Mean and standard deviation that was separated by each nominal and ordinal data.
species | mean_bill_length | sd_bill_length | mean_bill_depth | sd_bill_depth | mean_flipper_length | sd_flipper_length | mean_body_mass | sd_body_mass |
---|---|---|---|---|---|---|---|---|
Adelie | 38.82397 | 2.662597 | 18.34726 | 1.219338 | 190.1027 | 6.521825 | 3,706.164 | 458.6201 |
Chinstrap | 48.83382 | 3.339256 | 18.42059 | 1.135395 | 195.8235 | 7.131894 | 3,733.088 | 384.3351 |
Gentoo | 47.56807 | 3.106116 | 14.99664 | 0.985998 | 217.2353 | 6.585431 | 5,092.437 | 501.4762 |
sex | mean_bill_length | sd_bill_length | mean_bill_depth | sd_bill_depth | mean_flipper_length | sd_flipper_length | mean_body_mass | sd_body_mass |
---|---|---|---|---|---|---|---|---|
female | 42.09697 | 4.903476 | 16.42545 | 1.795681 | 197.3636 | 12.50078 | 3,862.273 | 666.1720 |
male | 45.85476 | 5.366896 | 17.89107 | 1.863351 | 204.5060 | 14.54788 | 4,545.685 | 787.6289 |
island | mean_bill_length | sd_bill_length | mean_bill_depth | sd_bill_depth | mean_flipper_length | sd_flipper_length | mean_body_mass | sd_body_mass |
---|---|---|---|---|---|---|---|---|
Biscoe | 45.24847 | 4.827319 | 15.90736 | 1.827653 | 209.5583 | 14.282467 | 4,719.172 | 790.8601 |
Dream | 44.22195 | 5.947069 | 18.33984 | 1.136629 | 193.1870 | 7.428732 | 3,718.902 | 412.9356 |
Torgersen | 39.03830 | 3.028097 | 18.45106 | 1.346472 | 191.5319 | 6.220062 | 3,708.511 | 451.8464 |
year | mean_bill_length | sd_bill_length | mean_bill_depth | sd_bill_depth | mean_flipper_length | sd_flipper_length | mean_body_mass | sd_body_mass |
---|---|---|---|---|---|---|---|---|
2,007 | 44.01942 | 5.356891 | 17.41456 | 2.161989 | 197.2427 | 13.91675 | 4,153.155 | 799.0779 |
2,008 | 43.51770 | 5.356375 | 16.93628 | 1.970545 | 202.6991 | 13.91998 | 4,263.274 | 792.1495 |
2,009 | 44.42821 | 5.678724 | 17.16581 | 1.770114 | 202.5726 | 13.67499 | 4,200.214 | 826.2301 |
---
title: "SUMMARY AND GRAPH REGARDING PENGUINS IN PALMERPENGUINS PACKAGE"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: scroll
social: ["menu"]
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(palmerpenguins)
library(dplyr)
library(plotly)
library(gt)
library(flextable)
data("penguins")
```
Graph
======================
Column {data-width=650}
-----------------------------------------------------------------------
### scatter-plot of flipper depth vs body mass
```{r}
a<-penguins%>%ggplot(aes(x=bill_depth_mm, y=body_mass_g, fill = body_mass_g, colour = species))+geom_point()+theme_classic()
plotly::ggplotly(a)
```
Column {data-width=350}
-----------------------------------------------------------------------
### Box-plot of flipper length by sex
```{r}
penguins%>%ggplot(aes(x=flipper_length_mm, y=sex, fill = sex))+geom_boxplot()+theme_gray()
```
### Histogram of body mass by island
```{r}
penguins%>%ggplot(aes(x=body_mass_g,fill=island))+geom_histogram()+facet_grid(~island)+theme_light()
```
Data
==========================================================================
### palmer penguins data
```{r}
DT::datatable(penguins)
```
Summary
================
>Mean and standard deviation that was separated by each nominal and ordinal data.
### Data summary by species
```{r}
species1 <- na.omit(penguins) %>%
group_by(species) %>%
summarise(
mean_bill_length = mean(bill_length_mm, na.rm = TRUE),
sd_bill_length = sd(bill_length_mm, na.rm = TRUE),
mean_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
sd_bill_depth = sd(bill_depth_mm, na.rm = TRUE),
mean_flipper_length = mean(flipper_length_mm, na.rm = TRUE),
sd_flipper_length = sd(flipper_length_mm, na.rm = TRUE),
mean_body_mass = mean(body_mass_g, na.rm = TRUE),
sd_body_mass = sd(body_mass_g, na.rm = TRUE)
)
species1_flextable <- flextable(species1) %>%
theme_vanilla() %>%
set_caption("Summary Statistics by Penguin Species")
species1_flextable
```
### Data summary by sex
```{r}
library(dplyr)
library(gt)
Sex1 <- na.omit(penguins) %>%
group_by(sex) %>%
summarise(
mean_bill_length = mean(bill_length_mm, na.rm = TRUE),
sd_bill_length = sd(bill_length_mm, na.rm = TRUE),
mean_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
sd_bill_depth = sd(bill_depth_mm, na.rm = TRUE),
mean_flipper_length = mean(flipper_length_mm, na.rm = TRUE),
sd_flipper_length = sd(flipper_length_mm, na.rm = TRUE),
mean_body_mass = mean(body_mass_g, na.rm = TRUE),
sd_body_mass = sd(body_mass_g, na.rm = TRUE)
)
Sex1_flextable <- flextable(Sex1) %>%
theme_vanilla() %>%
set_caption("Summary Statistics by Penguin Sex")
Sex1_flextable
```
### Data summary by islands
```{r}
island1 <- na.omit(penguins) %>%
group_by(island) %>%
summarise(
mean_bill_length = mean(bill_length_mm, na.rm = TRUE),
sd_bill_length = sd(bill_length_mm, na.rm = TRUE),
mean_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
sd_bill_depth = sd(bill_depth_mm, na.rm = TRUE),
mean_flipper_length = mean(flipper_length_mm, na.rm = TRUE),
sd_flipper_length = sd(flipper_length_mm, na.rm = TRUE),
mean_body_mass = mean(body_mass_g, na.rm = TRUE),
sd_body_mass = sd(body_mass_g, na.rm = TRUE)
)
island1_flextable <- flextable(island1) %>%
theme_vanilla() %>%
set_caption("Summary Statistics by Penguin Species")
island1_flextable
```
### Data summary by year
```{r}
year1 <- na.omit(penguins) %>%
group_by(year) %>%
summarise(
mean_bill_length = mean(bill_length_mm, na.rm = TRUE),
sd_bill_length = sd(bill_length_mm, na.rm = TRUE),
mean_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
sd_bill_depth = sd(bill_depth_mm, na.rm = TRUE),
mean_flipper_length = mean(flipper_length_mm, na.rm = TRUE),
sd_flipper_length = sd(flipper_length_mm, na.rm = TRUE),
mean_body_mass = mean(body_mass_g, na.rm = TRUE),
sd_body_mass = sd(body_mass_g, na.rm = TRUE)
)
year1_flextable <- flextable(year1) %>%
theme_vanilla() %>%
set_caption("Summary Statistics by Penguin Species")
year1_flextable
```