CDISCPILOT01
Brief Description of Case Study
This is a file contains different results from different function calls which are built for general analysis purposes. Cannot render to PDF because some coding is not compatiable with Latex environment.
Tables
Tables 14-1
Table 14-1.01
set #| echo: false if you don’t want code to be displayed in WORD output or HTML output.
Code
# Source the R script that contains the create_summary_table function
# source("C:/Users/zunqi/OneDrive/R related/R and AI/functions/continuous and categorical table.r")
source("C:/Users/zunqi/OneDrive/R related/R and AI/functions/continuous and categorical table with Pvalue.r")
source("C:/Users/zunqi/OneDrive/R related/R and AI/functions/simple regression with table.r")
# IMPORT DATA
adsl_orig <- haven::read_xpt(
'https://raw.githubusercontent.com/cdisc-org/sdtm-adam-pilot-project/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets/adsl.xpt')
adsl_orig.sub<-adsl_orig%>%filter(ARM %in% c("Placebo", "Xanomeline High Dose"))
# Call the create_summary_table function
create_summary_table(
data = adsl_orig,
by_var = TRT01A,
continuous_vars = c("AGE", "BMIBL", "WEIGHTBL", "HEIGHTBL"),
categorical_vars = c("AGEGR1", "SEX", "RACE", "ETHNIC"),
var_order = c("AGE", "AGEGR1", "BMIBL", "WEIGHTBL", "HEIGHTBL", "SEX", "RACE", "ETHNIC"),
continuous_digits =c(0, 1, 2, 1, 1, 1, 2, 2),
continuous_labels = list(
AGE = "Age",
BMIBL = "BMI",
WEIGHTBL = "WEIGHT AT BL",
HEIGHTBL = "HEIGHT AT BL"
),
categorical_labels = list(
AGEGR1 = "AGE GROUP"
),
include_overall = TRUE,
add_p=TRUE,
add_CI=TRUE,
table_title="Table 14-1.01: Summary of Demographics",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
#output_type="tibble"
)
Characteristic | Total (N=254)1 |
95% CI2 | Placebo N = 861 |
95% CI2 | Xanomeline High Dose N = 841 |
95% CI2 | Xanomeline Low Dose N = 841 |
95% CI2 | P Value3 |
---|---|---|---|---|---|---|---|---|---|
Age | 74, 76 | 73, 77 | 73, 76 | 74, 77 | 0.442 | ||||
n | 254 | 86 | 84 | 84 | |||||
Mean (SD) | 75.1 (8.25) | 75.2 (8.59) | 74.4 (7.89) | 75.7 (8.29) | |||||
Median (P25, P75) | 77.0 (70.0, 81.0) | 76.0 (69.0, 82.0) | 76.0 (70.5, 80.0) | 77.5 (71.0, 82.0) | |||||
Min, Max | 51.00, 89.00 | 52.00, 89.00 | 56.00, 88.00 | 51.00, 88.00 | |||||
AGE GROUP, n (%) | 0.144 | ||||||||
<65 | 33 (13%) | 9.2%, 18% | 14 (16%) | 9.5%, 26% | 11 (13%) | 7.0%, 23% | 8 (9.5%) | 4.5%, 18% | |
>80 | 77 (30%) | 25%, 36% | 30 (35%) | 25%, 46% | 18 (21%) | 14%, 32% | 29 (35%) | 25%, 46% | |
65-80 | 144 (57%) | 50%, 63% | 42 (49%) | 38%, 60% | 55 (65%) | 54%, 75% | 47 (56%) | 45%, 67% | |
BMI | 24, 25 | 23, 24 | 24, 26 | 24, 26 | 0.010 | ||||
n | 253 | 86 | 84 | 83 | |||||
Mean (SD) | 24.7 (4.09) | 23.6 (3.67) | 25.3 (4.16) | 25.1 (4.27) | |||||
Median (P25, P75) | 24.2 (21.9, 27.3) | 23.4 (21.2, 25.6) | 24.8 (22.7, 27.9) | 24.3 (22.1, 27.8) | |||||
Min, Max | 13.70, 40.10 | 15.10, 33.30 | 13.70, 34.50 | 17.70, 40.10 | |||||
Missing | 1 | 0 | 0 | 1 | |||||
WEIGHT AT BL | 65, 68 | 60, 65 | 67, 73 | 64, 70 | 0.011 | ||||
n | 253 | 86 | 84 | 83 | |||||
Mean (SD) | 66.6 (14.13) | 62.8 (12.77) | 70.0 (14.65) | 67.3 (14.12) | |||||
Median (P25, P75) | 66.7 (55.3, 77.1) | 60.6 (53.5, 74.4) | 69.2 (56.8, 80.3) | 64.9 (55.8, 77.8) | |||||
Min, Max | 34.00, 108.00 | 34.00, 86.20 | 41.70, 108.00 | 45.40, 106.10 | |||||
Missing | 1 | 0 | 0 | 1 | |||||
HEIGHT AT BL | 163, 165 | 160, 165 | 164, 168 | 161, 166 | 0.134 | ||||
n | 254 | 86 | 84 | 84 | |||||
Mean (SD) | 163.9 (10.76) | 162.6 (11.52) | 165.8 (10.13) | 163.4 (10.42) | |||||
Median (P25, P75) | 162.9 (156.2, 171.5) | 162.6 (153.7, 171.5) | 165.1 (157.5, 172.9) | 162.6 (157.5, 170.2) | |||||
Min, Max | 135.90, 195.60 | 137.20, 185.40 | 146.10, 190.50 | 135.90, 195.60 | |||||
Sex, n (%) | 0.141 | ||||||||
F | 143 (56%) | 50%, 62% | 53 (62%) | 50%, 72% | 40 (48%) | 37%, 59% | 50 (60%) | 48%, 70% | |
M | 111 (44%) | 38%, 50% | 33 (38%) | 28%, 50% | 44 (52%) | 41%, 63% | 34 (40%) | 30%, 52% | |
Race, n (%) | 0.680 | ||||||||
AMERICAN INDIAN OR ALASKA NATIVE | 1 (0.4%) | 0.02%, 2.5% | 0 (0%) | 0.00%, 5.3% | 1 (1.2%) | 0.06%, 7.4% | 0 (0%) | 0.00%, 5.4% | |
BLACK OR AFRICAN AMERICAN | 23 (9.1%) | 5.9%, 13% | 8 (9.3%) | 4.4%, 18% | 9 (11%) | 5.3%, 20% | 6 (7.1%) | 2.9%, 15% | |
WHITE | 230 (91%) | 86%, 94% | 78 (91%) | 82%, 96% | 74 (88%) | 79%, 94% | 78 (93%) | 85%, 97% | |
Ethnicity, n (%) | 0.570 | ||||||||
HISPANIC OR LATINO | 12 (4.7%) | 2.6%, 8.3% | 3 (3.5%) | 0.91%, 11% | 3 (3.6%) | 0.93%, 11% | 6 (7.1%) | 2.9%, 15% | |
NOT HISPANIC OR LATINO | 242 (95%) | 92%, 97% | 83 (97%) | 89%, 99% | 81 (96%) | 89%, 99% | 78 (93%) | 85%, 97% | |
1 source: produced through continuous and categorical table with Pvalue.r | |||||||||
2 CI = Confidence Interval | |||||||||
3 Kruskal-Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test |
Code
create_summary_table(
data = adsl_orig.sub,
by_var = TRT01A,
continuous_vars = c("AGE", "BMIBL", "WEIGHTBL", "HEIGHTBL"),
categorical_vars = c("AGEGR1", "SEX", "RACE", "ETHNIC"),
var_order = c("AGE", "AGEGR1", "BMIBL", "WEIGHTBL", "HEIGHTBL", "SEX", "RACE", "ETHNIC"),
continuous_digits =c(0, 1, 2, 1, 1, 1, 2, 2),
continuous_labels = list(
AGE = "Age",
BMIBL = "BMI",
WEIGHTBL = "WEIGHT AT BL",
HEIGHTBL = "HEIGHT AT BL"
),
categorical_labels = list(
AGEGR1 = "AGE GROUP"
),
include_overall = TRUE,
add_p=TRUE,
add_CI=TRUE,
add_difference=TRUE, #this difference only work for two levels
table_title="Table 14-1.01: Summary of Demographics",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
#output_type="tibble"
)
Characteristic | Total (N=170)1 |
95% CI2 | Placebo N = 861 |
95% CI2 | Xanomeline High Dose N = 841 |
95% CI2 | Difference3 | 95% CI3,2 | P Value4 |
---|---|---|---|---|---|---|---|---|---|
Age | 74, 76 | 73, 77 | 73, 76 | 0.83 | -1.7, 3.3 | 0.435 | |||
n | 170 | 86 | 84 | ||||||
Mean (SD) | 74.8 (8.24) | 75.2 (8.59) | 74.4 (7.89) | ||||||
Median (P25, P75) | 76.0 (70.0, 81.0) | 76.0 (69.0, 82.0) | 76.0 (70.5, 80.0) | ||||||
Min, Max | 52.00, 89.00 | 52.00, 89.00 | 56.00, 88.00 | ||||||
AGE GROUP, n (%) | 0.35 | 0.05, 0.65 | 0.079 | ||||||
<65 | 25 (15%) | 9.9%, 21% | 14 (16%) | 9.5%, 26% | 11 (13%) | 7.0%, 23% | |||
>80 | 48 (28%) | 22%, 36% | 30 (35%) | 25%, 46% | 18 (21%) | 14%, 32% | |||
65-80 | 97 (57%) | 49%, 65% | 42 (49%) | 38%, 60% | 55 (65%) | 54%, 75% | |||
BMI | 24, 25 | 23, 24 | 24, 26 | -1.7 | -2.9, -0.52 | 0.003 | |||
n | 170 | 86 | 84 | ||||||
Mean (SD) | 24.5 (4.00) | 23.6 (3.67) | 25.3 (4.16) | ||||||
Median (P25, P75) | 24.2 (21.8, 27.1) | 23.4 (21.2, 25.6) | 24.8 (22.7, 27.9) | ||||||
Min, Max | 13.70, 34.50 | 15.10, 33.30 | 13.70, 34.50 | ||||||
WEIGHT AT BL | 64, 68 | 60, 65 | 67, 73 | -7.2 | -11, -3.1 | 0.003 | |||
n | 170 | 86 | 84 | ||||||
Mean (SD) | 66.3 (14.17) | 62.8 (12.77) | 70.0 (14.65) | ||||||
Median (P25, P75) | 66.7 (54.9, 76.7) | 60.6 (53.5, 74.4) | 69.2 (56.8, 80.3) | ||||||
Min, Max | 34.00, 108.00 | 34.00, 86.20 | 41.70, 108.00 | ||||||
HEIGHT AT BL | 163, 166 | 160, 165 | 164, 168 | -3.2 | -6.5, 0.04 | 0.071 | |||
n | 170 | 86 | 84 | ||||||
Mean (SD) | 164.2 (10.95) | 162.6 (11.52) | 165.8 (10.13) | ||||||
Median (P25, P75) | 165.1 (154.9, 172.7) | 162.6 (153.7, 171.5) | 165.1 (157.5, 172.9) | ||||||
Min, Max | 137.20, 190.50 | 137.20, 185.40 | 146.10, 190.50 | ||||||
Sex, n (%) | 0.28 | -0.02, 0.59 | 0.067 | ||||||
F | 93 (55%) | 47%, 62% | 53 (62%) | 50%, 72% | 40 (48%) | 37%, 59% | |||
M | 77 (45%) | 38%, 53% | 33 (38%) | 28%, 50% | 44 (52%) | 41%, 63% | |||
Race, n (%) | 0.16 | -0.14, 0.46 | 0.705 | ||||||
AMERICAN INDIAN OR ALASKA NATIVE | 1 (0.6%) | 0.03%, 3.7% | 0 (0%) | 0.00%, 5.3% | 1 (1.2%) | 0.06%, 7.4% | |||
BLACK OR AFRICAN AMERICAN | 17 (10%) | 6.1%, 16% | 8 (9.3%) | 4.4%, 18% | 9 (11%) | 5.3%, 20% | |||
WHITE | 152 (89%) | 84%, 93% | 78 (91%) | 82%, 96% | 74 (88%) | 79%, 94% | |||
Ethnicity, n (%) | 0.00 | -0.30, 0.31 | >0.999 | ||||||
HISPANIC OR LATINO | 6 (3.5%) | 1.4%, 7.9% | 3 (3.5%) | 0.91%, 11% | 3 (3.6%) | 0.93%, 11% | |||
NOT HISPANIC OR LATINO | 164 (96%) | 92%, 99% | 83 (97%) | 89%, 99% | 81 (96%) | 89%, 99% | |||
1 source: produced through continuous and categorical table with Pvalue.r | |||||||||
2 CI = Confidence Interval | |||||||||
3 Welch Two Sample t-test; Standardized Mean Difference | |||||||||
4 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test |
Table 14-3.02
Code
# Source the R script that contains the create_summary_table function
# source("C:/Users/zunqi/OneDrive/R related/R and AI/functions/continuous and categorical table.r")
# IMPORT DATA
adqscibc_orig <- haven::read_xpt(
'https://raw.githubusercontent.com/cdisc-org/sdtm-adam-pilot-project/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets/adqscibc.xpt')
# SUBSET
adqscibc <- adqscibc_orig %>%
filter(EFFFL == 'Y' & ITTFL=='Y' & PARAMCD == 'CIBICVAL' & ANL01FL == 'Y') %>%
filter(AVISITN == 24) %>%
filter(!is.na(AVAL)) %>%
mutate(TRTP = factor(TRTP,
levels = c('Placebo','Xanomeline Low Dose','Xanomeline High Dose'),
labels = c('Placebo', 'Low Dose','High Dose')))
adqscibc$CIBIC_cat<-ifelse(adqscibc$AVAL<4,"Low", "High")
# Ensure CIBIC_cat is a factor with two levels
adqscibc$CIBIC_cat <- as.factor(adqscibc$CIBIC_cat)
set M as reference level for gender
Code
mulm_table<-regression_table(response=CIBIC_cat,covariates=c("TRTP", "AGE", "SEX") , data=adqscibc,
regression_type=logistic,
type=multivariate,
add_n=TRUE,
add_nevent=TRUE,
table_title="Table 14-3.02: Primary endpoint: multivariate logistic regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
mulm_table
Characteristic | N | Event N | OR1,2 | 95% CI2 | p-value |
---|---|---|---|---|---|
TRTP | 234 | ||||
Placebo | 79 | 10 | — | — | |
Low Dose | 81 | 15 | 1.63 | 0.69, 4.03 | 0.3 |
High Dose | 74 | 11 | 1.12 | 0.44, 2.89 | 0.8 |
Age | 234 | 36 | 0.97 | 0.93, 1.02 | 0.2 |
SEX | 234 | ||||
M | 106 | 20 | — | — | |
F | 128 | 16 | 0.63 | 0.30, 1.29 | 0.2 |
1 Source: produced through simple regression with table.r | |||||
2 OR = Odds Ratio, CI = Confidence Interval |
Code
# several univariate models
uvlm_table<-regression_table(response=CIBIC_cat,covariates=c("TRTP", "AGE", "SEX") , data=adqscibc,
regression_type=logistic,
type=univariate,
add_n=TRUE,
add_nevent=TRUE,
table_title="Table 14-3.02: Primary endpoint: univariate logistic regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
uvlm_table
Characteristic | N | Event N | OR1,2 | 95% CI2 | p-value |
---|---|---|---|---|---|
TRTP | 234 | ||||
Placebo | 79 | 10 | — | — | |
Low Dose | 81 | 15 | 1.57 | 0.66, 3.84 | 0.3 |
High Dose | 74 | 11 | 1.20 | 0.48, 3.08 | 0.7 |
Age | 234 | 36 | 0.97 | 0.93, 1.02 | 0.2 |
SEX | 234 | ||||
M | 106 | 20 | — | — | |
F | 128 | 16 | 0.61 | 0.30, 1.25 | 0.2 |
1 Source: produced through simple regression with table.r | |||||
2 OR = Odds Ratio, CI = Confidence Interval |
Code
Characteristic |
multivariate result
|
univariate result
|
||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Event N | OR1,2 | 95% CI2 | p-value | N | Event N | OR1,2 | 95% CI2 | p-value | |
TRTP | 234 | 234 | ||||||||
Placebo | 79 | 10 | — | — | 79 | 10 | — | — | ||
Low Dose | 81 | 15 | 1.63 | 0.69, 4.03 | 0.3 | 81 | 15 | 1.57 | 0.66, 3.84 | 0.3 |
High Dose | 74 | 11 | 1.12 | 0.44, 2.89 | 0.8 | 74 | 11 | 1.20 | 0.48, 3.08 | 0.7 |
Age | 234 | 36 | 0.97 | 0.93, 1.02 | 0.2 | 234 | 36 | 0.97 | 0.93, 1.02 | 0.2 |
SEX | 234 | 234 | ||||||||
M | 106 | 20 | — | — | 106 | 20 | — | — | ||
F | 128 | 16 | 0.63 | 0.30, 1.29 | 0.2 | 128 | 16 | 0.61 | 0.30, 1.25 | 0.2 |
1 Source: produced through simple regression with table.r | ||||||||||
2 OR = Odds Ratio, CI = Confidence Interval |
Table 14-3.03
Code
mulm_table<-regression_table(response=AVAL,covariates=c("TRTP", "AGE", "SEX") , data=adqscibc,
regression_type=linear,
type=multivariate,
add_n=TRUE,
table_title="Table 14-3.03: Primary endpoint: multivariate linear regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
mulm_table
Characteristic | N | Beta1 | 95% CI2 | p-value |
---|---|---|---|---|
TRTP | 234 | |||
Placebo | 79 | — | — | |
Low Dose | 81 | -0.12 | -0.36, 0.13 | 0.3 |
High Dose | 74 | 0.05 | -0.20, 0.30 | 0.7 |
Age | 234 | 0.01 | 0.00, 0.02 | 0.083 |
SEX | 234 | |||
M | 106 | — | — | |
F | 128 | 0.06 | -0.14, 0.27 | 0.5 |
1 Source: produced through simple regression with table.r | ||||
2 CI = Confidence Interval |
Code
# several univariate models
uvlm_table<-regression_table(response=AVAL,covariates=c("TRTP", "AGE", "SEX") , data=adqscibc,
regression_type=linear,
type=univariate,
add_n=TRUE,
table_title="Table 14-3.03: Primary endpoint: univariate linear regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
uvlm_table
Characteristic | N | Beta1 | 95% CI2 | p-value |
---|---|---|---|---|
TRTP | 234 | |||
Placebo | 79 | — | — | |
Low Dose | 81 | -0.11 | -0.35, 0.14 | 0.4 |
High Dose | 74 | 0.03 | -0.22, 0.28 | 0.8 |
Age | 234 | 0.01 | 0.00, 0.02 | 0.10 |
SEX | 234 | |||
M | 106 | — | — | |
F | 128 | 0.07 | -0.13, 0.27 | 0.5 |
1 Source: produced through simple regression with table.r | ||||
2 CI = Confidence Interval |
Code
Characteristic |
multivariate result
|
univariate result
|
||||||
---|---|---|---|---|---|---|---|---|
N | Beta1 | 95% CI2 | p-value | N | Beta1 | 95% CI2 | p-value | |
TRTP | 234 | 234 | ||||||
Placebo | 79 | — | — | 79 | — | — | ||
Low Dose | 81 | -0.12 | -0.36, 0.13 | 0.3 | 81 | -0.11 | -0.35, 0.14 | 0.4 |
High Dose | 74 | 0.05 | -0.20, 0.30 | 0.7 | 74 | 0.03 | -0.22, 0.28 | 0.8 |
Age | 234 | 0.01 | 0.00, 0.02 | 0.083 | 234 | 0.01 | 0.00, 0.02 | 0.10 |
SEX | 234 | 234 | ||||||
M | 106 | — | — | 106 | — | — | ||
F | 128 | 0.06 | -0.14, 0.27 | 0.5 | 128 | 0.07 | -0.13, 0.27 | 0.5 |
1 Source: produced through simple regression with table.r | ||||||||
2 CI = Confidence Interval |
Table 14-1.41
Code
d<-trial%>%dplyr::select(trt,age,grade,response)
create_summary_table(
data = d,
by_var = trt,
continuous_vars = c("age"),
categorical_vars = c("grade", "response"),
var_order = c("age", "grade", "response"),
continuous_digits =c(0, 1, 2, 1, 1, 1, 2, 2),
continuous_labels = list(
AGE = "Age"
),
categorical_labels = list(
grade = "Grade",
response = "Tumor Response"
),
include_overall = TRUE,
add_p=TRUE,
add_CI=TRUE,
add_difference = TRUE,
table_title="Table 14-1.41: Summary of cancer information",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
#output_type="tibble"
)
Characteristic | Total (N=200)1 |
95% CI2 | Drug A N = 981 |
95% CI2 | Drug B N = 1021 |
95% CI2 | Difference3 | 95% CI3,2 | P Value4 |
---|---|---|---|---|---|---|---|---|---|
Age | 45, 49 | 44, 50 | 45, 50 | -0.44 | -4.6, 3.7 | 0.718 | |||
n | 189 | 91 | 98 | ||||||
Mean (SD) | 47.2 (14.31) | 47.0 (14.71) | 47.4 (14.01) | ||||||
Median (P25, P75) | 47.0 (38.0, 57.0) | 46.0 (37.0, 60.0) | 48.0 (39.0, 56.0) | ||||||
Min, Max | 6.00, 83.00 | 6.00, 78.00 | 9.00, 83.00 | ||||||
Missing | 11 | 7 | 4 | ||||||
Grade, n (%) | 0.07 | -0.20, 0.35 | 0.871 | ||||||
I | 68 (34%) | 28%, 41% | 35 (36%) | 26%, 46% | 33 (32%) | 24%, 42% | |||
II | 68 (34%) | 28%, 41% | 32 (33%) | 24%, 43% | 36 (35%) | 26%, 45% | |||
III | 64 (32%) | 26%, 39% | 31 (32%) | 23%, 42% | 33 (32%) | 24%, 42% | |||
Tumor Response, n (%) | -0.09 | -0.37, 0.19 | 0.530 | ||||||
0 | 132 (68%) | 61%, 75% | 67 (71%) | 60%, 79% | 65 (66%) | 56%, 75% | |||
1 | 61 (32%) | 25%, 39% | 28 (29%) | 21%, 40% | 33 (34%) | 25%, 44% | |||
Missing | 7 | 3 | 4 | ||||||
1 source: produced through continuous and categorical table with Pvalue.r | |||||||||
2 CI = Confidence Interval | |||||||||
3 Welch Two Sample t-test; Standardized Mean Difference | |||||||||
4 Wilcoxon rank sum test; Pearson’s Chi-squared test |
Table 14-1.42
Code
source("C:/Users/zunqi/OneDrive/R related/R and AI/functions/simple regression with table.r")
#notice the response format entry is different from other regression when you are doing survial analysis
# ttdeath is time to death which is needed
mulm_table<-regression_table(response=c("ttdeath", "death"),covariates=c("trt", "age", "grade") , data=trial,
regression_type=survival,
type=multivariate,
add_n=TRUE,
table_title="Table 14-1.42: Survival Analysis, multivariate cox HR regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
mulm_table
Characteristic | N | HR1,2 | 95% CI2 | p-value |
---|---|---|---|---|
Chemotherapy Treatment | 189 | |||
Drug A | 91 | — | — | |
Drug B | 98 | 1.30 | 0.88, 1.92 | 0.2 |
Age | 189 | 1.01 | 0.99, 1.02 | 0.3 |
Grade | 189 | |||
I | 66 | — | — | |
II | 62 | 1.21 | 0.73, 1.99 | 0.5 |
III | 61 | 1.79 | 1.12, 2.86 | 0.014 |
1 Source: produced through simple regression with table.r | ||||
2 HR = Hazard Ratio, CI = Confidence Interval |
Code
#for univariate survival analysis type does not matter
regression_table(response=c("ttdeath", "death"),covariates=c("trt") , data=trial,
regression_type=survival,
type=multivariate,
add_n=TRUE,
table_title="Table 14-1.42.1: Survival Analysis, univariate cox HR regression",
population="Full dataset",
output_type = c("tbl_summary")
# output_type = c("flextable")
)
Characteristic | N | HR1,2 | 95% CI2 | p-value |
---|---|---|---|---|
Chemotherapy Treatment | 200 | |||
Drug A | 98 | — | — | |
Drug B | 102 | 1.25 | 0.86, 1.81 | 0.2 |
1 Source: produced through simple regression with table.r | ||||
2 HR = Hazard Ratio, CI = Confidence Interval |