb3BvcnRpb24NCmNvdW50ID0gdGFibGUoR2VuZGVyKQ0KY291bnQNClByb3BvcnRpb24gPSBjb3VudC84MDANClByb3BvcnRpb24NCiNBbm90aGVyIHdheQ0KcHJvcC50YWJsZSh0YWJsZShHZW5kZXIpKQ0KDQojUGVyY2VudA0KDQpQZXJjZW50ID0gUHJvcG9ydGlvbiAqIDEwMA0KUGVyY2VudA0KDQojUmF0aW8NCmNvdW50MyA9IHRhYmxlKHJlcykNCmNvdW50Mw0KcmF0aW8gPSBjb3VudDNbIk5lZyJdL2NvdW50M1siUG9zIl0NCnJhdGlvDQpgYGANCg0KDQoNCmBgYHtyfQ0KI0NhdGVnb3JpY2FsIGRhdGEgdmlzdWFsaXphdGlvbiwgQmFyIENoYXJ0LCBwaWUgY2hhcnQsIFN0YWNrZWQgQmFyIENoYXJ0LE1vc2FpYyBQbG90LCBEb3QgUGxvdA0KDQojQmFyIENoYXJ0DQpsaWJyYXJ5KGdncGxvdDIpDQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1HZW5kZXIsIHk9ICwgZmlsbCA9IEdlbmRlcikpKw0KICBnZW9tX2JhcigpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCJGZW1hbGUiID0gInJlZCIsICJNYWxlIj0gImdyZWVuIiApKSsNCmxhYnModGl0bGUgPSAiQmFyY2hhcnQgb2YgTWFsZSBhbmQgRmVtYWxlIiwgeCA9ICJHZW5kZXIiLCB5ID0gIkZyZXF1ZW5jeSIpKw0KICB0aGVtZV9taW5pbWFsKCkNCiMgUGllIENoYXJ0DQpwaWUoUGVyY2VudCwgbWFpbiA9ICJQaWUgQ2hhcnQgb2YgUHJvZCBUeXBlIiwgY29sID0gcmFpbmJvdyhsZW5ndGgoUGVyY2VudCkpKQ0KDQojIFN0YWNrZWQgQmFyIENoYXJ0IA0KZ2dwbG90KGRhdGEgPSBFeGVyY2lzZSwgYWVzKHg9R2VuZGVyLCBmaWxsID0gcmVzKSkrDQogIGdlb21fYmFyKHBvc2l0aW9uID0gInN0YWNrIikrDQogIGxhYnModGl0bGUgPSAiQmFyY2hhcnQgb2YgTWFsZSBhbmQgRmVtYWxlIiwgeCA9ICJHZW5kZXIiLCB5ID0gIkZyZXF1ZW5jeSIsIGZpbGwgPSAiU3RhdHVzIikrDQogIHRoZW1lX21pbmltYWwoKQ0KI0RvdCBQbG90IA0KDQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1HZW5kZXIsZmlsbCA9IEdlbmRlcikpKw0KICBnZW9tX2RvdHBsb3QoKQ0KDQojRG90IFBsb3QgMioyDQpnZ3Bsb3QoZGF0YSA9IEV4ZXJjaXNlLCBhZXMoeD1HZW5kZXIsZmlsbCA9IGh0KSkrDQogICAgZ2VvbV9kb3RwbG90KCkrDQpsYWJzKGZpbGwgPSAiSGVyZCBUeXBlIikrDQp0aGVtZV9taW5pbWFsKCkNCg0KI01vc2FpYyBQbG90DQptb3NhaWNwbG90KGNvbiwgbWFpbj0iTW9zYWljIFBsb3Qgb2YgR2VuZGVyIGFuZCBEaXNlYXNlIFN0YXR1cyIseGxhYiA9ICJHZW5kZXIiLCB5bGFiID0gIlN0YXR1cyIsIGNvbD0gcmFpbmJvdyhsZW5ndGgoY29uKSkpDQoNCmBgYA0KYGBge3J9DQpkZXRhY2goRXhlcmNpc2UpDQpgYGANCg==