• Aplique el filtro HP para cada uno de los paĆ­ses de CentroamĆ©rica, para los periodos disponibles para cada paĆ­s.

• Represente sus resultados de forma grĆ”fica

• En todos los grĆ”ficos indique el paĆ­s y el periodo al que corresponden los datos.

1. Usando la versión personalizada

library(readxl)
library(mFilter)
library(forecast)

# Carga de los datos
PIB_trimestral <- read_excel("C:/Users/DELL/Desktop/METODOSPARA EL ANALISIS ECONOMICO/datos_PIB_trim_CA.xlsx")

# Asegúrate de que los datos sean numéricos
PIB_trimestral$`Costa Rica` <- as.numeric(PIB_trimestral$`Costa Rica`)

# Crea la serie temporal
CR <- ts(PIB_trimestral$`Costa Rica`, start = c(1991, 1), frequency = 4)

CR <- CR[is.finite(CR)]

# Aplica el filtro de Hodrick-Prescott
hp_result_CR <- hpfilter(CR, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_CR$trend
cycle <- hp_result_CR$cycle

# Visualiza los resultados
plot(CR, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "yellow", lwd = 2)
legend("topleft", legend = c("Costa Rica", "Tendencia (Filtro HP)"), col = c("black", "yellow"), lty = 1, lwd = 2)

PIB_trimestral$`El Salvador` <- as.numeric(PIB_trimestral$`El Salvador`)

# Crea la serie temporal
El_Salvador <- ts(PIB_trimestral$`El Salvador`, start = c(1990, 1), frequency = 4)

El_Salvador <- El_Salvador[is.finite(El_Salvador)]

# Aplica el filtro de Hodrick-Prescott
hp_result_ES <- hpfilter(El_Salvador, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_ES$trend
cycle <- hp_result_ES$cycle

# Visualiza los resultados
plot(El_Salvador, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "green", lwd = 2)
legend("topleft", legend = c("El Salvador", "Tendencia (Filtro HP)"), col = c("black", "green"), lty = 1, lwd = 2)

PIB_trimestral$Guatemala <- as.numeric(PIB_trimestral$Guatemala)

# Crea la serie temporal
Guatemala <- ts(PIB_trimestral$Guatemala, start = c(2001, 1), frequency = 4)

Guatemala <- Guatemala[is.finite(Guatemala)]

# Aplica el filtro de Hodrick-Prescott
hp_result_G <- hpfilter(Guatemala, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_G$trend
cycle <- hp_result_G$cycle

# Visualiza los resultados
plot(Guatemala, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "pink", lwd = 2)
legend("topleft", legend = c("Guatemala", "Tendencia (Filtro HP)"), col = c("black", "pink"), lty = 1, lwd = 2)

PIB_trimestral$Honduras <- as.numeric(PIB_trimestral$Honduras)

# Crea la serie temporal
Honduras <- ts(PIB_trimestral$Honduras, start = c(2000, 1), frequency = 4)

Honduras <- Honduras[is.finite(Honduras)]

# Aplica el filtro de Hodrick-Prescott
hp_result_H <- hpfilter(Honduras, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_H$trend
cycle <- hp_result_H$cycle

# Visualiza los resultados
plot(Honduras, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "orange", lwd = 2)
legend("topleft", legend = c("Honduras", "Tendencia (Filtro HP)"), col = c("black", "orange"), lty = 1, lwd = 2)

PIB_trimestral$Nicaragua <- as.numeric(PIB_trimestral$Nicaragua)

# Crea la serie temporal
Nicaragua <- ts(PIB_trimestral$Nicaragua, start = c(2006, 1), frequency = 4)

Nicaragua <- Nicaragua[is.finite(Nicaragua)]

# Aplica el filtro de Hodrick-Prescott
hp_result_N <- hpfilter(Nicaragua, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_N$trend
cycle <- hp_result_N$cycle

# Visualiza los resultados
plot(Nicaragua, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "blue", lwd = 2)
legend("topleft", legend = c("Nicaragua", "Tendencia (Filtro HP)"), col = c("black", "blue"), lty = 1, lwd = 2)

PIB_trimestral$`RepĆŗblica Dominicana` <- as.numeric(PIB_trimestral$`RepĆŗblica Dominicana`)

# Crea la serie temporal
Republica_Dominicana <- ts(PIB_trimestral$`RepĆŗblica Dominicana`, start = c(1991, 1), frequency = 4)

Republica_Dominicana <- Republica_Dominicana[is.finite(Republica_Dominicana)]

# Aplica el filtro de Hodrick-Prescott
hp_result_RD <- hpfilter(Republica_Dominicana, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_RD$trend
cycle <- hp_result_RD$cycle

# Visualiza los resultados
plot(Republica_Dominicana, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "purple", lwd = 2)
legend("topleft", legend = c("Republica Dominicana", "Tendencia (Filtro HP)"), col = c("black", "purple"), lty = 1, lwd = 2)

PIB_trimestral$PanamĆ” <- as.numeric(PIB_trimestral$PanamĆ”)

# Crea la serie temporal
PanamĆ” <- ts(PIB_trimestral$PanamĆ”, start = c(1996, 1), frequency = 4)

PanamĆ” <- PanamĆ”[is.finite(PanamĆ”)]

# Aplica el filtro de Hodrick-Prescott
hp_result_P <- hpfilter(PanamĆ”, freq = 1600)

# Extrae la tendencia y el componente cĆ­clico
trend <- hp_result_P$trend
cycle <- hp_result_P$cycle

# Visualiza los resultados
plot(PanamĆ”, type = "l", main = "Filtro de Hodrick-Prescott", ylab = "PIB", xlab = "Tiempo")
lines(trend, col = "red", lwd = 2)
legend("topleft", legend = c("PanamĆ”", "Tendencia (Filtro HP)"), col = c("black", "red"), lty = 1, lwd = 2)

2. usando la representación rÔpida.

plot(hp_result_CR,ask = FALSE)

plot(hp_result_ES,ask = FALSE)

plot(hp_result_G,ask = FALSE)

plot(hp_result_H,ask = FALSE)

plot(hp_result_N,ask = FALSE)

plot(hp_result_RD,ask = FALSE)

plot(hp_result_P,ask = FALSE)