“RMarkdown is the best tool to create reproducible reports, dynamic
documents, and dashboards in R” – Yihui Xie.
Acesse o rpubs pet_estatisticaufc para saber como
construir um documento no RMarkdown.
Pinguim Gentoo
O pinguim Gentoo (Pygoscelis papua) é uma das espécies de
pinguins mais reconhecidas e fascinantes. Ele se
destaca por sua faixa branca característica que vai de um lado ao outro
da cabeça, como uma “tiara”.
O gentoo é uma das três espécies representadas na base de dados
penguins do pacote palmerpenguins. A seguir é
mostrada uma imagem que ilustra esses pinguins.
Pinguins da base de dados penguins
A seguir é colocado um comparativo das caractrísticas dos 3
pinguins.
| Identificação |
Cabeça preta com um anel branco em volta dos olhos |
Faixa branca em forma de “tiara” na cabeça |
Faixa preta como um “capacete” que passa sob o queixo |
| Habitat |
Costa Antártica |
Ilhas subantárticas e Península Antártica |
Ilhas subantárticas e Península Antártica |
| Status de conservação |
Pouco preocupante |
Quase ameaçado |
Pouco preocupante |
Marque a seguir os pinguins que você já conhecia!
Características Físicas
- Tamanho: O gentoo é o terceiro maior pinguim,
depois do imperador e do rei.
- O imperador e o rei tem, respectivamente, 51 e 90 cm,
aproximadamente.
- Peso: Geralmente pesa entre 4,5 e 8,5 kg,
dependendo da época do ano e da disponibilidade de alimentos.
- Plumagem: Sua parte dorsal é preta, enquanto o
ventre é branco. As nadadeiras possuem um tom acinzentado.
- Bico: O bico é alaranjado brilhante, contrastando
com sua plumagem.
Conservação
- Atualmente, o pinguim-gentoo é classificado como quase ameaçado pela
IUCN devido à perda de habitat, mudanças climáticas e atividades
humanas, como pesca excessiva e turismo descontrolado.
- Esforços estão sendo feitos para proteger suas colônias e garantir a
sustentabilidade de seus habitats.
Análise exploratória
Para fazer a nossa análise, será utilizado a linguagem r. Para
utilizá-la, recomendamos a IDE RStudio.
Primeiramente, vamos baixar os pacotes palmerpenguins e
ggplot2 com o seguinte código.
install.packages("palmerpenguins")
install.packages("tidyverse")
Agora basta carregar os pacotes.
library(palmerpenguins)
library(tidyverse)
Vamos fazer uma análise focada no pinguim gentoo.
Base de dados
Na tabela seguinte é mostrado as 10 primeiras linhas da base de dados.
|
species
|
island
|
bill_length_mm
|
bill_depth_mm
|
flipper_length_mm
|
body_mass_g
|
sex
|
year
|
|
Adelie
|
Torgersen
|
39.1
|
18.7
|
181
|
3750
|
male
|
2007
|
|
Adelie
|
Torgersen
|
39.5
|
17.4
|
186
|
3800
|
female
|
2007
|
|
Adelie
|
Torgersen
|
40.3
|
18.0
|
195
|
3250
|
female
|
2007
|
|
Adelie
|
Torgersen
|
NA
|
NA
|
NA
|
NA
|
NA
|
2007
|
|
Adelie
|
Torgersen
|
36.7
|
19.3
|
193
|
3450
|
female
|
2007
|
|
Adelie
|
Torgersen
|
39.3
|
20.6
|
190
|
3650
|
male
|
2007
|
|
Adelie
|
Torgersen
|
38.9
|
17.8
|
181
|
3625
|
female
|
2007
|
|
Adelie
|
Torgersen
|
39.2
|
19.6
|
195
|
4675
|
male
|
2007
|
|
Adelie
|
Torgersen
|
34.1
|
18.1
|
193
|
3475
|
NA
|
2007
|
|
Adelie
|
Torgersen
|
42.0
|
20.2
|
190
|
4250
|
NA
|
2007
|
Como nós estamos interessados no pinguim gentoo, a seguir é colocado
todas as observações de pinguins dessa espécie.
Estatísticas descritivas
Vamos começar calculando algumas estatísticas descritivas para a
espécie gentoo.
gentoo <- penguins |>
filter(species == "Gentoo")
summary(gentoo)
## species island bill_length_mm bill_depth_mm
## Adelie : 0 Biscoe :124 Min. :40.90 Min. :13.10
## Chinstrap: 0 Dream : 0 1st Qu.:45.30 1st Qu.:14.20
## Gentoo :124 Torgersen: 0 Median :47.30 Median :15.00
## Mean :47.50 Mean :14.98
## 3rd Qu.:49.55 3rd Qu.:15.70
## Max. :59.60 Max. :17.30
## NA's :1 NA's :1
## flipper_length_mm body_mass_g sex year
## Min. :203.0 Min. :3950 female:58 Min. :2007
## 1st Qu.:212.0 1st Qu.:4700 male :61 1st Qu.:2007
## Median :216.0 Median :5000 NA's : 5 Median :2008
## Mean :217.2 Mean :5076 Mean :2008
## 3rd Qu.:221.0 3rd Qu.:5500 3rd Qu.:2009
## Max. :231.0 Max. :6300 Max. :2009
## NA's :1 NA's :1
A variância da massa corporal dessa espécie de pinguins é 643131,1. A
fórmula da variância amostral é \(s^2 =
\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\) enquanto a
variância populacional é \[\text{Var}(X) =
\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2\]
Gráficos
Para fazer o próximo grafico baixe o pacote plotly.
install.packages("plotly")
Após baixado, carregue-o.
Os seguintes boxplots mostram a diferença do tamanho da nadadeira das
3 espécies de pinguim, evidenciando que, possivelmente, o gentoo é o
maior.
grafico1 <- penguins |>
ggplot(aes(x = species, y = flipper_length_mm))+
geom_boxplot()
ggplotly(grafico1)
LS0tDQojIFTDrXR1bG8gY29tIGltYWdlbSBubyBpbsOtY2lvDQp0aXRsZTogfA0KICAhW0xvZ29STWFya2Rvd25dW2xvZ29fcm1hcmtkb3duXXt3aWR0aD0yMDBweCBzdHlsZT0iZGlzcGxheTogYmxvY2s7IG1hcmdpbjowIGF1dG87In1cDQogIFTDrXR1bG8NCg0KIyBOb21lIGRvIGF1dG9yDQphdXRob3I6ICcqQXV0b3IqJw0KDQojIERhdGEgYXR1YWwgYXV0b23DoXRpY2ENCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyolZCBkZSAlQiwgICVZKicpYCINCg0KIyBMw61uZ3VhIGRvIGFycXVpdm8NCmxhbmc6ICJwdC1iciINCg0KIyBBcyByZWZlcsOqbmNpYXMgdsOjbyBzZXIgZmVpdGFzIGF1dG9tYXRpY2FtZW50ZSBhbyBmYXplciBjaXRhw6fDtWVzDQpsaW5rLWNpdGF0aW9uczogdHJ1ZQ0KDQojIEFycXVpdm8gLmJpYiBjb20gYXMgcmVmZXJlbmNpYXMNCmJpYmxpb2dyYXBoeTogIkFycXVpdm9zX2RvX01pbmljdXJzby9yZWZlcmVuY2lhcy5iaWIiDQoNCiMgQ3JpYSByZWZlcsOqbmNpYXMgc2VtIHByZWNpc2FyIGNpdGFyIG5vIHRleHRvDQpub3RpY2U6IHwNCiAgICAgIEBCb290c3dhdGNoDQoNCiMgVMOtdHVsbyBkYSB0YWJlbGEgZGUgY29udGXDumRvcyBhdXRvbcOhdGljYQ0KdG9jLXRpdGxlOiB8DQogIDxkaXYgc3R5bGU9InRleHQtYWxpZ246Y2VudGVyIj4NCiAgSW50cm9kdcOnw6NvIGFvIFJNYXJrZG93bg0KICA8L2Rpdj4NCiAgDQojIMOJIG5vIG91dHB1dCBvbmRlIHNlIGNvbG9jYW0gYXMgaW5mb3JtYcOnw7VlcyBkZSBjb21vIG8gYXJxdWl2byBkZXZlIHNlciByZW5kZXJpemFkbw0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRoZW1lOg0KICAgICAgYm9vdHN3YXRjaDogam91cm5hbCAjIEVzc2Egb3DDp8OjbyBtdWRhIG8gdGVtYSB1dGlsaXphZG8gbm8gb3V0cHV0DQogICAgaGlnaGxpZ2h0OiB0YW5nbyAjIE11ZGEgYSBhcGFyw6puY2lhIGRlIGPDs2RpZ29zDQogICAgdG9jOiB0cnVlICMgQWRpY2lvbmEgdW0gw61uZGljZQ0KICAgIHRvY19mbG9hdDogdHJ1ZSAjIENvbG9jYSBvIMOtbmRpY2Ugw6AgZXNxdWVyZGEgZG8gY29udGXDumRvIGRvIGRvY3VtZW50byBwcmluY2lwYWwNCiAgICB0b2NfZGVwdGg6IDIgIyBPIG7DrXZlbCBtYWlzIGJhaXhvIGRlIHTDrXR1bG9zIHBhcmEgYWRpY2lvbmFyIGFvIMOtbmRpY2UNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUgIyBjb2xvY2EgbnVtZXJhw6fDo28gYXV0b23DoXRpY2Egbm8gY2FiZcOnYWxobw0KICAgIGFuY2hvcl9zZWN0aW9uczogdHJ1ZSAjIFBlcm1pdGUgbW9zdHJhciDDom5jb3JhcyBkZSBzZcOnw6NvIGFvIHBhc3NhciBvIG1vdXNlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZSAjIFBlcm1pdGUgcXVlIHNldSBhcnF1aXZvIHBvc3NhIHNlciBiYWl4YWRvDQogICAgZmlnX2NhcHRpb246IHRydWUgIyBTZSBhcyBmaWd1cmFzIHbDo28gc2VyIHJlbmRlcml6YWRhcyBjb20gbGVnZW5kYQ0KICAgIGNpdGF0aW9uX3BhY2thZ2U6ICJiaWJsYXRleCIgIyBJbmZvcm1hIGNvbW8gdmFpIHNlciBhIGZvcm1hdGHDp8OjbyBkZSByZWZlcsOqbmNpYSBuYXMgY2l0YcOnw7Vlcw0KICAgIA0KLS0tDQoNCjwhLS0gSW7DrWNpbyBkbyBkb2N1bWVudG8gLS0+DQoNCjxicj4NCg0KPiAiUk1hcmtkb3duIGlzIHRoZSBiZXN0IHRvb2wgdG8gY3JlYXRlIHJlcHJvZHVjaWJsZSByZXBvcnRzLCBkeW5hbWljIGRvY3VtZW50cywgYW5kIGRhc2hib2FyZHMgaW4gUiIgLS0gWWlodWkgWGllLlwNCg0KPGJyPg0KDQpBY2Vzc2UgbyBycHVicyBbcGV0X2VzdGF0aXN0aWNhdWZjXVtycHVic19wZXRdIHBhcmEgc2FiZXIgY29tbyBjb25zdHJ1aXIgdW0gZG9jdW1lbnRvIG5vIFJNYXJrZG93bi4NCg0KKioqDQoNCiMgUGluZ3VpbSBHZW50b28NCk8gcGluZ3VpbSBHZW50b28gKCpQeWdvc2NlbGlzIHBhcHVhKikgw6kgdW1hIGRhcyBlc3DDqWNpZXMgZGUgcGluZ3VpbnMgbWFpcyAqKnJlY29uaGVjaWRhcyBlIGZhc2NpbmFudGVzKiouIEVsZSBzZSBkZXN0YWNhIHBvciBzdWEgZmFpeGEgYnJhbmNhIGNhcmFjdGVyw61zdGljYSBxdWUgdmFpIGRlIHVtIGxhZG8gYW8gb3V0cm8gZGEgY2FiZcOnYSwgY29tbyB1bWEgInRpYXJhIi5cDQoNCk8gZ2VudG9vIMOpIHVtYSBkYXMgdHLDqnMgZXNww6ljaWVzIHJlcHJlc2VudGFkYXMgbmEgYmFzZSBkZSBkYWRvcyBgcGVuZ3VpbnNgIGRvIHBhY290ZSBgcGFsbWVycGVuZ3VpbnNgLiBBIHNlZ3VpciDDqSBtb3N0cmFkYSB1bWEgaW1hZ2VtIHF1ZSBpbHVzdHJhIGVzc2VzIHBpbmd1aW5zLg0KDQo8ZGl2IHN0eWxlPSJ0ZXh0LWFsaWduOmNlbnRlciI+DQohW1Bpbmd1aW5zIGRhIGJhc2UgZGUgZGFkb3MgcGVuZ3VpbnNdW3Bpbmd1aW5zXQ0KPC9kaXY+DQoNCjxicj4NCg0KQSBzZWd1aXIgw6kgY29sb2NhZG8gdW0gY29tcGFyYXRpdm8gZGFzIGNhcmFjdHLDrXN0aWNhcyBkb3MgMyBwaW5ndWlucy4NCg0KfENhcmFjdGVyw61zdGljYXxBZGVsaWV8R2VudG9vfENoaW5zdHJhcHwNCnw6LS0tOnwtLS18LS0tfC0tLXwNCnxJZGVudGlmaWNhw6fDo298Q2FiZcOnYSBwcmV0YSBjb20gdW0gYW5lbCBicmFuY28gZW0gdm9sdGEgZG9zIG9saG9zfEZhaXhhIGJyYW5jYSBlbSBmb3JtYSBkZSAidGlhcmEiIG5hIGNhYmXDp2F8RmFpeGEgcHJldGEgY29tbyB1bSAiY2FwYWNldGUiIHF1ZSBwYXNzYSBzb2IgbyBxdWVpeG98DQp8SGFiaXRhdHxDb3N0YSBBbnTDoXJ0aWNhfElsaGFzIHN1YmFudMOhcnRpY2FzIGUgUGVuw61uc3VsYSBBbnTDoXJ0aWNhfElsaGFzIHN1YmFudMOhcnRpY2FzIGUgUGVuw61uc3VsYSBBbnTDoXJ0aWNhfA0KfFN0YXR1cyBkZSBjb25zZXJ2YcOnw6NvfFBvdWNvIHByZW9jdXBhbnRlfFF1YXNlIGFtZWHDp2Fkb3xQb3VjbyBwcmVvY3VwYW50ZXwNCg0KDQpNYXJxdWUgYSBzZWd1aXIgb3MgcGluZ3VpbnMgcXVlIHZvY8OqIGrDoSBjb25oZWNpYSENCg0KLSBbIF0gQWRlbGllDQotIFsgXSBDaGluc3RyYXANCi0gWyBdIEdlbnRvbw0KDQojIyBDYXJhY3RlcsOtc3RpY2FzIEbDrXNpY2FzDQotICoqVGFtYW5obyoqOiBPIGdlbnRvbyDDqSBvIHRlcmNlaXJvIG1haW9yIHBpbmd1aW0sIGRlcG9pcyBkbyBpbXBlcmFkb3IgZSBkbyByZWkuDQogICAgLSBPIGltcGVyYWRvciBlIG8gcmVpIHRlbSwgcmVzcGVjdGl2YW1lbnRlLCA1MSBlIDkwIGNtLCBhcHJveGltYWRhbWVudGUuDQorICoqUGVzbyoqOiBHZXJhbG1lbnRlIHBlc2EgZW50cmUgNCw1IGUgOCw1IGtnLCBkZXBlbmRlbmRvIGRhIMOpcG9jYSBkbyBhbm8gZSBkYSBkaXNwb25pYmlsaWRhZGUgZGUgYWxpbWVudG9zLg0KKiAqKlBsdW1hZ2VtKio6IFN1YSBwYXJ0ZSBkb3JzYWwgw6kgcHJldGEsIGVucXVhbnRvIG8gdmVudHJlIMOpIGJyYW5jby4gQXMgbmFkYWRlaXJhcyBwb3NzdWVtIHVtIHRvbSBhY2luemVudGFkby4NCi0gKipCaWNvKio6IE8gYmljbyDDqSBhbGFyYW5qYWRvIGJyaWxoYW50ZSwgY29udHJhc3RhbmRvIGNvbSBzdWEgcGx1bWFnZW0uDQoNCiMjIENvbnNlcnZhw6fDo28NCjEuIEF0dWFsbWVudGUsIG8gcGluZ3VpbS1nZW50b28gw6kgY2xhc3NpZmljYWRvIGNvbW8gcXVhc2UgYW1lYcOnYWRvIHBlbGEgSVVDTiBkZXZpZG8gw6AgcGVyZGEgZGUgaGFiaXRhdCwgbXVkYW7Dp2FzIGNsaW3DoXRpY2FzIGUgYXRpdmlkYWRlcyBodW1hbmFzLCBjb21vIHBlc2NhIGV4Y2Vzc2l2YSBlIHR1cmlzbW8gZGVzY29udHJvbGFkby4NCjEuIEVzZm9yw6dvcyBlc3TDo28gc2VuZG8gZmVpdG9zIHBhcmEgcHJvdGVnZXIgc3VhcyBjb2zDtG5pYXMgZSBnYXJhbnRpciBhIHN1c3RlbnRhYmlsaWRhZGUgZGUgc2V1cyBoYWJpdGF0cy4NCg0KDQoNCg0KIyBBbsOhbGlzZSBleHBsb3JhdMOzcmlhIHsudGFic2V0IC50YWJzZXQtZmFkZX0NClBhcmEgZmF6ZXIgYSBub3NzYSBhbsOhbGlzZSwgc2Vyw6EgdXRpbGl6YWRvIGEgbGluZ3VhZ2VtIHJbXnJdLiBQYXJhIHV0aWxpesOhLWxhLCByZWNvbWVuZGFtb3MgYSBJREUgW1JTdHVkaW9dW3JzdHVkaW9dLlwNCg0KUHJpbWVpcmFtZW50ZSwgdmFtb3MgYmFpeGFyIG9zIHBhY290ZXMgYHBhbG1lcnBlbmd1aW5zYCBlIGBnZ3Bsb3QyYCBjb20gbyBzZWd1aW50ZSBjw7NkaWdvLg0KYGBge3IgZXZhbD1GQUxTRX0NCmluc3RhbGwucGFja2FnZXMoInBhbG1lcnBlbmd1aW5zIikNCmluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQpgYGAgDQoNCkFnb3JhIGJhc3RhIGNhcnJlZ2FyIG9zIHBhY290ZXMuDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShwYWxtZXJwZW5ndWlucykNCmxpYnJhcnkodGlkeXZlcnNlKQ0KYGBgDQoNClZhbW9zIGZhemVyIHVtYSBhbsOhbGlzZSBmb2NhZGEgbm8gcGluZ3VpbSBnZW50b28uDQoNCiMjIEJhc2UgZGUgZGFkb3MNCk5hIHRhYmVsYSBzZWd1aW50ZSDDqSBtb3N0cmFkbyBhcyAxMCBwcmltZWlyYXMgbGluaGFzIGRhIGJhc2UgZGUgZGFkb3MuDQpgYGB7ciBlY2hvPUZBTFNFfQ0Ka25pdHI6OmthYmxlKGhlYWQocGVuZ3VpbnMsIDEwKSkgfD4NCiAga2FibGVFeHRyYTo6a2FibGVfc3R5bGluZyhmdWxsX3dpZHRoID0gVFJVRSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBib290c3RyYXBfb3B0aW9ucyA9IGMoInN0cmlwZWQiLCAiaG92ZXIiLCAiY29uZGVuc2VkIiwgInJlc3BvbnNpdmUiKSANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICApDQpgYGANCg0KPGJyPg0KDQpDb21vIG7Ds3MgZXN0YW1vcyBpbnRlcmVzc2Fkb3Mgbm8gcGluZ3VpbSBnZW50b28sIGEgc2VndWlyIMOpIGNvbG9jYWRvIHRvZGFzIGFzIG9ic2VydmHDp8O1ZXMgZGUgcGluZ3VpbnMgZGVzc2EgZXNww6ljaWUuDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQoNCnJtYXJrZG93bjo6cGFnZWRfdGFibGUocGVuZ3VpbnMgfD4gDQogICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKHBlbmd1aW5zJHNwZWNpZXMgPT0gIkdlbnRvbyIpKQ0KYGBgDQoNCiMjIEVzdGF0w61zdGljYXMgZGVzY3JpdGl2YXMNCg0KVmFtb3MgY29tZcOnYXIgY2FsY3VsYW5kbyBhbGd1bWFzIGVzdGF0w61zdGljYXMgZGVzY3JpdGl2YXMgcGFyYSBhIGVzcMOpY2llIGdlbnRvby4NCmBgYHtyfQ0KZ2VudG9vIDwtIHBlbmd1aW5zIHw+IA0KICBmaWx0ZXIoc3BlY2llcyA9PSAiR2VudG9vIikNCnN1bW1hcnkoZ2VudG9vKQ0KYGBgDQoNCkEgdmFyacOibmNpYSBkYSBtYXNzYSBjb3Jwb3JhbCBkZXNzYSBlc3DDqWNpZSBkZSBwaW5ndWlucyDDqSBgciBmb3JtYXQocm91bmQodmFyKHBlbmd1aW5zJGJvZHlfbWFzc19nLCBuYS5ybSA9IFQpLCAyKSwgZGVjaW1hbC5tYXJrID0gIiwiKWAuIEEgZsOzcm11bGEgZGEgdmFyacOibmNpYSBhbW9zdHJhbCDDqSAkc14yID0gXGZyYWN7MX17bi0xfSBcc3VtX3tpPTF9Xm4gKHhfaSAtIFxiYXJ7eH0pXjIkIGVucXVhbnRvIGEgdmFyacOibmNpYSBwb3B1bGFjaW9uYWwgw6kgJCRcdGV4dHtWYXJ9KFgpID0gXHNpZ21hXjIgPSBcZnJhY3sxfXtufSBcc3VtX3tpPTF9Xm4gKHhfaSAtIFxtdSleMiQkDQoNCiMjIEdyw6FmaWNvcw0KUGFyYSBmYXplciBvIHByw7N4aW1vIGdyYWZpY28gYmFpeGUgbyBwYWNvdGUgYHBsb3RseWAuDQpgYGB7ciBldmFsPUZBTFNFfQ0KaW5zdGFsbC5wYWNrYWdlcygicGxvdGx5IikNCmBgYA0KDQpBcMOzcyBiYWl4YWRvLCBjYXJyZWd1ZS1vLg0KDQpgYGB7ciBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeShwbG90bHkpDQpgYGANCg0KT3Mgc2VndWludGVzIGJveHBsb3RzIG1vc3RyYW0gYSBkaWZlcmVuw6dhIGRvIHRhbWFuaG8gZGEgbmFkYWRlaXJhIGRhcyAzIGVzcMOpY2llcyBkZSBwaW5ndWltLCBldmlkZW5jaWFuZG8gcXVlLCBwb3NzaXZlbG1lbnRlLCBvIGdlbnRvbyDDqSBvIG1haW9yLg0KYGBge3Igd2FybmluZz1GQUxTRX0NCmdyYWZpY28xIDwtIHBlbmd1aW5zIHw+IA0KICBnZ3Bsb3QoYWVzKHggPSBzcGVjaWVzLCB5ID0gZmxpcHBlcl9sZW5ndGhfbW0pKSsNCiAgZ2VvbV9ib3hwbG90KCkNCg0KZ2dwbG90bHkoZ3JhZmljbzEpDQpgYGANCg0KDQo8IS0tIEFzIFJlZmVyw6puY2lhcyBzw6NvIGZlaXRhcyBhdXRvbcOhdGljYW1lbnRlIG5vIGZpbmFsIGRvIGRvY3VtZW50byAtLT4NCiMgUmVmZXLDqm5jaWFzIHsudW5udW1iZXJlZCAudW5saXN0ZWR9DQoNCjwhLS0gTGlua3MgLS0+DQpbcnB1YnNfcGV0XTogaHR0cHM6Ly9ycHVicy5jb20vcGV0X2VzdGF0aXN0aWNhdWZjLzEyNjEzNTUgIkludHJvZHXDp8OjbyBhbyBSTWFya2Rvd24iDQpbcnN0dWRpb106IGh0dHBzOi8vcG9zaXQuY28vZG93bmxvYWQvcnN0dWRpby1kZXNrdG9wLyAiUlN0dWRpbyINCg0KPCEtLSBJbWFnZW5zIC0tPg0KW2xvZ29fcm1hcmtkb3duXTogaHR0cHM6Ly8xMzEzMzUwMjEuY2RuNi5lZGl0bXlzaXRlLmNvbS91cGxvYWRzLzEvMy8xLzMvMTMxMzM1MDIxL3M4MTUyNTM4OTEyNTYxMDY1NTJfcDVfaTJfdzY2MC5wbmcgIkxvZ28gZG8gUk1hcmtkb3duIg0KW3Bpbmd1aW5zXTogaHR0cHM6Ly9kM2kzbDNrcmFpcXB5bS5jbG91ZGZyb250Lm5ldC93cC1jb250ZW50L3VwbG9hZHMvMjAxNi8wNC8yNjA5NDkxNC9BZCVDMyVBOWxpZS1DaGluc3RyYXAtYW5kLWdlbnRvby1wZW5ndWluLXNwZWNpZXMuanBnICJRdWFsIMOpIG1haXMgZm9mbz8iDQoNCg0KPCEtLSBOb3RhcyBkZSBSb2RhcMOpIC0tPg0KW15yXTogTyBSIMOpIHVtYSBsaW5ndWFnZW0gZGUgcHJvZ3JhbWHDp8OjbyBlIHVtIGFtYmllbnRlIGRlIHNvZnR3YXJlIGxpdnJlIHByb2pldGFkbyBwcmluY2lwYWxtZW50ZSBwYXJhIGVzdGF0w61zdGljYSwgY2nDqm5jaWEgZGUgZGFkb3MsIHZpc3VhbGl6YcOnw6NvIGUgYW7DoWxpc2UgZGUgZGFkb3MuIENyaWFkbyBwb3IgUm9zcyBJaGFrYSBlIFJvYmVydCBHZW50bGVtYW4gbm8gaW7DrWNpbyBkb3MgYW5vcyAxOTkwLCBvIFIgw6kgYW1wbGFtZW50ZSB1dGlsaXphZG8gcG9yIGVzdGF0w61zdGljb3MsIGNpZW50aXN0YXMgZGUgZGFkb3MgZSBhbmFsaXN0YXMgcGFyYSBleHBsb3JhciwgbW9kZWxhciBlIGNvbXVuaWNhciBpbnNpZ2h0cyBhIHBhcnRpciBkZSBjb25qdW50b3MgZGUgZGFkb3MuDQo=