Behavior Subscale
| tweets_beh_4 |
1 |
67 |
2.86 |
0.76 |
3.00 |
2.91 |
0.99 |
0.67 |
4 |
3.33 |
-0.62 |
0.06 |
0.09 |
| tweets_beh_5 |
2 |
66 |
2.82 |
0.81 |
2.67 |
2.87 |
0.99 |
0.67 |
4 |
3.33 |
-0.49 |
-0.36 |
0.10 |
| tweets_beh_6 |
3 |
66 |
2.72 |
0.87 |
2.67 |
2.75 |
0.99 |
0.67 |
4 |
3.33 |
-0.28 |
-0.77 |
0.11 |
| tweets_beh_7 |
4 |
67 |
2.56 |
0.99 |
2.67 |
2.62 |
0.99 |
0.00 |
4 |
4.00 |
-0.52 |
-0.49 |
0.12 |
| tweets_beh_8 |
5 |
48 |
2.47 |
1.03 |
2.67 |
2.52 |
0.99 |
0.00 |
4 |
4.00 |
-0.47 |
-0.33 |
0.15 |
| tweets_beh_9 |
6 |
58 |
2.49 |
1.05 |
2.50 |
2.56 |
0.99 |
0.00 |
4 |
4.00 |
-0.48 |
-0.40 |
0.14 |
| tweets_beh_10 |
7 |
62 |
2.33 |
1.14 |
2.33 |
2.39 |
1.48 |
0.00 |
4 |
4.00 |
-0.28 |
-0.92 |
0.15 |
| tweets_beh_11 |
8 |
61 |
2.39 |
1.15 |
2.67 |
2.45 |
1.48 |
0.00 |
4 |
4.00 |
-0.38 |
-0.97 |
0.15 |
| tweets_beh_12 |
9 |
54 |
2.46 |
1.10 |
2.67 |
2.54 |
0.99 |
0.00 |
4 |
4.00 |
-0.50 |
-0.47 |
0.15 |
| tweets_beh_13 |
10 |
60 |
2.42 |
1.19 |
2.67 |
2.51 |
0.99 |
0.00 |
4 |
4.00 |
-0.57 |
-0.84 |
0.15 |
Visualization of Means over Time with Error Bars

Regression to analyze basic trend over time
A linear regression model was fitted to predict Tweets Behavior
subscale as a function of Week. This approach quantified the direction
and magnitude of the trend in engagement over time. The regression
analysis revealed small, significant decrease over time,
Linear Regression Results:
Slope of the trend (Week): -0.055
P-value for the slope: 1.147e-04
R-squared of the model: 0.024
Combined Violin and Box Plot for Weeks 4–13
This plot combines violin plots and box plots to illustrate the
distribution of behavior subscale scores across weeks 4 to 13. The
violin plot shows the density of scores for each week, while the box
plot provides a summary of the data’s central tendency and spread,
including the median, interquartile range, and overall range.

Behavior Violin Plot for Weeks 4–13
The plot below displays the distribution of the behavior subscale
scores from weeks 4 to 13. The wider sections of the violin indicate a
higher concentration of scores, while the narrower sections show less
frequent values. Jittered points are overlaid to show the individual
participant scores.

Raincloud Plot for Weeks 4 and 13
These plot provides a comparison of the behavior subscale scores
between weeks 4 and 13 (first and last weeks recorded). Each week is
represented by a combination of a violin plot (showing the score
distribution), jittered points (representing individual participant
scores), and lines connecting scores for the same participants between
the two timepoints showing change over time.

Affect Subscale
| tweets_aff_4 |
1 |
67 |
3.13 |
0.66 |
3.33 |
3.18 |
0.49 |
1.33 |
4 |
2.67 |
-0.59 |
-0.43 |
0.08 |
| tweets_aff_5 |
2 |
66 |
3.15 |
0.67 |
3.33 |
3.20 |
0.49 |
1.33 |
4 |
2.67 |
-0.64 |
-0.29 |
0.08 |
| tweets_aff_6 |
3 |
66 |
3.15 |
0.73 |
3.33 |
3.22 |
0.49 |
1.33 |
4 |
2.67 |
-0.82 |
-0.35 |
0.09 |
| tweets_aff_7 |
4 |
67 |
3.17 |
0.73 |
3.33 |
3.25 |
0.49 |
1.00 |
4 |
3.00 |
-0.90 |
0.18 |
0.09 |
| tweets_aff_8 |
5 |
48 |
3.10 |
0.85 |
3.33 |
3.18 |
0.99 |
0.67 |
4 |
3.33 |
-0.93 |
0.00 |
0.12 |
| tweets_aff_9 |
6 |
58 |
3.02 |
0.80 |
3.17 |
3.10 |
0.74 |
1.00 |
4 |
3.00 |
-0.83 |
0.01 |
0.10 |
| tweets_aff_10 |
7 |
62 |
2.93 |
1.00 |
3.33 |
3.06 |
0.99 |
0.00 |
4 |
4.00 |
-0.97 |
0.10 |
0.13 |
| tweets_aff_11 |
8 |
61 |
2.95 |
1.01 |
3.33 |
3.11 |
0.49 |
0.00 |
4 |
4.00 |
-1.39 |
1.45 |
0.13 |
| tweets_aff_12 |
9 |
54 |
2.93 |
1.06 |
3.33 |
3.07 |
0.99 |
0.00 |
4 |
4.00 |
-0.97 |
0.18 |
0.14 |
| tweets_aff_13 |
10 |
60 |
2.86 |
1.11 |
3.00 |
3.01 |
0.99 |
0.00 |
4 |
4.00 |
-0.96 |
-0.09 |
0.14 |
Visualization of Means over Time with Error Bars

Regression to analyze basic trend over time
A linear regression model was fitted to predict Tweets Affect
subscale as a function of Week. This approach quantified the direction
and magnitude of the trend in engagement over time. The regression
analysis revealed small, significant decrease over time,
Linear Regression Results for Affect Subscale:
Slope of the trend (Week): -0.035
P-value for the slope: 3.881e-03
R-squared of the model: 0.014
Combined Violin and Box Plot for Weeks 4–13
This plot combines violin plots and box plots to illustrate the
distribution of affect subscale scores across weeks 4 to 13. The violin
plot shows the density of scores for each week, while the box plot
provides a summary of the data’s central tendency and spread, including
the median, interquartile range, and overall range.

Affect Violin Plot for Weeks 4–13
The plot below displays the distribution of the affect subscale
scores from weeks 4 to 13. The wider sections of the violin indicate a
higher concentration of scores, while the narrower sections show less
frequent values. Jittered points are overlaid to show the individual
participant scores.

Raincloud Plot for Weeks 4 and 13
These plot provides a comparison of the affect subscale scores
between weeks 4 and 13 (first and last weeks recorded). Each week is
represented by a combination of a violin plot (showing the score
distribution), jittered points (representing individual participant
scores), and lines connecting scores for the same participants between
the two timepoints showing change over time.

LS0tCnRpdGxlOiAiVHdlZXRzIEFuYWx5c2VzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyMgKk1lYXN1cmU6IFRoZSBUd2VudGUgRW5nYWdlbWVudCB3aXRoIEVoZWFsdGggVGVjaG5vbG9naWVzIFNjYWxlIChUV0VFVFMpKgoKKkNpdGF0aW9uKHMpOioKCiAgwrcgS2VsZGVycyBTTSwgS2lwIEguIERldmVsb3BtZW50IGFuZCBpbml0aWFsIHZhbGlkYXRpb24gb2YgYSBzY2FsZSB0byBtZWFzdXJlIGVuZ2FnZW1lbnQgd2l0aCBlSGVhbHRoIHRlY2hub2xvZ2llcy4gMjAxOSBQcmVzZW50ZWQgYXQ6IEV4dGVuZGVkIEFic3RyYWN0cyBvZiB0aGUgQ0hJIENvbmZlcmVuY2Ugb24gSHVtYW4gRmFjdG9ycyBpbiBDb21wdXRpbmcgU3lzdGVtczsgMjAxOTsgR2xhc2dvdy4KCiAgwrcgS2VsZGVycywgUy4gTS4sIEtpcCwgSC4sICYgR3JlZWZmLCBKLiAoMjAyMCkuIFBzeWNob21ldHJpYyBldmFsdWF0aW9uIG9mIHRoZSBUV2VudGUgRW5nYWdlbWVudCB3aXRoIEVoZWFsdGggVGVjaG5vbG9naWVzIFNjYWxlIChUV0VFVFMpOiBldmFsdWF0aW9uIHN0dWR5LiBKb3VybmFsIG9mIG1lZGljYWwgaW50ZXJuZXQgcmVzZWFyY2gsIDIyKDEwKSwgZTE3NzU3LgoKIyMjIFRXRUVUUyBEZXBsb3ltZW50IGluIHRoZSBDdXJyZW50IFN0dWR5ClRoZSBvcmlnaW5hbCBUV0VFVFMgaGFzIDkgcXVlc3Rpb24gc2NvcmVkIG9uIGEgMC00IHNjYWxlICgqc3Ryb25nbHkgZGlzYWdyZWUqIHRvICpzdHJvbmdseSBhZ3JlZSopLCB3aXRoIHRocmVlIHBvc3NpYmxlIHN1YnNjYWxlcyAoYmVoYXZpb3IsIGNvZ25pdGlvbiwgYWZmZWN0KS4KCkluIHRoZSBjdXJyZW50IHN0dWR5LCB0aGUgd29yZGluZyBmb3IgdGhlIGNvZ25pdGlvbiBxdWVzdGlvbnMgd2FzIG5vdCBhY2N1cmF0ZWx5IGRlcGxveWVkIHRvIHBhcnRpY2lwYW50cyAoaS5lLiwgdGhlICJnb2FsIiBoYWxmIG9mIHF1ZXN0aW9ucyB3YXMgbm90IGNoYW5nZWQvc3BlY2ZpZWQpLgoKQXMgc3VjaCwgYWxsIG9mIHRoZSBhbmFseXNlcyBmb3IgdGhlIGN1cnJlbnQgc2NhbGUgYXJlIGRvbmUgZm9yIHRoZSBiZWhhdmlvciBhbmQgYWZmZWN0IHNjYWxlcyBzZXBhcmF0ZWx5LiAKTm90ZTogVGhlIG9yaWdpbmFsIFF1YWx0cmljcyBzY2FsZSB3YXMgY29sbGVjdGVkIG9uIGEgc2NhbGUgb2YgMS01OiB0aGlzIHdhcyBwcmV2aW91c2x5IHJlLWNvZGVkIHRvIDAtNCBkdXJpbmcgZGF0YSBjbGVhbmluZy4KCiMjIyBUV0VFVFMgUXVlc3Rpb25zCgpUd2VldHMgUXVlc3Rpb25zLCBWYXJpYWJsZSBOYW1lcywgYW5kIFN1YnNjYWxlIENvbnN0cnVjdCwgYXMgZGVwbG95ZWQgaW4gc3R1ZHkKIVtdKERlc2t0b3AvVFdFRVRTLnBuZykKCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gRkFMU0UsIGluY2x1ZGUgPSBUUlVFLCAgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpCgpsaWJyYXJ5KHJlYWR4bCkKbGlicmFyeShncmlkRXh0cmEpIApsaWJyYXJ5KHBhdGNod29yaykgICAgICAKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkobG1lNCkKbGlicmFyeShtYXJrZG93bikKbGlicmFyeShzdGFyZ2F6ZXIpCmxpYnJhcnkoTU9URSkKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KGtuaXRyKQpsaWJyYXJ5KHNjYWxlcykKbGlicmFyeShicm9vbSkKbGlicmFyeShicm9vbS5taXhlZCkgCmxpYnJhcnkodGlkeW1vZGVscykgCmxpYnJhcnkobXVsdGlsZXZlbG1vZCkgCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHBzeWNoKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHRpZHlyKQpsaWJyYXJ5KHJlYWRyKQpsaWJyYXJ5KGtuaXRyKQoKCiMjUmVhZCBpbiB0aGUgZGF0YXNldAoKTm9EdXBfUHVycmJsZUFub24gPC0gcmVhZF9jc3YoIkRlc2t0b3AvUHVycmJlbC9Ob0R1cF9QdXJyYmxlQW5vbi5jc3YiKQojVmlldyhOb0R1cF9QdXJyYmxlQW5vbikKCiNDYWxjdWxhdGUgYSBDb25kaXRpb24gVmFyaWFibGVzIGJhc2VkIG9uIFdhaXRsaXN0IHZzLiBDb250cm9sIHdpdGggTGFiZWxzIAoKTm9EdXBfUHVycmJsZUFub24gPC0gTm9EdXBfUHVycmJsZUFub24gJT4lCiAgbXV0YXRlKAogICAgY29uZGl0aW9uX251bSA9IGNhc2Vfd2hlbigKICAgICAgcmFuZG9taXphdGlvbiAlaW4lIGMoIldMIEMiLCAiV0wgVEdEIikgfiAwLAogICAgICByYW5kb21pemF0aW9uICVpbiUgYygiUEIgVEdEIiwgIlBCIEMiKSB+IDEsCiAgICAgIFRSVUUgfiBOQV9yZWFsXwogICAgKSwKICAgIGNvbmRpdGlvbiA9IGZhY3RvcigKICAgICAgY29uZGl0aW9uX251bSwKICAgICAgbGV2ZWxzID0gYygwLCAxKSwKICAgICAgbGFiZWxzID0gYygiV2FpdGxpc3QgQ29udHJvbCIsICJQdXJyYmxlIFRyZWF0bWVudCIpCiAgICApCiAgKQoKIyBDcmVhdGUgU3Vic2NhbGUgU2NvcmVzCgpOb0R1cF9QdXJyYmxlQW5vbiA8LSBOb0R1cF9QdXJyYmxlQW5vbiAlPiUKICBtdXRhdGUoCiAgICB0d2VldHNfYmVoID0gcm93TWVhbnMoYWNyb3NzKGModHdlZXRzMSwgdHdlZXRzMiwgdHdlZXRzMykpLCBuYS5ybSA9IFRSVUUpLAogICAgdHdlZXRzX2FmZiA9IHJvd01lYW5zKGFjcm9zcyhjKHR3ZWV0czcsIHR3ZWV0czgsIHR3ZWV0czkpKSwgbmEucm0gPSBUUlVFKQogICkKCiNNYWtlIHdpZGUgZm9ybWF0IGRhdGFzZXQgZm9yIGxhdGVyIGFuYWx5c2VzIAp0d2VldHNfd2lkZSA8LSBOb0R1cF9QdXJyYmxlQW5vbiAlPiUKICAKICAjIEZpbHRlciB0byBvbmx5IGluY2x1ZGUgd2Vla3MgMS0xMwogIGZpbHRlcihXZWVrICVpbiUgMToxMykgJT4lCiAgIyBQaXZvdCB0aGUgZGF0YSB3aWRlciBmb3IgdGhlIHNwZWNpZmllZCByZXBlYXRlZCBtZWFzdXJlcyB2YXJpYWJsZXMKICBwaXZvdF93aWRlcigKICAgIGlkX2NvbHMgPSBjKHBzaWQsIHJhbmRvbWl6YXRpb24sIGNvbmRpdGlvbiwgc28sIGdpLCBhZ2UsIGV0aG5pY2l0eSwgaWRlbnRpdHlfZ3JvdXApLAogICAgbmFtZXNfZnJvbSA9IFdlZWssCiAgICB2YWx1ZXNfZnJvbSA9IGModHdlZXRzX2JlaCwgdHdlZXRzX2FmZiksCiAgICBuYW1lc19nbHVlID0gInsudmFsdWV9X3tXZWVrfSIgICMgVGhpcyB3aWxsIGNyZWF0ZSB2YXJuYW1lXzEsIHZhcm5hbWVfMiwgLi4uIHZhcm5hbWVfMTMKICApCmBgYAoKIyMjIFRXRUVUUyBEZXNjcmlwdGl2ZXMKKk5vdGU6KiBJIGRpZCBub3QgcnVuIGNyb25iYWNoJ3MgYWxwaGEgc2luY2UgdGhlcmUgYXJlIG9ubHkgMyBpdGVtcyBpbiBlYWNoIHN1YnNjYWxlLgoqTm90ZToqIEVhY2ggdmFyaWFibGUgcHJlc2VudGVkIGlzIHRoZSBhdmVyYWdlIHN1YnNjYWxlIHNjb3JlIGZvciB0aGUgd2VlayByZXByZXNlbnRlZCBieSB0aGUgdW5kZXJzY29yZS4gCkNyb25iYWNoJ3MgQWxwaGEgYW5kIERlc2NyaXB0aXZlcwoKIyMgQmVoYXZpb3IgU3Vic2NhbGUKCmBgYHtyfQojRGVzY3JpcHRpdmUgVGFibGUKd2Vla3MgPC0gNDoxMwp0d2VldF9iZWhfdmFycyA8LSBzcHJpbnRmKCJ0d2VldHNfYmVoXyVkIiwgd2Vla3MpCgpteV90d2VldHNfYmVoIDwtIHB1cnJibGVfd2lkZSAlPiUKICBzZWxlY3QoYWxsX29mKHR3ZWV0X2JlaF92YXJzKSkKCmRlc2NyaWJlKG15X3R3ZWV0c19iZWgpICU+JQogIGthYmxlKGRpZ2l0cyA9IDIpCmBgYAojIyBWaXN1YWxpemF0aW9uIG9mIE1lYW5zIG92ZXIgVGltZSB3aXRoIEVycm9yIEJhcnMKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCgojIFN0ZXAgMTogQ2FsY3VsYXRlIG1lYW5zIGFuZCBzdGFuZGFyZCBlcnJvcnMgZm9yIHR3ZWV0c19iZWggYnkgd2VlawpzdW1tYXJ5X2JlaCA8LSBOb0R1cF9QdXJyYmxlQW5vbiAlPiUKICBncm91cF9ieShXZWVrKSAlPiUKICBzdW1tYXJpc2UoCiAgICBNZWFuID0gbWVhbih0d2VldHNfYmVoLCBuYS5ybSA9IFRSVUUpLAogICAgU0VNID0gc2QodHdlZXRzX2JlaCwgbmEucm0gPSBUUlVFKSAvIHNxcnQobigpKQogICkKCiMgUGxvdCB0aGUgbWVhbiBzY29yZXMgd2l0aCBlcnJvciBiYXJzCmdncGxvdChzdW1tYXJ5X2JlaCwgYWVzKHggPSBXZWVrLCB5ID0gTWVhbikpICsKICBnZW9tX2xpbmUoZ3JvdXAgPSAxLCBjb2xvciA9ICJibHVlIikgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDMsIGNvbG9yID0gImJsdWUiKSArCiAgZ2VvbV9lcnJvcmJhcihhZXMoeW1pbiA9IE1lYW4gLSBTRU0sIHltYXggPSBNZWFuICsgU0VNKSwgd2lkdGggPSAwLjIsIGNvbG9yID0gImJsdWUiKSArCiAgbGFicygKICAgIHRpdGxlID0gIk1lYW4gQmVoYXZpb3IgU3Vic2NhbGUgU2NvcmVzIE92ZXIgVGltZSIsCiAgICB4ID0gIldlZWsiLAogICAgeSA9ICJNZWFuIEJlaGF2aW9yIFNjb3JlIgogICkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQsIGZhY2UgPSAiYm9sZCIpKQpgYGAKCiMjIFJlZ3Jlc3Npb24gdG8gYW5hbHl6ZSBiYXNpYyB0cmVuZCBvdmVyIHRpbWUKQSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCB3YXMgZml0dGVkIHRvIHByZWRpY3QgVHdlZXRzIEJlaGF2aW9yIHN1YnNjYWxlIGFzIGEgZnVuY3Rpb24gb2YgV2Vlay4KVGhpcyBhcHByb2FjaCBxdWFudGlmaWVkIHRoZSBkaXJlY3Rpb24gYW5kIG1hZ25pdHVkZSBvZiB0aGUgdHJlbmQgaW4gZW5nYWdlbWVudCBvdmVyIHRpbWUuClRoZSByZWdyZXNzaW9uIGFuYWx5c2lzIHJldmVhbGVkIHNtYWxsLCBzaWduaWZpY2FudCBkZWNyZWFzZSBvdmVyIHRpbWUsIAoKYGBge3J9CiMgU3RlcCAyOiBGaXQgYSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbAptb2RlbCA8LSBsbSh0d2VldHNfYmVoIH4gV2VlaywgZGF0YSA9IE5vRHVwX1B1cnJibGVBbm9uKQoKIyBFeHRyYWN0IHNsb3BlLCBwLXZhbHVlLCBhbmQgUi1zcXVhcmVkCnNsb3BlIDwtIGNvZWYobW9kZWwpWyJXZWVrIl0KcF92YWx1ZSA8LSBzdW1tYXJ5KG1vZGVsKSRjb2VmZmljaWVudHNbIldlZWsiLCAiUHIoPnx0fCkiXQpyX3NxdWFyZWQgPC0gc3VtbWFyeShtb2RlbCkkci5zcXVhcmVkCgojIFByaW50IHJlc3VsdHMKY2F0KCJMaW5lYXIgUmVncmVzc2lvbiBSZXN1bHRzOlxuIikKY2F0KHNwcmludGYoIlNsb3BlIG9mIHRoZSB0cmVuZCAoV2Vlayk6ICUuM2ZcbiIsIHNsb3BlKSkKY2F0KHNwcmludGYoIlAtdmFsdWUgZm9yIHRoZSBzbG9wZTogJS4zZVxuIiwgcF92YWx1ZSkpCmNhdChzcHJpbnRmKCJSLXNxdWFyZWQgb2YgdGhlIG1vZGVsOiAlLjNmXG4iLCByX3NxdWFyZWQpKQpgYGAKCgojIyMgQ29tYmluZWQgVmlvbGluIGFuZCBCb3ggUGxvdCBmb3IgV2Vla3MgNOKAkzEzClRoaXMgcGxvdCBjb21iaW5lcyB2aW9saW4gcGxvdHMgYW5kIGJveCBwbG90cyB0byBpbGx1c3RyYXRlIHRoZSBkaXN0cmlidXRpb24gb2YgYmVoYXZpb3Igc3Vic2NhbGUgc2NvcmVzIGFjcm9zcyB3ZWVrcyA0IHRvIDEzLiBUaGUgdmlvbGluIHBsb3Qgc2hvd3MgdGhlIGRlbnNpdHkgb2Ygc2NvcmVzIGZvciBlYWNoIHdlZWssIHdoaWxlIHRoZSBib3ggcGxvdCBwcm92aWRlcyBhIHN1bW1hcnkgb2YgdGhlIGRhdGEncyBjZW50cmFsIHRlbmRlbmN5IGFuZCBzcHJlYWQsIGluY2x1ZGluZyB0aGUgbWVkaWFuLCBpbnRlcnF1YXJ0aWxlIHJhbmdlLCBhbmQgb3ZlcmFsbCByYW5nZS4KCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCgojIEZpbHRlciBpZiB5b3Ugb25seSB3YW50IFdlZWtzIDEuLjEzIChvcHRpb25hbCkKTm9EdXBfUHVycmJsZUFub25fZmlsdGVyZWQgPC0gTm9EdXBfUHVycmJsZUFub24gJT4lIAogIGZpbHRlcihXZWVrICVpbiUgNDoxMykKCmdncGxvdChOb0R1cF9QdXJyYmxlQW5vbl9maWx0ZXJlZCwgYWVzKHggPSBmYWN0b3IoV2VlayksIHkgPSB0d2VldHNfYmVoKSkgKwogIGdlb21fdmlvbGluKHRyaW0gPSBGQUxTRSwgZmlsbCA9ICJsaWdodGJsdWUiLCBhbHBoYSA9IDAuNSkgKwogIGdlb21fYm94cGxvdCh3aWR0aCA9IDAuMSwgZmlsbCA9ICJ3aGl0ZSIsIG91dGxpZXIuc2hhcGUgPSBOQSkgKyAKICAjIG91dGxpZXIuc2hhcGU9TkEgaGlkZXMgb3V0bGllciBwb2ludHMgc28gdGhleSBkb24ndCBjbHV0dGVyIHRoZSB2aW9saW4KICBsYWJzKAogICAgdGl0bGUgPSAidHdlZXRzX2JlaCBEaXN0cmlidXRpb24gYnkgV2VlayIsCiAgICB4ID0gIldlZWsiLAogICAgeSA9ICJ0d2VldHNfYmVoIgogICkgKwogIHRoZW1lX21pbmltYWwoKQpgYGAKIyMjIEJlaGF2aW9yIFZpb2xpbiBQbG90IGZvciBXZWVrcyA04oCTMTMKVGhlIHBsb3QgYmVsb3cgZGlzcGxheXMgdGhlIGRpc3RyaWJ1dGlvbiBvZiB0aGUgYmVoYXZpb3Igc3Vic2NhbGUgc2NvcmVzIGZyb20gd2Vla3MgNCB0byAxMy4gVGhlIHdpZGVyIHNlY3Rpb25zIG9mIHRoZSB2aW9saW4gaW5kaWNhdGUgYSBoaWdoZXIgY29uY2VudHJhdGlvbiBvZiBzY29yZXMsIHdoaWxlIHRoZSBuYXJyb3dlciBzZWN0aW9ucyBzaG93IGxlc3MgZnJlcXVlbnQgdmFsdWVzLiBKaXR0ZXJlZCBwb2ludHMgYXJlIG92ZXJsYWlkIHRvIHNob3cgdGhlIGluZGl2aWR1YWwgcGFydGljaXBhbnQgc2NvcmVzLiAKCmBgYHtyfQp0d2VldHNfYmVoX2Rpc3RyaWJ1dGlvbiA8LSB0d2VldHNfd2lkZSAlPiUKICBwaXZvdF9sb25nZXIoCiAgICBjb2xzID0gc3RhcnRzX3dpdGgoInR3ZWV0c19iZWhfIiksCiAgICBuYW1lc190byA9ICJ3ZWVrIiwKICAgIG5hbWVzX3ByZWZpeCA9ICJ0d2VldHNfYmVoXyIsCiAgICB2YWx1ZXNfdG8gPSAidHdlZXRzX2JlaCIKICApICU+JQogIG11dGF0ZSh3ZWVrID0gYXMubnVtZXJpYyh3ZWVrKSkgJT4lICAjIENvbnZlcnQgd2VlayB0byBudW1lcmljIGZvciBwbG90dGluZwogIGZpbHRlcih3ZWVrID49IDQgJiB3ZWVrIDw9IDEzKQoKIyBEaXN0cmlidXRpb24gZ3JhcGggZm9yIHdlZWtzIDQgdG8gMTMgKHdpZGVyIHBsb3QpCnR3ZWV0c19iZWhfdmlvbGluIDwtIHR3ZWV0c19iZWhfZGlzdHJpYnV0aW9uICU+JQogIGdncGxvdChhZXMoeCA9IGZhY3Rvcih3ZWVrKSwgeSA9IHR3ZWV0c19iZWgpKSArCiAgZ2VvbV92aW9saW4oYWVzKGdyb3VwID0gd2VlayksIGFscGhhID0gMC41LCBmaWxsID0gImxpZ2h0Ymx1ZSIpICsKICBnZW9tX2ppdHRlcih3aWR0aCA9IDAuMiwgYWxwaGEgPSAwLjYpICsKICBsYWJzKAogICAgeCA9ICJXZWVrIiwKICAgIHkgPSAiQmVoYXZpb3IgU3Vic2NhbGUgKHR3ZWV0c19iZWgpIiwKICAgIHRpdGxlID0gIkRpc3RyaWJ1dGlvbiBvZiBCZWhhdmlvciBTdWJzY2FsZSBBY3Jvc3MgV2Vla3MgNOKAkzEzIgogICkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpKQoKIyBEaXNwbGF5IHRoZSB2aW9saW4gcGxvdCB3aXRoIGN1c3RvbSB3aWR0aAp0d2VldHNfYmVoX3Zpb2xpbiArIHRoZW1lKHBsb3QubWFyZ2luID0gdW5pdChjKDEsIDEsIDEsIDEpLCAiY20iKSkKYGBgCiMjIyBSYWluY2xvdWQgUGxvdCBmb3IgV2Vla3MgNCBhbmQgMTMKVGhlc2UgcGxvdCBwcm92aWRlcyBhIGNvbXBhcmlzb24gb2YgdGhlIGJlaGF2aW9yIHN1YnNjYWxlIHNjb3JlcyBiZXR3ZWVuIHdlZWtzIDQgYW5kIDEzIChmaXJzdCBhbmQgbGFzdCB3ZWVrcyByZWNvcmRlZCkuIEVhY2ggd2VlayBpcyByZXByZXNlbnRlZCBieSBhIGNvbWJpbmF0aW9uIG9mIGEgdmlvbGluIHBsb3QgKHNob3dpbmcgdGhlIHNjb3JlIGRpc3RyaWJ1dGlvbiksIGppdHRlcmVkIHBvaW50cyAocmVwcmVzZW50aW5nIGluZGl2aWR1YWwgcGFydGljaXBhbnQgc2NvcmVzKSwgYW5kIGxpbmVzIGNvbm5lY3Rpbmcgc2NvcmVzIGZvciB0aGUgc2FtZSBwYXJ0aWNpcGFudHMgYmV0d2VlbiB0aGUgdHdvIHRpbWVwb2ludHMgc2hvd2luZyBjaGFuZ2Ugb3ZlciB0aW1lLgoKYGBge3J9CiMgUHJlcGFyZSBkYXRhIGZvciByYWluY2xvdWQgZ3JhcGggKHdlZWtzIDQgYW5kIDEzKQp0d2VldHNfYmVoX3JhaW4gPC0gdHdlZXRzX3dpZGUgJT4lCiAgc2VsZWN0KHBzaWQsIHR3ZWV0c19iZWhfNCwgdHdlZXRzX2JlaF8xMykgJT4lCiAgZmlsdGVyKCFpcy5uYSh0d2VldHNfYmVoXzQpICYgIWlzLm5hKHR3ZWV0c19iZWhfMTMpKSAlPiUgICMgUmVtb3ZlIG1pc3NpbmcgZGF0YQogIHBpdm90X2xvbmdlcigKICAgIGNvbHMgPSBjKHR3ZWV0c19iZWhfNCwgdHdlZXRzX2JlaF8xMyksCiAgICBuYW1lc190byA9ICJ3ZWVrIiwKICAgIG5hbWVzX3ByZWZpeCA9ICJ0d2VldHNfYmVoXyIsCiAgICB2YWx1ZXNfdG8gPSAidHdlZXRzX2JlaCIKICApICU+JQogIG11dGF0ZSh3ZWVrID0gZmFjdG9yKHdlZWssIGxldmVscyA9IGMoIjQiLCAiMTMiKSkpCgojIFJhaW5jbG91ZCBncmFwaCBmb3Igd2Vla3MgNCBhbmQgMTMKdHdlZXRzX2JlaF9yYWluY2xvdWQgPC0gdHdlZXRzX2JlaF9yYWluICU+JQogIGdncGxvdChhZXMoeCA9IHdlZWssIHkgPSB0d2VldHNfYmVoKSkgKwogIGdlb21faml0dGVyKHdpZHRoID0gMC4yLCBhbHBoYSA9IDAuNikgKwogIGdlb21fdmlvbGluKGFlcyhncm91cCA9IHdlZWspLCBhbHBoYSA9IDAuNSwgZmlsbCA9ICJsaWdodGJsdWUiKSArCiAgZ2VvbV9saW5lKGFlcyhncm91cCA9IHBzaWQpLCBhbHBoYSA9IDAuNCwgY29sb3IgPSAiZ3JheSIpICsKICBsYWJzKAogICAgeCA9ICJXZWVrIiwKICAgIHkgPSAiQmVoYXZpb3IgU3Vic2NhbGUgKHR3ZWV0c19iZWgpIiwKICAgIHRpdGxlID0gIkJlaGF2aW9yIFN1YnNjYWxlOiBXZWVrcyA0IHZzLiAxMyIKICApICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSkKCiMgRGlzcGxheSB0aGUgcmFpbmNsb3VkIGdyYXBoCnR3ZWV0c19iZWhfcmFpbmNsb3VkCmBgYAoKIyMgQWZmZWN0IFN1YnNjYWxlCmBgYHtyfQoKd2Vla3MgPC0gNDoxMwp0d2VldF9hZmZfdmFycyA8LSBzcHJpbnRmKCJ0d2VldHNfYWZmXyVkIiwgd2Vla3MpCgpteV90d2VldHNfYWZmIDwtIHB1cnJibGVfd2lkZSAlPiUKICBzZWxlY3QoYWxsX29mKHR3ZWV0X2FmZl92YXJzKSkKCmRlc2NyaWJlKG15X3R3ZWV0c19hZmYpICU+JQogIGthYmxlKGRpZ2l0cyA9IDIpCmBgYAoKIyMgVmlzdWFsaXphdGlvbiBvZiBNZWFucyBvdmVyIFRpbWUgd2l0aCBFcnJvciBCYXJzCgpgYGB7cn0KbGlicmFyeShkcGx5cikKbGlicmFyeShnZ3Bsb3QyKQoKIyBTdGVwIDE6IENhbGN1bGF0ZSBtZWFucyBhbmQgc3RhbmRhcmQgZXJyb3JzIGZvciB0d2VldHNfYWZmIGJ5IHdlZWsKc3VtbWFyeV9hZmYgPC0gTm9EdXBfUHVycmJsZUFub24gJT4lCiAgZ3JvdXBfYnkoV2VlaykgJT4lCiAgc3VtbWFyaXNlKAogICAgTWVhbiA9IG1lYW4odHdlZXRzX2FmZiwgbmEucm0gPSBUUlVFKSwKICAgIFNFTSA9IHNkKHR3ZWV0c19hZmYsIG5hLnJtID0gVFJVRSkgLyBzcXJ0KG4oKSkKICApCgojIFBsb3QgdGhlIG1lYW4gc2NvcmVzIHdpdGggZXJyb3IgYmFycwpnZ3Bsb3Qoc3VtbWFyeV9hZmYsIGFlcyh4ID0gV2VlaywgeSA9IE1lYW4pKSArCiAgZ2VvbV9saW5lKGdyb3VwID0gMSwgY29sb3IgPSAiZGFya3JlZCIpICsKICBnZW9tX3BvaW50KHNpemUgPSAzLCBjb2xvciA9ICJkYXJrcmVkIikgKwogIGdlb21fZXJyb3JiYXIoYWVzKHltaW4gPSBNZWFuIC0gU0VNLCB5bWF4ID0gTWVhbiArIFNFTSksIHdpZHRoID0gMC4yLCBjb2xvciA9ICJkYXJrcmVkIikgKwogIGxhYnMoCiAgICB0aXRsZSA9ICJNZWFuIEFmZmVjdCBTdWJzY2FsZSBTY29yZXMgT3ZlciBUaW1lIiwKICAgIHggPSAiV2VlayIsCiAgICB5ID0gIk1lYW4gQWZmZWN0IFNjb3JlIgogICkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQsIGZhY2UgPSAiYm9sZCIpKQoKYGBgCiMjIFJlZ3Jlc3Npb24gdG8gYW5hbHl6ZSBiYXNpYyB0cmVuZCBvdmVyIHRpbWUKQSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCB3YXMgZml0dGVkIHRvIHByZWRpY3QgVHdlZXRzIEFmZmVjdCBzdWJzY2FsZSBhcyBhIGZ1bmN0aW9uIG9mIFdlZWsuClRoaXMgYXBwcm9hY2ggcXVhbnRpZmllZCB0aGUgZGlyZWN0aW9uIGFuZCBtYWduaXR1ZGUgb2YgdGhlIHRyZW5kIGluIGVuZ2FnZW1lbnQgb3ZlciB0aW1lLgpUaGUgcmVncmVzc2lvbiBhbmFseXNpcyByZXZlYWxlZCBzbWFsbCwgc2lnbmlmaWNhbnQgZGVjcmVhc2Ugb3ZlciB0aW1lLCAKCgpgYGB7cn0KIyBTdGVwIDI6IEZpdCBhIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsCm1vZGVsX2FmZiA8LSBsbSh0d2VldHNfYWZmIH4gV2VlaywgZGF0YSA9IE5vRHVwX1B1cnJibGVBbm9uKQoKIyBFeHRyYWN0IHNsb3BlLCBwLXZhbHVlLCBhbmQgUi1zcXVhcmVkCnNsb3BlX2FmZiA8LSBjb2VmKG1vZGVsX2FmZilbIldlZWsiXQpwX3ZhbHVlX2FmZiA8LSBzdW1tYXJ5KG1vZGVsX2FmZikkY29lZmZpY2llbnRzWyJXZWVrIiwgIlByKD58dHwpIl0Kcl9zcXVhcmVkX2FmZiA8LSBzdW1tYXJ5KG1vZGVsX2FmZikkci5zcXVhcmVkCgojIFByaW50IHJlc3VsdHMKY2F0KCJMaW5lYXIgUmVncmVzc2lvbiBSZXN1bHRzIGZvciBBZmZlY3QgU3Vic2NhbGU6XG4iKQpjYXQoc3ByaW50ZigiU2xvcGUgb2YgdGhlIHRyZW5kIChXZWVrKTogJS4zZlxuIiwgc2xvcGVfYWZmKSkKY2F0KHNwcmludGYoIlAtdmFsdWUgZm9yIHRoZSBzbG9wZTogJS4zZVxuIiwgcF92YWx1ZV9hZmYpKQpjYXQoc3ByaW50ZigiUi1zcXVhcmVkIG9mIHRoZSBtb2RlbDogJS4zZlxuIiwgcl9zcXVhcmVkX2FmZikpCgpgYGAKCgojIyMgQ29tYmluZWQgVmlvbGluIGFuZCBCb3ggUGxvdCBmb3IgV2Vla3MgNOKAkzEzClRoaXMgcGxvdCBjb21iaW5lcyB2aW9saW4gcGxvdHMgYW5kIGJveCBwbG90cyB0byBpbGx1c3RyYXRlIHRoZSBkaXN0cmlidXRpb24gb2YgYWZmZWN0IHN1YnNjYWxlIHNjb3JlcyBhY3Jvc3Mgd2Vla3MgNCB0byAxMy4gVGhlIHZpb2xpbiBwbG90IHNob3dzIHRoZSBkZW5zaXR5IG9mIHNjb3JlcyBmb3IgZWFjaCB3ZWVrLCB3aGlsZSB0aGUgYm94IHBsb3QgcHJvdmlkZXMgYSBzdW1tYXJ5IG9mIHRoZSBkYXRhJ3MgY2VudHJhbCB0ZW5kZW5jeSBhbmQgc3ByZWFkLCBpbmNsdWRpbmcgdGhlIG1lZGlhbiwgaW50ZXJxdWFydGlsZSByYW5nZSwgYW5kIG92ZXJhbGwgcmFuZ2UuCgpgYGB7cn0KbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQoKIyBGaWx0ZXIgaWYgeW91IG9ubHkgd2FudCBXZWVrcyAxLi4xMyAob3B0aW9uYWwpCk5vRHVwX1B1cnJibGVBbm9uX2ZpbHRlcmVkIDwtIE5vRHVwX1B1cnJibGVBbm9uICU+JSAKICBmaWx0ZXIoV2VlayAlaW4lIDQ6MTMpCgpnZ3Bsb3QoTm9EdXBfUHVycmJsZUFub25fZmlsdGVyZWQsIGFlcyh4ID0gZmFjdG9yKFdlZWspLCB5ID0gdHdlZXRzX2FmZikpICsKICBnZW9tX3Zpb2xpbih0cmltID0gRkFMU0UsIGZpbGwgPSAibGlnaHRibHVlIiwgYWxwaGEgPSAwLjUpICsKICBnZW9tX2JveHBsb3Qod2lkdGggPSAwLjEsIGZpbGwgPSAid2hpdGUiLCBvdXRsaWVyLnNoYXBlID0gTkEpICsgCiAgIyBvdXRsaWVyLnNoYXBlPU5BIGhpZGVzIG91dGxpZXIgcG9pbnRzIHNvIHRoZXkgZG9uJ3QgY2x1dHRlciB0aGUgdmlvbGluCiAgbGFicygKICAgIHRpdGxlID0gInR3ZWV0czogQWZmZWN0IERpc3RyaWJ1dGlvbiBieSBXZWVrIiwKICAgIHggPSAiV2VlayIsCiAgICB5ID0gInR3ZWV0cyBBZmZlY3QgU2NvcmUiCiAgKSArCiAgdGhlbWVfbWluaW1hbCgpCmBgYAojIyMgQWZmZWN0IFZpb2xpbiBQbG90IGZvciBXZWVrcyA04oCTMTMKVGhlIHBsb3QgYmVsb3cgZGlzcGxheXMgdGhlIGRpc3RyaWJ1dGlvbiBvZiB0aGUgYWZmZWN0IHN1YnNjYWxlIHNjb3JlcyBmcm9tIHdlZWtzIDQgdG8gMTMuIFRoZSB3aWRlciBzZWN0aW9ucyBvZiB0aGUgdmlvbGluIGluZGljYXRlIGEgaGlnaGVyIGNvbmNlbnRyYXRpb24gb2Ygc2NvcmVzLCB3aGlsZSB0aGUgbmFycm93ZXIgc2VjdGlvbnMgc2hvdyBsZXNzIGZyZXF1ZW50IHZhbHVlcy4gSml0dGVyZWQgcG9pbnRzIGFyZSBvdmVybGFpZCB0byBzaG93IHRoZSBpbmRpdmlkdWFsIHBhcnRpY2lwYW50IHNjb3Jlcy4gCgpgYGB7cn0KIyBGaWx0ZXIgZGF0YSBmb3Igd2Vla3MgNCB0byAxMwp0d2VldHNfYWZmX2Rpc3RyaWJ1dGlvbiA8LSB0d2VldHNfd2lkZSAlPiUKICBwaXZvdF9sb25nZXIoCiAgICBjb2xzID0gc3RhcnRzX3dpdGgoInR3ZWV0c19hZmZfIiksCiAgICBuYW1lc190byA9ICJ3ZWVrIiwKICAgIG5hbWVzX3ByZWZpeCA9ICJ0d2VldHNfYWZmXyIsCiAgICB2YWx1ZXNfdG8gPSAidHdlZXRzX2FmZiIKICApICU+JQogIG11dGF0ZSh3ZWVrID0gYXMubnVtZXJpYyh3ZWVrKSkgJT4lICAjIENvbnZlcnQgd2VlayB0byBudW1lcmljIGZvciBwbG90dGluZwogIGZpbHRlcih3ZWVrID49IDQgJiB3ZWVrIDw9IDEzKQoKIyBEaXN0cmlidXRpb24gZ3JhcGggZm9yIHdlZWtzIDQgdG8gMTMgKHdpZGVyIHBsb3QpCnR3ZWV0c19hZmZfdmlvbGluIDwtIHR3ZWV0c19hZmZfZGlzdHJpYnV0aW9uICU+JQogIGdncGxvdChhZXMoeCA9IGZhY3Rvcih3ZWVrKSwgeSA9IHR3ZWV0c19hZmYpKSArCiAgZ2VvbV92aW9saW4oYWVzKGdyb3VwID0gd2VlayksIGFscGhhID0gMC41LCBmaWxsID0gImxpZ2h0Ymx1ZSIpICsKICBnZW9tX2ppdHRlcih3aWR0aCA9IDAuMiwgYWxwaGEgPSAwLjYpICsKICBsYWJzKAogICAgeCA9ICJXZWVrIiwKICAgIHkgPSAiQWZmZWN0IFN1YnNjYWxlICh0d2VldHNfYWZmKSIsCiAgICB0aXRsZSA9ICJEaXN0cmlidXRpb24gb2YgQWZmZWN0IFN1YnNjYWxlIEFjcm9zcyBXZWVrcyA04oCTMTMiCiAgKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCkpCgojIERpc3BsYXkgdGhlIHZpb2xpbiBwbG90IHdpdGggY3VzdG9tIHdpZHRoCnR3ZWV0c19hZmZfdmlvbGluICsgdGhlbWUocGxvdC5tYXJnaW4gPSB1bml0KGMoMSwgMSwgMSwgMSksICJjbSIpKQoKYGBgCgojIyMgUmFpbmNsb3VkIFBsb3QgZm9yIFdlZWtzIDQgYW5kIDEzClRoZXNlIHBsb3QgcHJvdmlkZXMgYSBjb21wYXJpc29uIG9mIHRoZSBhZmZlY3Qgc3Vic2NhbGUgc2NvcmVzIGJldHdlZW4gd2Vla3MgNCBhbmQgMTMgKGZpcnN0IGFuZCBsYXN0IHdlZWtzIHJlY29yZGVkKS4gRWFjaCB3ZWVrIGlzIHJlcHJlc2VudGVkIGJ5IGEgY29tYmluYXRpb24gb2YgYSB2aW9saW4gcGxvdCAoc2hvd2luZyB0aGUgc2NvcmUgZGlzdHJpYnV0aW9uKSwgaml0dGVyZWQgcG9pbnRzIChyZXByZXNlbnRpbmcgaW5kaXZpZHVhbCBwYXJ0aWNpcGFudCBzY29yZXMpLCBhbmQgbGluZXMgY29ubmVjdGluZyBzY29yZXMgZm9yIHRoZSBzYW1lIHBhcnRpY2lwYW50cyBiZXR3ZWVuIHRoZSB0d28gdGltZXBvaW50cyBzaG93aW5nIGNoYW5nZSBvdmVyIHRpbWUuCgpgYGB7cn0KIyBQcmVwYXJlIGRhdGEgZm9yIHJhaW5jbG91ZCBncmFwaCAod2Vla3MgNCBhbmQgMTMpCnR3ZWV0c19hZmZfcmFpbiA8LSB0d2VldHNfd2lkZSAlPiUKICBzZWxlY3QocHNpZCwgdHdlZXRzX2FmZl80LCB0d2VldHNfYWZmXzEzKSAlPiUKICBmaWx0ZXIoIWlzLm5hKHR3ZWV0c19hZmZfNCkgJiAhaXMubmEodHdlZXRzX2FmZl8xMykpICU+JSAgIyBSZW1vdmUgbWlzc2luZyBkYXRhCiAgcGl2b3RfbG9uZ2VyKAogICAgY29scyA9IGModHdlZXRzX2FmZl80LCB0d2VldHNfYWZmXzEzKSwKICAgIG5hbWVzX3RvID0gIndlZWsiLAogICAgbmFtZXNfcHJlZml4ID0gInR3ZWV0c19hZmZfIiwKICAgIHZhbHVlc190byA9ICJ0d2VldHNfYWZmIgogICkgJT4lCiAgbXV0YXRlKHdlZWsgPSBmYWN0b3Iod2VlaywgbGV2ZWxzID0gYygiNCIsICIxMyIpKSkKCiMgUmFpbmNsb3VkIGdyYXBoIGZvciB3ZWVrcyA0IGFuZCAxMwp0d2VldHNfYWZmX3JhaW5jbG91ZCA8LSB0d2VldHNfYWZmX3JhaW4gJT4lCiAgZ2dwbG90KGFlcyh4ID0gd2VlaywgeSA9IHR3ZWV0c19hZmYpKSArCiAgZ2VvbV9qaXR0ZXIod2lkdGggPSAwLjIsIGFscGhhID0gMC42KSArCiAgZ2VvbV92aW9saW4oYWVzKGdyb3VwID0gd2VlayksIGFscGhhID0gMC41LCBmaWxsID0gImxpZ2h0Ymx1ZSIpICsKICBnZW9tX2xpbmUoYWVzKGdyb3VwID0gcHNpZCksIGFscGhhID0gMC40LCBjb2xvciA9ICJncmF5IikgKwogIGxhYnMoCiAgICB4ID0gIldlZWsiLAogICAgeSA9ICJBZmZlY3QgU3Vic2NhbGUgKHR3ZWV0c19hZmYpIiwKICAgIHRpdGxlID0gIkFmZmVjdCBTdWJzY2FsZTogV2Vla3MgNCB2cy4gMTMiCiAgKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCkpCgojIERpc3BsYXkgdGhlIHJhaW5jbG91ZCBncmFwaAp0d2VldHNfYWZmX3JhaW5jbG91ZApgYGAK