Introduction

Methods

Vegetation, soil, grazing indicators data

Vegetation

Table 2 Paper REM

Table 2 Paper REM

Plant community types

Plant community types

Soil

We collected three soil samples at 2, 5 and 8 meters of the 10-m-length transect. We did so for 62 vegetation transects done during spring 2022 and 2024.

We measured the following soil physico-chemical variables:

  • ph

  • volume of stones (v_stones) within the cylinders.

  • bulk.density : Soil bulk density (\(\frac{g}{cm^{3}}\))

  • depth : Soil depth (cm)

  • HCL Test :

    • Limestone : In cold condition, generalized effervescence under HCl

    • Dolomite : In cold condition, little or non effervescence under HCL

      • Four categories from 0 to 3 indicating effervescence under HCL

        • 0 : No detectable reaction

        • 1 : Weak, a few bubbles or murmur of effervescence

        • 2 : Medium, bubbles in continuous layer

        • 3 : Vivid, several superimposed layers of bubbles

  • Munsell soil colour :

    • Value : the lightness or the darkness of the colour
  • om : Percentage (%) of organic matter calculated after being in muffle furnace at 550 °C during 4 hours.

  • N : Percentage (%) of nitrogen in a sample weighing ~ 35 mg. CHN analysis.

  • C : Percentage (%) of carbon (organic + inorganic) in a sample weighing ~ 35 mg. CHN analysis.

  • C:N ratios

Also we recorded litter, stones, rock and moss in the field along the vegetation transect.

Organic matter is highly correlated to Value and Nitrogen so we removed these two latter variables for the multivariate analysis to avoid collinearity. We used criterion of |r| > 0.7 for avoid collinearity (Dormann et al. 2013)

Proxies of grazing pressure

Field level grazing indicators

Indicators measured at the field level, i.e.nearby or along the 72 vegetation transects carried out during spring 2022 and 2023.

  • pl_density : total number of plant contacts in the transects. Plant density allows evaluating grazing effects (Castañeda et al., 2023).

  • n_flower : total number of plant with flowers recorded in the transect. Flower abundance has been negatively associated with grazing pressure (Tadey et al. 2015).

  • bare : Bare ground recorded in the transect. Bare ground can be an indicator of herbivores’ activity and is positively correlated with runoff and soil erosion (Pyke et al. 2002).

  • dung : Dung measured at the beginning (dung_sp) and at the end (dung_au) of the grazing period. We employed quadrats of 50 x 50 cm to measure the dung amount. The quadrats were located adjacent to the 10m transect every 1 meter so carrying out 10 dung amount measurement. Dung can be a measure of grazing pressure on the transect scale (Jordan et al. 2022).

  • Plant Utilization Rates (PUR): We followed the method described by Ruiz-Mirazo et al. (2011) which proposes qualitative categories of plant utilization ranging from 0 to 5, with 3 referring to intermediate utilization. PUR have been measured nearby the vegetation transect in 25 individuals of dominant species, i.e. Helianthemum cinereum, Helianthemum oelandicum, Helianthemum appenninum, Thymus serpylloides, Koeleria vallesiana, Seseli montanum, Festuca reverchonii, Teucrium aureum, Helictotrichon filifolium and Festuca segimonensis. Also we measured an overall Plant Utilisation Rate (PUR) of the vegetation pur_RA, which was measured at each meter of the 10m transect.

For the statistical analysis we aggregated by life forms:

pur_CH : Chamaephytes (Helianthemum spp., Thymus serpylloides and Teucrium aureum)

pur_Fes: But we keep Festuca segimonensis alone as it is the dominant plant of the target community

Individual/Unit grazing area level

  • Stocking Rate, which refers to the number of livestock per hectare over a specified time (Allen et al. 2011), is usually used to asses the effect of livestock on vegetation. Here we used animals*days per hectare (Scarnecchia 1985), which consider the number of days that the comarca is grazed. We gather such informations through the observations in field of Pau and Francisco and our observations during 2022 and 2023 fieldwork. Also, I check the transcriptions of the interviews done by me and Adrià during 2023.

\[\text{Stocking Rate} = \frac{Animals * Days}{Hectares}\]

However, this indicator may not be suitable in case of environmental and vegetation heterogeneity, also it does not take into account herding practices at the field scale (Genin and Hanafi 2010).

First results

1. Which are the relationship between grazing indicators ?

Spearman correlation between indicators. Correlation matrix:

##                stoking_rate_2 pl_density pur_CH pur_Fes pur_RA dung_au dung_sp
## stoking_rate_2              1                                                 
## pl_density              -0.12          1                                      
## pur_CH                   0.17       0.22      1                               
## pur_Fes                  0.04       0.01  -0.17       1                       
## pur_RA                   0.27      -0.16   0.33    0.54      1                
## dung_au                  0.21      -0.02    0.2   -0.12      0       1        
## dung_sp                  0.01      -0.09  -0.01    0.15   0.16    0.42       1
## n_flower                 -0.1       0.17  -0.26   -0.05  -0.08   -0.22   -0.05
## bare                        0      -0.53  -0.15    0.04   0.12   -0.13    0.03
##                n_flower bare
## stoking_rate_2              
## pl_density                  
## pur_CH                      
## pur_Fes                     
## pur_RA                      
## dung_au                     
## dung_sp                     
## n_flower              1     
## bare              -0.12    1

The indicators are not highly correlated between them. As they are not highly correlated, we do not have the issue of multicollinearity so we can keep them all for the analysis.

Partial distance-based Redundancy Analysis (db-RDA): Modelling of vegetation data considering grazing indicators + soil variables

Geographical coordinates as covariate

# capscale() with raw (site by species) data (Borcard et al. 2018)
rda_soil_ind <- capscale(community_data_density_22_23.72_sin_cus_filt ~ ph+ bulk_density+ soil_depth+ hcl_category+ om+ v_stones+ C_N+ lit+ ston+ rock+ moss+ stoking_rate_2+ pl_density+ pur_CH+ pur_Fes+ pur_RA+ dung_au+ dung_sp+ n_flower+ bare +
                              Condition(scores(as.matrix(coord_22_23_st))), data =  db_soil_ind_st, distance = "bray",add = "lingoes")

Variability explained by the first three axes.

Figure: Species and variables

Figure: Species and variables

Backward selection

Using AIC criterion. Model selection used for the moment.

step.backward$call
## capscale(formula = community_data_density_22_23.72_sin_cus_filt ~ 
##     bulk_density + soil_depth + om + C_N + ston + moss + pl_density + 
##         pur_CH + pur_Fes + Condition(scores(as.matrix(coord_22_23_st))), 
##     data = db_soil_ind_st, distance = "bray", add = "lingoes")
# Total variance explained by the model 
Tot.var <- rda_bwd$tot.chi
# Constrained and unconstrained eigenvalues
eig.val <- c(rda_bwd$CCA$eig, rda_bwd$CA$eig) 
# Relative eigenvalues of Y-hat
eig.val.rel <- eig.val / Tot.var 
# Variability explained by the 1,2 and 3 of constrained RDA axes 
100*eig.val.rel[1:3] 
##     CAP1     CAP2     CAP3 
## 6.867502 5.807608 2.926120

Testing the statistical significance of the model

anova(rda_bwd) #  test significance of the global model
## Permutation test for capscale under reduced model
## Permutation: free
## Number of permutations: 999
## 
## Model: capscale(formula = community_data_density_22_23.72_sin_cus_filt ~ bulk_density + soil_depth + om + lit + moss + pl_density + pur_CH + pur_Fes + bare + Condition(scores(as.matrix(coord_22_23_st))), data = db_soil_ind_st, distance = "bray", add = "lingoes")
##          Df SumOfSqs      F Pr(>F)    
## Model     9   4.9519 1.9631  0.001 ***
## Residual 50  14.0136                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(rda_bwd, by = "axis",permutations = how(nperm = 999)) # test by axes 
## Permutation test for capscale under reduced model
## Forward tests for axes
## Permutation: free
## Number of permutations: 999
## 
## Model: capscale(formula = community_data_density_22_23.72_sin_cus_filt ~ bulk_density + soil_depth + om + lit + moss + pl_density + pur_CH + pur_Fes + bare + Condition(scores(as.matrix(coord_22_23_st))), data = db_soil_ind_st, distance = "bray", add = "lingoes")
##          Df SumOfSqs      F Pr(>F)    
## CAP1      1   1.3803 4.9248  0.001 ***
## CAP2      1   1.1673 4.1648  0.001 ***
## CAP3      1   0.5881 2.0984  0.097 .  
## CAP4      1   0.5028 1.7940  0.221    
## CAP5      1   0.4018 1.4337  0.571    
## CAP6      1   0.2929 1.0449  0.985    
## CAP7      1   0.2380 0.8490  0.996    
## CAP8      1   0.1957 0.6984  0.998    
## CAP9      1   0.1851 0.6603  0.998    
## Residual 50  14.0136                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fitness of the model.Testing Variance Inflation Factor (VIF)

vif.cca(rda_bwd) # vif below 10 so collinearity is avoided. 
## scores(as.matrix(coord_22_23_st))x scores(as.matrix(coord_22_23_st))y 
##                           1.906537                           1.705937 
##                       bulk_density                         soil_depth 
##                           2.355096                           1.451093 
##                                 om                                lit 
##                           2.527561                           1.213699 
##                               moss                         pl_density 
##                           1.546428                           1.688496 
##                             pur_CH                            pur_Fes 
##                           1.318621                           1.400087 
##                               bare 
##                           1.882438
Figure: Species and grazing indicators (blue) and soil variables (red). Scaling 2

Figure: Species and grazing indicators (blue) and soil variables (red). Scaling 2

Ellipses by Plant Community Types

Figure: Sites and Wards' clusters found in Paper REM. Scaling 1

Figure: Sites and Wards’ clusters found in Paper REM. Scaling 1

Ellipses by trashumance modalities

Figure: Transhumance modalities and Rda axes 1-2

Figure: Transhumance modalities and Rda axes 1-2

Ellipses by community-based governance

Figure: Community-based governance modalities and Rda axes 1-2

Figure: Community-based governance modalities and Rda axes 1-2

Variance explained by variables

Variance explained by each explanatory variable considering all others variables as covariates Using first rda which include all variables.

anova(rda_soil_ind, by="mar", permutations=1000) ### "mar" to test statistical significance each variable
## Permutation test for capscale under reduced model
## Marginal effects of terms
## Permutation: free
## Number of permutations: 1000
## 
## Model: capscale(formula = community_data_density_22_23.72_sin_cus_filt ~ ph + bulk_density + soil_depth + hcl_category + om + v_stones + C_N + lit + ston + rock + moss + stoking_rate_2 + pl_density + pur_CH + pur_Fes + pur_RA + dung_au + dung_sp + n_flower + bare + Condition(scores(as.matrix(coord_22_23_st))), data = db_soil_ind_st, distance = "bray", add = "lingoes")
##                Df SumOfSqs      F   Pr(>F)   
## ph              1   0.2952 1.0939 0.290709   
## bulk_density    1   0.3471 1.2865 0.125874   
## soil_depth      1   0.3245 1.2026 0.184815   
## hcl_category    1   0.3291 1.2195 0.192807   
## om              1   0.3130 1.1601 0.223776   
## v_stones        1   0.3798 1.4075 0.072927 . 
## C_N             1   0.3365 1.2471 0.149850   
## lit             1   0.3226 1.1957 0.182817   
## ston            1   0.3721 1.3790 0.074925 . 
## rock            1   0.3066 1.1362 0.233766   
## moss            1   0.3383 1.2537 0.123876   
## stoking_rate_2  1   0.2915 1.0803 0.322677   
## pl_density      1   0.5343 1.9800 0.001998 **
## pur_CH          1   0.3193 1.1834 0.184815   
## pur_Fes         1   0.3026 1.1215 0.245754   
## pur_RA          1   0.2856 1.0585 0.322677   
## dung_au         1   0.2991 1.1083 0.264735   
## dung_sp         1   0.3274 1.2135 0.167832   
## n_flower        1   0.3389 1.2559 0.136863   
## bare            1   0.3332 1.2348 0.154845   
## Residual       39  10.5234                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Appendix

Data summary of soil variable

Here we show the summary of the variables that were already averaged by replicates by transect. In brief, in the dataset we have 62 values of each soil variable.

##        ph         bulk_density      soil_depth      hcl_category   
##  Min.   :6.480   Min.   :0.5000   Min.   :  5.80   Min.   :0.0000  
##  1st Qu.:6.822   1st Qu.:0.9000   1st Qu.: 11.70   1st Qu.:0.0000  
##  Median :7.015   Median :1.0000   Median : 16.50   Median :0.7000  
##  Mean   :7.054   Mean   :0.9887   Mean   : 23.99   Mean   :0.6806  
##  3rd Qu.:7.265   3rd Qu.:1.1000   3rd Qu.: 25.45   3rd Qu.:1.0000  
##  Max.   :7.710   Max.   :1.6000   Max.   :101.00   Max.   :3.0000  
##      value             N                om            v_stones     
##  Min.   :2.000   Min.   :0.1930   Min.   : 5.470   Min.   :  1.00  
##  1st Qu.:3.000   1st Qu.:0.3415   1st Qu.: 9.153   1st Qu.:  7.30  
##  Median :3.000   Median :0.4535   Median :11.521   Median : 10.85  
##  Mean   :3.319   Mean   :0.5059   Mean   :12.691   Mean   : 24.72  
##  3rd Qu.:4.000   3rd Qu.:0.7000   3rd Qu.:17.019   3rd Qu.: 41.83  
##  Max.   :5.700   Max.   :1.0970   Max.   :26.191   Max.   :123.70  
##       C_N             lit             ston            rock       
##  Min.   : 9.53   Min.   : 4.00   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.:10.62   1st Qu.:14.00   1st Qu.:10.25   1st Qu.: 1.000  
##  Median :11.18   Median :17.00   Median :14.50   Median : 4.000  
##  Mean   :14.27   Mean   :18.94   Mean   :16.11   Mean   : 5.258  
##  3rd Qu.:12.29   3rd Qu.:22.75   3rd Qu.:21.00   3rd Qu.: 9.000  
##  Max.   :53.33   Max.   :37.00   Max.   :42.00   Max.   :20.000  
##       moss       
##  Min.   : 0.000  
##  1st Qu.: 1.000  
##  Median : 3.500  
##  Mean   : 6.129  
##  3rd Qu.:10.500  
##  Max.   :24.000

Soil correlation matrix

Spearman correlation

##                 ph bulk_density soil_depth hcl_category value     N    om
## ph               1                                                       
## bulk_density  0.42            1                                          
## soil_depth    0.13        -0.04          1                               
## hcl_category  0.48         0.34       0.01            1                  
## value         0.27         0.44       0.17          0.1     1            
## N            -0.26        -0.49      -0.37        -0.01  -0.7     1      
## om           -0.27        -0.53      -0.33        -0.06 -0.71  0.98     1
## v_stones     -0.03        -0.18      -0.32        -0.06 -0.03   0.2  0.16
## C_N           0.49         0.38       0.21         0.34  0.43  -0.5 -0.46
## lit          -0.04        -0.07      -0.09        -0.21 -0.02 -0.05 -0.07
## ston          0.26         0.17      -0.25         0.37  0.02  0.18  0.17
## rock          -0.3        -0.38       0.02        -0.43 -0.02  0.11  0.12
## moss         -0.32        -0.44      -0.04        -0.39 -0.01  0.04  0.08
##              v_stones   C_N   lit  ston rock moss
## ph                                               
## bulk_density                                     
## soil_depth                                       
## hcl_category                                     
## value                                            
## N                                                
## om                                               
## v_stones            1                            
## C_N             -0.03     1                      
## lit              0.03  0.03     1                
## ston             0.43  0.01 -0.34     1          
## rock             0.24 -0.26  0.05 -0.14    1     
## moss              0.2 -0.23  0.07  -0.3 0.26    1

PCA of soil variables

## $importance
## Importance of components:
##                          PC1    PC2    PC3     PC4     PC5     PC6    PC7
## Eigenvalue            3.1169 1.8377 1.2134 1.07108 0.92277 0.86730 0.6105
## Proportion Explained  0.2834 0.1671 0.1103 0.09737 0.08389 0.07885 0.0555
## Cumulative Proportion 0.2834 0.4504 0.5607 0.65810 0.74199 0.82084 0.8763
##                           PC8    PC9   PC10    PC11
## Eigenvalue            0.49980 0.3729 0.2585 0.22909
## Proportion Explained  0.04544 0.0339 0.0235 0.02083
## Cumulative Proportion 0.92177 0.9557 0.9792 1.00000

Principal component one explains 28.3%, component two explains 16.7%, and component three explains 11.1% of the variance.

Variables and principal components 1-2

Variables and principal components 1-2

Soil variables accros CSP commons

Commons and principal Components 1-2

Commons and principal Components 1-2

PERMANOVA

## Permutation test for adonis under reduced model
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_soil ~ common, data = inv_scores_c, permutations = 999)
##          Df SumOfSqs      R2      F Pr(>F)   
## Model     2     8253 0.09812 3.2095  0.007 **
## Residual 59    75853 0.90188                 
## Total    61    84106 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $parent_call
## [1] "euclidean_dist_soil ~ common , strata = Null , permutations 999"
## 
## $C_vs_P
##          Df SumOfSqs      R2      F Pr(>F)   
## Model     1     5518 0.12094 4.4025  0.007 **
## Residual 32    40109 0.87906                 
## Total    33    45627 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $C_vs_S
##          Df SumOfSqs      R2      F Pr(>F)   
## Model     1     6485 0.09554 4.6478  0.009 **
## Residual 44    61396 0.90446                 
## Total    45    67882 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $P_vs_S
##          Df SumOfSqs      R2     F Pr(>F)
## Model     1      584 0.01151 0.489  0.662
## Residual 42    50201 0.98849             
## Total    43    50786 1.00000             
## 
## attr(,"class")
## [1] "pwadstrata" "list"

Bonferroni adjustment of p-values

p_value = c(pairwise.c_2$C_vs_P$`Pr(>F)`[1],pairwise.c_2$C_vs_S$`Pr(>F)`[1],pairwise.c_2$P_vs_S$`Pr(>F)`[1])
p.adjust(p_value, method = "bonferroni")
## [1] 0.021 0.027 1.000

Significant statistical differences between Castril-Pontones and Castril-Santiago.

Statistical differences by each variable accros commons

Differences of organic matter (om) between Castril-Santiago

## 
##  Kruskal-Wallis rank sum test
## 
## data:  om by common
## Kruskal-Wallis chi-squared = 7.5298, df = 2, p-value = 0.02317
## # A tibble: 3 × 9
##   .y.   group1 group2    n1    n2 statistic       p  p.adj p.adj.signif
## * <chr> <chr>  <chr>  <int> <int>     <dbl>   <dbl>  <dbl> <chr>       
## 1 om    C      P         18    16     1.71  0.0882  0.176  ns          
## 2 om    C      S         18    28     2.73  0.00636 0.0191 *           
## 3 om    P      S         16    28     0.761 0.447   0.447  ns

Differences in litter between Castril-Santiago

## 
##  Kruskal-Wallis rank sum test
## 
## data:  lit by common
## Kruskal-Wallis chi-squared = 6.2081, df = 2, p-value = 0.04487
## # A tibble: 3 × 9
##   .y.   group1 group2    n1    n2 statistic      p  p.adj p.adj.signif
## * <chr> <chr>  <chr>  <int> <int>     <dbl>  <dbl>  <dbl> <chr>       
## 1 lit   C      P         18    16     1.64  0.101  0.203  ns          
## 2 lit   C      S         18    28     2.46  0.0138 0.0414 *           
## 3 lit   P      S         16    28     0.578 0.563  0.563  ns

Nitrogen difference between Castril-Santiago

## 
##  Kruskal-Wallis rank sum test
## 
## data:  N by common
## Kruskal-Wallis chi-squared = 8.1212, df = 2, p-value = 0.01724
## # A tibble: 3 × 9
##   .y.   group1 group2    n1    n2 statistic       p  p.adj p.adj.signif
## * <chr> <chr>  <chr>  <int> <int>     <dbl>   <dbl>  <dbl> <chr>       
## 1 N     C      P         18    16     1.89  0.0592  0.118  ns          
## 2 N     C      S         18    28     2.81  0.00489 0.0147 *           
## 3 N     P      S         16    28     0.644 0.519   0.519  ns

soil depth differences between Castril-Santiago and Castril-Pontones.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  soil_depth by common
## Kruskal-Wallis chi-squared = 14.291, df = 2, p-value = 0.0007883
## # A tibble: 3 × 9
##   .y.        group1 group2    n1    n2 statistic        p   p.adj p.adj.signif
## * <chr>      <chr>  <chr>  <int> <int>     <dbl>    <dbl>   <dbl> <chr>       
## 1 soil_depth C      P         18    16    -3.48  0.000503 0.00151 **          
## 2 soil_depth C      S         18    28    -3.11  0.00186  0.00373 **          
## 3 soil_depth P      S         16    28     0.816 0.415    0.415   ns

No differences in other soil variables.

Soil variables accros transhumance modalities

Transhumance modalities and principal Components 1-2

Transhumance modalities and principal Components 1-2

PERMANOVA

## Permutation test for adonis under reduced model
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_soil ~ thr_cat2, data = inv_scores_c, permutations = 999)
##          Df SumOfSqs      R2      F Pr(>F)
## Model     2     2725 0.03239 0.9876  0.429
## Residual 59    81381 0.96761              
## Total    61    84106 1.00000

There are not significant statistical differences concerning transhumance modalities.

Yet, slight difference concerning organic matter between LDT and SDT.

dunn_test(om ~ thr_cat2,data=db_soil_22_24_q_tp_cat)
## # A tibble: 3 × 9
##   .y.   group1 group2     n1    n2 statistic      p  p.adj p.adj.signif
## * <chr> <chr>  <chr>   <int> <int>     <dbl>  <dbl>  <dbl> <chr>       
## 1 om    LDT    SDT        22    30    -2.18  0.0296 0.0889 ns          
## 2 om    LDT    SDT/LDT    22    10    -0.317 0.751  0.751  ns          
## 3 om    SDT    SDT/LDT    30    10     1.34  0.180  0.360  ns
boxplot(om ~ thr_cat2, db_soil_22_24_q_tp_cat)

#kruskal.test(om ~ thr_cat2, db_soil_22_24_q_tp_cat %>%  filter(thr_cat2 != "SDT/LDT")) # significant difference but no difference if SDT/LDT included

Grazing indicators

PCA of grazing indicators

# do not subset db to keep rownames 
#soil_ind_pca_1 <- rda(db_soil_ind, scale = TRUE) #scale=TRUE calls for a standardization of the variables
#sum_2 = summary(soil_ind_pca_1) # Default scaling 2; #sum_2$cont

ind_pca_1 <- rda(df_grazing_ind_v2, scale = TRUE) #scale=TRUE calls for a standardization of the variables
sum_2 = summary(ind_pca_1) # Default scaling 2
sum_2$cont
## $importance
## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5     PC6     PC7    PC8
## Eigenvalue            1.9793 1.5978 1.3363 1.2860 0.9316 0.65651 0.51731 0.4455
## Proportion Explained  0.2199 0.1775 0.1485 0.1429 0.1035 0.07295 0.05748 0.0495
## Cumulative Proportion 0.2199 0.3975 0.5459 0.6888 0.7923 0.86527 0.92275 0.9723
##                           PC9
## Eigenvalue            0.24972
## Proportion Explained  0.02775
## Cumulative Proportion 1.00000

Principal component one explains 22.0%, component two explains 17.8%, component three explains 14.9% of the variance.

Variables and principal components 1-2

Variables and principal components 1-2

Grazing indicators accros CSP commons

Commons and principal Components 1-2

Commons and principal Components 1-2

Permanova

## Permutation test for adonis under reduced model
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_ind ~ common, data = inv_scores_c_ind, permutations = 999)
##          Df SumOfSqs      R2      F Pr(>F)   
## Model     2   493320 0.14688 5.9399  0.002 **
## Residual 69  2865308 0.85312                 
## Total    71  3358628 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $parent_call
## [1] "euclidean_dist_ind ~ common , strata = Null , permutations 999"
## 
## $C_vs_P
##          Df SumOfSqs      R2      F Pr(>F)
## Model     1    46574 0.04412 1.6616  0.167
## Residual 36  1009084 0.95588              
## Total    37  1055658 1.00000              
## 
## $C_vs_S
##          Df SumOfSqs      R2      F Pr(>F)  
## Model     1   220793 0.08553 4.6762  0.027 *
## Residual 50  2360792 0.91447                
## Total    51  2581585 1.00000                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $P_vs_S
##          Df SumOfSqs     R2      F Pr(>F)    
## Model     1   412370 0.1487 9.0833  0.001 ***
## Residual 52  2360740 0.8513                  
## Total    53  2773110 1.0000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## attr(,"class")
## [1] "pwadstrata" "list"

Univariate analyses between governance and grazing indicators

df_grazing_ind_v2_st_c = left_join(df_grazing_ind_v2%>% rownames_to_column(var = "transect") ,sites_density_coding%>%select(transect,common),by="transect")
#  Stocking rate 
df_grazing_ind_v2_st_c %>%  summarise(statistic = kruskal.test(stoking_rate_2~ common)$statistic,p.value = kruskal.test(stoking_rate_2~ common)$p.value)
##   statistic     p.value
## 1  10.08463 0.006458795
library(rstatix)
df_grazing_ind_v2_st_c %>%  dunn_test(stoking_rate_2 ~ common)
## # A tibble: 3 × 9
##   .y.           group1 group2    n1    n2 statistic       p   p.adj p.adj.signif
## * <chr>         <chr>  <chr>  <int> <int>     <dbl>   <dbl>   <dbl> <chr>       
## 1 stoking_rate… C      P         18    20    -0.766 0.444   0.444   ns          
## 2 stoking_rate… C      S         18    34     2.05  0.0407  0.0814  ns          
## 3 stoking_rate… P      S         20    34     3.00  0.00270 0.00810 **
#  Dung in the autumn 
df_grazing_ind_v2_st_c %>%  summarise(statistic = kruskal.test(dung_au~ common)$statistic,p.value = kruskal.test(dung_au~ common)$p.value)
##   statistic   p.value
## 1  7.114342 0.0285194
df_grazing_ind_v2_st_c %>%  dunn_test(dung_au ~ common)
## # A tibble: 3 × 9
##   .y.     group1 group2    n1    n2 statistic      p  p.adj p.adj.signif
## * <chr>   <chr>  <chr>  <int> <int>     <dbl>  <dbl>  <dbl> <chr>       
## 1 dung_au C      P         18    20    2.27   0.0229 0.0459 *           
## 2 dung_au C      S         18    34    2.46   0.0138 0.0414 *           
## 3 dung_au P      S         20    34   -0.0751 0.940  0.940  ns

Grazing indicators accros transhumance modalities

Transhumance modalities and principal Components 1-2

Transhumance modalities and principal Components 1-2

Permanova

## Permutation test for adonis under reduced model
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_ind ~ thr_cat2, data = inv_scores_c_ind, permutations = 999)
##          Df SumOfSqs      R2      F Pr(>F)
## Model     2    74651 0.02223 0.7842  0.479
## Residual 69  3283977 0.97777              
## Total    71  3358628 1.00000

Univariate analyses trashumance and grazing indicators

#st stadistique 
df_grazing_ind_v2_st = left_join(df_grazing_ind_v2%>% rownames_to_column(var = "transect") ,sites_density_coding%>%select(transect,thr_cat2),by="transect")
#rda_sites_thr <- within(rda_sites_thr, {thr_cat2<-factor(thr_cat2)})
# normality Fes
df_grazing_ind_v2_st %>%   summarise(statistic = shapiro.test(pur_Fes)$statistic,p.value = shapiro.test(pur_Fes)$p.value) 
##   statistic      p.value
## 1 0.8977121 2.481058e-05
#  pur_Fes
df_grazing_ind_v2_st %>%  summarise(statistic = kruskal.test(pur_Fes~ thr_cat2)$statistic,p.value = kruskal.test(pur_Fes~ thr_cat2)$p.value)
##   statistic      p.value
## 1  17.87338 0.0001314756
df_grazing_ind_v2_st %>%  dunn_test(pur_Fes ~ thr_cat2)
## # A tibble: 3 × 9
##   .y.     group1 group2     n1    n2 statistic         p     p.adj p.adj.signif
## * <chr>   <chr>  <chr>   <int> <int>     <dbl>     <dbl>     <dbl> <chr>       
## 1 pur_Fes LDT    SDT        29    31      4.19 0.0000280 0.0000839 ****        
## 2 pur_Fes LDT    SDT/LDT    29    12      1.11 0.268     0.268     ns          
## 3 pur_Fes SDT    SDT/LDT    31    12     -2.07 0.0388    0.0776    ns
#  pur_RA
df_grazing_ind_v2_st %>%  summarise(statistic = kruskal.test(pur_RA~ thr_cat2)$statistic,p.value = kruskal.test(pur_RA~ thr_cat2)$p.value)
##   statistic    p.value
## 1  7.410873 0.02458948
df_grazing_ind_v2_st %>%  dunn_test(pur_RA ~ thr_cat2)
## # A tibble: 3 × 9
##   .y.    group1 group2     n1    n2 statistic       p  p.adj p.adj.signif
## * <chr>  <chr>  <chr>   <int> <int>     <dbl>   <dbl>  <dbl> <chr>       
## 1 pur_RA LDT    SDT        29    31     2.70  0.00696 0.0209 *           
## 2 pur_RA LDT    SDT/LDT    29    12     0.721 0.471   0.471  ns          
## 3 pur_RA SDT    SDT/LDT    31    12    -1.32  0.186   0.372  ns