1. Introduction

A quadratic equation is of the form

\[ ax^2 + bx + c = 0 \]

2.1 quadratic formula

To solve this equation, use the quadratic formula

\[ x_\text{1,2} = \frac {-b \pm \sqrt{b^2 -4ac}} {2a} \]

2.2 Function to sove quadratic equation

gpt <- function(a, b, c){
  n1 <- (-b +sqrt(b^2 - 4*a*c))/(2*a)
  n2 <- (b + sqrt(b^2-4*a*c))/2*a
  n1 <- paste("x1 =", n1)
  n2 <- paste("x2 =", n2)
  ifelse(n1==n2, return(n1), return(c(n1,n2)))
}

We put 1, 6, 9to function gpt(1,6,9), then then we get.

gpt(1,6,9)
## [1] "x1 = -3" "x2 = 3"

Hence, we can get the Result of quadratic equation is x1 = -3, x2 = 3

LS0tDQp0aXRsZTogIldyaXRpbmcgZnVuY3Rpb24gdG8gc29sdmUgcXVhZHJhdGljIGVxdWF0aW9uICINCmF1dGhvcjogIkhlbnJ5IERvIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiBubw0KICB3b3JkX2RvY3VtZW50czoNCiAgICB0b2M6IHllcw0KDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFKQ0KYGBgDQoNCiMjIDEuIEludHJvZHVjdGlvbg0KQSBxdWFkcmF0aWMgZXF1YXRpb24gaXMgb2YgdGhlIGZvcm0NCg0KJCQNCmF4XjIgKyBieCArIGMgPSAwDQokJA0KDQojIyAyLjEgcXVhZHJhdGljIGZvcm11bGENClRvIHNvbHZlIHRoaXMgZXF1YXRpb24sIHVzZSB0aGUgcXVhZHJhdGljIGZvcm11bGENCg0KJCQNCnhfXHRleHR7MSwyfSA9IFxmcmFjIHstYiBccG0gXHNxcnR7Yl4yIC00YWN9fSB7MmF9DQokJA0KDQojIyAyLjIgRnVuY3Rpb24gdG8gc292ZSBxdWFkcmF0aWMgZXF1YXRpb24NCg0KDQpgYGB7cn0NCmdwdCA8LSBmdW5jdGlvbihhLCBiLCBjKXsNCiAgbjEgPC0gKC1iICtzcXJ0KGJeMiAtIDQqYSpjKSkvKDIqYSkNCiAgbjIgPC0gKGIgKyBzcXJ0KGJeMi00KmEqYykpLzIqYQ0KICBuMSA8LSBwYXN0ZSgieDEgPSIsIG4xKQ0KICBuMiA8LSBwYXN0ZSgieDIgPSIsIG4yKQ0KICBpZmVsc2UobjE9PW4yLCByZXR1cm4objEpLCByZXR1cm4oYyhuMSxuMikpKQ0KfQ0KYGBgDQoNCg0KDQpXZSBwdXQgYDEsIDYsIDkgYHRvIGZ1bmN0aW9uIGBncHQoMSw2LDkpYCwgdGhlbiB0aGVuIHdlIGdldC4NCmBgYHtyIGVjaG89VFJVRX0NCmdwdCgxLDYsOSkNCmBgYA0KDQpIZW5jZSwgd2UgY2FuIGdldCB0aGUgYFJlc3VsdGAgb2YgcXVhZHJhdGljIGVxdWF0aW9uIGlzICBgYHIgZ3B0KDEsNiw5KWBgDQoNCg0K