library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)

Data Loading and Cleaning

data <- read.csv("member_data_uga.csv", stringsAsFactors = FALSE)
data <- data %>%
filter(Title != "#activity+title") %>%
mutate(Date = ymd(Date),
Year = year(Date))

Summary Statistics

summary(data)
##     Title           Member.Organization      Date            Countries     
##  Length:7           Length:7            Min.   :2020-10-07   Mode:logical  
##  Class :character   Class :character    1st Qu.:2021-08-09   NA's:7        
##  Mode  :character   Mode  :character    Median :2021-12-08                 
##                                         Mean   :2022-01-08                 
##                                         3rd Qu.:2022-06-11                 
##                                         Max.   :2023-05-09                 
##    Summary            Content             Topics          Working.Groups    
##  Length:7           Length:7           Length:7           Length:7          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##    Sectors          Funding.Type        Other.Tags           Author         
##  Length:7           Length:7           Length:7           Length:7          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##     Status              iso3                Year     
##  Length:7           Length:7           Min.   :2020  
##  Class :character   Class :character   1st Qu.:2021  
##  Mode  :character   Mode  :character   Median :2021  
##                                        Mean   :2021  
##                                        3rd Qu.:2022  
##                                        Max.   :2023

Analysis by Funding Type

funding_type_count <- data %>%
count("Funding Type") %>%
arrange(desc(n))
print(funding_type_count)
##   "Funding Type" n
## 1   Funding Type 7
ggplot(funding_type_count, aes(x = reorder("Funding Type", -n), y = n)) +
geom_bar(stat = "identity", fill = "skyblue") +
theme_minimal() +
labs(title = "Activities by Funding Type",
x = "Funding Type",
y = "Count") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

Analysis by Sector

sector_count <- data %>%
separate_rows(Sectors, sep = ", ") %>%
count(Sectors) %>%
arrange(desc(n))
print(sector_count)
## # A tibble: 15 × 2
##    Sectors                                     n
##    <chr>                                   <int>
##  1 Agriculture                                 2
##  2 Education                                   2
##  3 Local Economic Development                  2
##  4 COVID-19 Response                           1
##  5 Civil Society &amp; Advocacy                1
##  6 Conflict Mitigation                         1
##  7 Environment                                 1
##  8 Family Planning and Reproductive Health     1
##  9 Financial Sector                            1
## 10 Global Health                               1
## 11 Maternal and Child Health                   1
## 12 Protection                                  1
## 13 Reconciliation &amp; Peacebuilding          1
## 14 Sanitation &amp; Hygiene (WASH)             1
## 15 Water                                       1
ggplot(sector_count, aes(x = reorder(Sectors, -n), y = n)) +
geom_bar(stat = "identity", fill = "lightgreen") +
theme_minimal() +
labs(title = "Activities by Sector",
x = "Sector",
y = "Count") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

Analysis by Year

year_count <- data %>%
count(Year) %>%
arrange(desc(n))
print(year_count)
##   Year n
## 1 2021 3
## 2 2022 2
## 3 2020 1
## 4 2023 1
ggplot(year_count, aes(x = Year, y = n)) +
geom_bar(stat = "identity", fill = "salmon") +
theme_minimal() +
labs(title = "Activities by Year",
x = "Year",
y = "Count")