A nationally representative sample of American adults, from the
AmeriSpeak Panel, completed a study conducted by NORC.
In a three-cell experimental design, participants listed, in open-text
form, five values that they believe guide the U.S. on paper (i.e., the
Constitution). Then, they indicated which of the values they listed is
most important to the U.S. on paper.
This value was then embedded into the experimental manipulation.
Participants in the promise kept condition wrote 2-3 sentences
about the ways in which the U.S. is living up to its promise of that
value. Participants in the promise broken condition wrote 2-3
sentences about the ways in which the U.S. is NOT living up to its
promise of that value.Participants in the control condition provided a
definition of that value.
Then, they completed five randomly-ordered DV’s: (1) anti-establishment
sentiment; (2) American pride; (3) trust in government; (4) satisfaction
with American democracy; and (5) support for radical change.
The sample size that was agreed upon was 1800. Due to some issues with data collection, NORC collected 1823 responses.
elg_n = nrow(df_bsc_elg)
I read through the open responses and dropped the ones that are obviously nonsensical. That leaves us with 1778 eligible responses.
df_bsc_elg %>%
group_by(RACETHNICITY) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
RACETHNICITY | N | Perc |
---|---|---|
asian/non-hisp | 65 | 3.66 |
black/non-hisp | 200 | 11.25 |
hisp | 358 | 20.13 |
multi/non-hisp | 61 | 3.43 |
other/non-hisp | 26 | 1.46 |
white/non-hisp | 1068 | 60.07 |
df_bsc_elg %>%
group_by(GENDER) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
GENDER | N | Perc |
---|---|---|
female | 903 | 50.79 |
male | 875 | 49.21 |
df_bsc_elg %>%
summarise(age_mean = round(mean(AGE,na.rm = T),2),
age_sd = round(sd(AGE,na.rm = T),2)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
age_mean | age_sd |
---|---|
48.45 | 17.48 |
df_bsc_elg %>%
group_by(edu) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
edu | N | Perc |
---|---|---|
less HS | 92 | 5.17 |
HS | 327 | 18.39 |
some coll | 727 | 40.89 |
bachelors | 368 | 20.70 |
masters | 264 | 14.85 |
income_med <- median(df_bsc_elg$income_num,na.rm = T)
all_incomes <- c("under $5,000",
"$5,000 to $9,999",
"$10,000 to $14,999",
"$15,000 to $19,999",
"$20,000 to $24,999",
"$25,000 to $29,999",
"$30,000 to $34,999",
"$35,000 to $39,999",
"$40,000 to $49,999",
"$50,000 to $59,999",
"$60,000 to $74,999",
"$75,000 to $84,999",
"$85,000 to $99,999",
"$100,000 to $124,999",
"$125,000 to $149,999",
"$150,000 to $174,999",
"$175,000 to $199,999",
"$200,000 or more")
income_med_char <- all_incomes[income_med]
df_bsc_elg %>%
ggplot(aes(x = income)) +
geom_bar() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_blank(),
axis.title.y = element_blank()) +
coord_flip()
Median = $60,000 to $74,999
Top 50 most mentioned:
df_bsc_elg %>%
select(PID,val_1:val_5) %>%
pivot_longer(-PID,
names_to = "val_num",
values_to = "value") %>%
filter(value != "98") %>%
filter(value != "") %>%
filter(!is.na(value)) %>%
group_by(value) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(N)) %>%
slice(1:50) %>%
dplyr::select(N,Perc,value) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
position = "left") %>%
scroll_box(width = "100%", height = "400px")
N | Perc | value |
---|---|---|
584 | 6.61 | Freedom |
341 | 3.86 | Equality |
271 | 3.07 | Liberty |
251 | 2.84 | Freedom of speech |
189 | 2.14 | Justice |
182 | 2.06 | Democracy |
145 | 1.64 | Freedom of religion |
124 | 1.40 | Independence |
117 | 1.32 | freedom |
106 | 1.20 | Opportunity |
86 | 0.97 | Pursuit of happiness |
84 | 0.95 | Honesty |
80 | 0.91 | Integrity |
79 | 0.89 | equality |
67 | 0.76 | Life |
63 | 0.71 | Safety |
62 | 0.70 | Diversity |
61 | 0.69 | liberty |
60 | 0.68 | freedom of speech |
59 | 0.67 | Family |
52 | 0.59 | Respect |
51 | 0.58 | Money |
50 | 0.57 | Fairness |
49 | 0.55 | Right to bear arms |
45 | 0.51 | Individualism |
43 | 0.49 | Freedom of Speech |
43 | 0.49 | Unity |
41 | 0.46 | Honor |
41 | 0.46 | democracy |
40 | 0.45 | Free speech |
39 | 0.44 | freedom of religion |
38 | 0.43 | Happiness |
38 | 0.43 | Trust |
36 | 0.41 | Prosperity |
35 | 0.40 | justice |
34 | 0.38 | Love |
33 | 0.37 | Freedom of Religion |
33 | 0.37 | Religious freedom |
32 | 0.36 | Justice for all |
32 | 0.36 | Loyalty |
32 | 0.36 | Peace |
31 | 0.35 | Truth |
30 | 0.34 | God |
27 | 0.31 | opportunity |
26 | 0.29 | Security |
25 | 0.28 | Equal rights |
25 | 0.28 | Freedom of choice |
24 | 0.27 | Education |
23 | 0.26 | Compassion |
22 | 0.25 | Capitalism |
Top 50 most mentioned:
df_bsc_elg %>%
group_by(top_value_char) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(N)) %>%
dplyr::select(N,Perc,top_value_char) %>%
slice(1:50) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
position = "left") %>%
scroll_box(width = "100%", height = "400px")
N | Perc | top_value_char |
---|---|---|
356 | 20.02 | Freedom |
75 | 4.22 | Democracy |
70 | 3.94 | freedom |
68 | 3.82 | Liberty |
65 | 3.66 | Equality |
60 | 3.37 | Freedom of speech |
28 | 1.57 | Freedom of religion |
24 | 1.35 | Independence |
19 | 1.07 | Integrity |
19 | 1.07 | Opportunity |
18 | 1.01 | freedom of speech |
17 | 0.96 | God |
17 | 0.96 | Honesty |
14 | 0.79 | Freedom of Speech |
13 | 0.73 | Money |
13 | 0.73 | democracy |
13 | 0.73 | liberty |
12 | 0.67 | Pursuit of happiness |
12 | 0.67 | equality |
10 | 0.56 | Respect |
9 | 0.51 | Free speech |
9 | 0.51 | Freedom of choice |
9 | 0.51 | Life |
8 | 0.45 | Economy |
8 | 0.45 | Family |
8 | 0.45 | Justice |
8 | 0.45 | Right to bear arms |
7 | 0.39 | Equal rights |
7 | 0.39 | Equality for all |
7 | 0.39 | Freedom from oppression |
7 | 0.39 | Freedom of Religion |
6 | 0.34 | Love |
5 | 0.28 | FREEDOM |
5 | 0.28 | Honor |
5 | 0.28 | Limited government |
5 | 0.28 | Loyalty |
5 | 0.28 | Prosperity |
5 | 0.28 | Religious freedom |
5 | 0.28 | Rights |
5 | 0.28 | Safety |
5 | 0.28 | Trust |
4 | 0.22 | Capitalism |
4 | 0.22 | Free Speech |
4 | 0.22 | Freedom for all |
4 | 0.22 | Honest |
4 | 0.22 | Rule of law |
4 | 0.22 | equal rights |
4 | 0.22 | freedom of religion |
4 | 0.22 | life |
4 | 0.22 | rule of law |
In 2-3 sentences, please describe the ways in which the U.S. is living up to its promise of [TOP-VALUE].
df_bsc_elg %>%
filter(cond == "kept") %>%
mutate(response = iconv(response,from = "UTF-8", to = "ASCII", sub = "")) %>%
rename(top_value = top_value_char) %>%
select(PID,top_value,response) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
position = "left") %>%
scroll_box(width = "100%", height = "400px")
In 2-3 sentences, please describe the ways in which the U.S. is NOT living up to its promise of [TOP-VALUE].
df_bsc_elg %>%
filter(cond == "brkn") %>%
mutate(response = iconv(response,from = "UTF-8", to = "ASCII", sub = "")) %>%
rename(top_value = top_value_char) %>%
select(top_value,response) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
position = "left") %>%
scroll_box(width = "100%", height = "400px")
In 2-3 sentences, please define [TOP-VALUE].
df_bsc_elg %>%
filter(cond == "ctrl") %>%
mutate(response = iconv(response,from = "UTF-8", to = "ASCII", sub = "")) %>%
rename(top_value = top_value_char) %>%
select(top_value,response) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
position = "left") %>%
scroll_box(width = "100%", height = "400px")
df_bsc_elg %>%
ggplot(aes(x = antiest)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$antiest,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
How proud are you to be an American?
df_bsc_elg %>%
ggplot(aes(x = ampride)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$ampride,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
To what extent do you trust the government in Washington, across parties and administrations, to do what is right?
df_bsc_elg %>%
ggplot(aes(x = trustgov)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$trustgov,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
How satisfied are you with the way democracy is working in the United States?
df_bsc_elg %>%
ggplot(aes(x = demsatis)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$demsatis,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
The way this country works needs to be radically changed.
df_bsc_elg %>%
ggplot(aes(x = radchange)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$radchange,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I also took a mean score of anti-establishment sentiment, distrust in
government (reverse-scored trust in government), and support for radical
change.
alpha = 0.68
df_bsc_elg %>%
ggplot(aes(x = discontent)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("frequency") +
geom_vline(xintercept = mean(df_bsc_elg$discontent,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(antiest,na.rm = T),
sd = sd(antiest,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 5.184322 | 1.142550 |
ctrl | 613 | 4.940087 | 1.082434 |
kept | 574 | 4.926883 | 1.095320 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.2442349 | -0.3940392 | -0.0944306 | 0.0003987 |
kept-brkn | -0.2574394 | -0.4098607 | -0.1050181 | 0.0002281 |
kept-ctrl | -0.0132045 | -0.1642724 | 0.1378634 | 0.9770924 |
m1 <- t.test(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1158.9) = 3.92; d =
-0.23.
m1 <- t.test(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1190.23) = 3.8; d =
-0.22.
m1 <- t.test(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1173.26) = 0.21; d = -0.01.
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(ampride,na.rm = T),
sd = sd(ampride,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 3.417377 | 1.304196 |
ctrl | 613 | 3.453048 | 1.269347 |
kept | 574 | 3.461403 | 1.300028 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.0356713 | -0.1396235 | 0.2109661 | 0.8820131 |
kept-brkn | 0.0440270 | -0.1340428 | 0.2220969 | 0.8308621 |
kept-ctrl | 0.0083557 | -0.1682630 | 0.1849744 | 0.9932336 |
m1 <- t.test(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1154.21) = -0.58; d =
0.03.
m1 <- t.test(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1187.64) = -0.48; d =
0.03.
m1 <- t.test(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1166.21) = -0.11; d = 0.01.
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(trustgov,na.rm = T),
sd = sd(trustgov,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 2.852041 | 1.336251 |
ctrl | 613 | 3.018062 | 1.333279 |
kept | 574 | 3.012281 | 1.355140 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.1660216 | -0.0158910 | 0.3479342 | 0.0820727 |
kept-brkn | 0.1602399 | -0.0247045 | 0.3451843 | 0.1048161 |
kept-ctrl | -0.0057817 | -0.1891498 | 0.1775864 | 0.9969887 |
m1 <- t.test(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1153.65) = -2.03; d =
0.12.
m1 <- t.test(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1193.34) = -2.15; d =
0.12.
m1 <- t.test(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1169.04) = 0.07; d = 0.
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(demsatis,na.rm = T),
sd = sd(demsatis,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 3.254237 | 1.735412 |
ctrl | 613 | 3.415435 | 1.776998 |
kept | 574 | 3.458988 | 1.752264 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.1611979 | -0.0766393 | 0.3990350 | 0.2502706 |
kept-brkn | 0.2047505 | -0.0367351 | 0.4462361 | 0.1152253 |
kept-ctrl | 0.0435526 | -0.1960698 | 0.2831751 | 0.9046851 |
m1 <- t.test(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1159.24) = -2; d =
0.12.
m1 <- t.test(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1196.92) = -1.59; d =
0.09.
m1 <- t.test(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1177.4) = -0.42; d = 0.02.
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(radchange,na.rm = T),
sd = sd(radchange,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 5.062925 | 1.608470 |
ctrl | 613 | 4.707038 | 1.659824 |
kept | 574 | 4.836555 | 1.677208 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.3558875 | -0.5792878 | -0.1324873 | 0.0005635 |
kept-brkn | -0.2263698 | -0.4537775 | 0.0010379 | 0.0513667 |
kept-ctrl | 0.1295177 | -0.0957752 | 0.3548106 | 0.3685290 |
m1 <- t.test(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1148.6) = 2.34; d =
-0.14.
m1 <- t.test(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1196.94) = 3.77; d =
-0.22.
m1 <- t.test(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1170.19) = -1.33; d = 0.08.
df_bsc_elg %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(discontent,na.rm = T),
sd = sd(discontent,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 591 | 5.132191 | 1.092530 |
ctrl | 613 | 4.876087 | 1.064480 |
kept | 574 | 4.917804 | 1.089992 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.2561037 | -0.4024325 | -0.1097748 | 0.0001249 |
kept-brkn | -0.2143873 | -0.3631363 | -0.0656383 | 0.0021316 |
kept-ctrl | 0.0417164 | -0.1057116 | 0.1891443 | 0.7845652 |
m1 <- t.test(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "ctrl"))
kept-brkn: t(1162.16) = 3.35; d =
-0.2.
m1 <- t.test(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "kept"))
ctrl-brkn: t(1197.31) = 4.12; d =
-0.24.
m1 <- t.test(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc_elg %>% filter(cond != "brkn"))
kept-ctrl: t(1175.59) = -0.67; d = 0.04.
I’ll repeat all these analyses, but this time without exclusions.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(antiest,na.rm = T),
sd = sd(antiest,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 5.170641 | 1.145946 |
ctrl | 626 | 4.940133 | 1.080054 |
kept | 588 | 4.909972 | 1.106247 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.2305081 | -0.3789327 | -0.0820835 | 0.0008095 |
kept-brkn | -0.2606699 | -0.4115760 | -0.1097639 | 0.0001566 |
kept-ctrl | -0.0301618 | -0.1800581 | 0.1197345 | 0.8844829 |
m1 <- t.test(antiest ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1190.99) = 4; d =
-0.23.
m1 <- t.test(antiest ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1221.82) = 3.63; d =
-0.21.
m1 <- t.test(antiest ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(antiest ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1198.27) = 0.48; d = -0.03.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(ampride,na.rm = T),
sd = sd(ampride,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 3.425497 | 1.302916 |
ctrl | 626 | 3.456452 | 1.261986 |
kept | 588 | 3.467466 | 1.296110 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.0309549 | -0.1416095 | 0.2035194 | 0.9070413 |
kept-brkn | 0.0419691 | -0.1332003 | 0.2171385 | 0.8402986 |
kept-ctrl | 0.0110141 | -0.1630406 | 0.1850689 | 0.9879273 |
m1 <- t.test(ampride ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1185.04) = -0.56; d =
0.03.
m1 <- t.test(ampride ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1217.89) = -0.42; d =
0.02.
m1 <- t.test(ampride ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(ampride ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1193.07) = -0.15; d = 0.01.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(trustgov,na.rm = T),
sd = sd(trustgov,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 2.846535 | 1.332820 |
ctrl | 626 | 3.019293 | 1.333193 |
kept | 588 | 3.011986 | 1.356590 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.1727580 | -0.0067340 | 0.3522499 | 0.0621897 |
kept-brkn | 0.1654516 | -0.0168993 | 0.3478026 | 0.0844698 |
kept-ctrl | -0.0073063 | -0.1885026 | 0.1738900 | 0.9950802 |
m1 <- t.test(trustgov ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1184.46) = -2.12; d =
0.12.
m1 <- t.test(trustgov ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1225.18) = -2.27; d =
0.13.
m1 <- t.test(trustgov ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(trustgov ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1196.25) = 0.09; d = -0.01.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(demsatis,na.rm = T),
sd = sd(demsatis,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 3.264803 | 1.727940 |
ctrl | 626 | 3.409968 | 1.771331 |
kept | 588 | 3.463373 | 1.765213 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | 0.1451652 | -0.0895966 | 0.3799270 | 0.3153440 |
kept-brkn | 0.1985705 | -0.0396258 | 0.4367667 | 0.1237498 |
kept-ctrl | 0.0534052 | -0.1834706 | 0.2902811 | 0.8571984 |
m1 <- t.test(demsatis ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1189.2) = -1.96; d =
0.11.
m1 <- t.test(demsatis ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1228) = -1.45; d =
0.08.
m1 <- t.test(demsatis ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(demsatis ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1203.42) = -0.52; d = 0.03.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(radchange,na.rm = T),
sd = sd(radchange,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 5.049505 | 1.603980 |
ctrl | 626 | 4.721154 | 1.655518 |
kept | 588 | 4.831904 | 1.676360 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.3283511 | -0.5484520 | -0.1082502 | 0.0013870 |
kept-brkn | -0.2176010 | -0.4414825 | 0.0062805 | 0.0589039 |
kept-ctrl | 0.1107501 | -0.1115424 | 0.3330426 | 0.4721265 |
m1 <- t.test(radchange ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1178.92) = 2.29; d =
-0.13.
m1 <- t.test(radchange ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1227.99) = 3.53; d =
-0.2.
m1 <- t.test(radchange ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(radchange ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1197.24) = -1.15; d = 0.07.
df_bsc %>%
group_by(cond) %>%
summarise(N = n(),
mean = mean(discontent,na.rm = T),
sd = sd(discontent,na.rm = T)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | mean | sd |
---|---|---|---|
brkn | 609 | 5.125000 | 1.086728 |
ctrl | 626 | 4.880391 | 1.062399 |
kept | 588 | 4.910738 | 1.091416 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
ctrl-brkn | -0.2446086 | -0.3887883 | -0.1004290 | 0.0002118 |
kept-brkn | -0.2142621 | -0.3607211 | -0.0678031 | 0.0017755 |
kept-ctrl | 0.0303465 | -0.1151323 | 0.1758254 | 0.8764152 |
m1 <- t.test(discontent ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc %>% filter(cond != "ctrl"))
kept-brkn: t(1193.15) = 3.4; d =
-0.2.
m1 <- t.test(discontent ~ cond,data = df_bsc %>% filter(cond != "kept"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc %>% filter(cond != "kept"))
ctrl-brkn: t(1229.9) = 4; d =
-0.23.
m1 <- t.test(discontent ~ cond,data = df_bsc %>% filter(cond != "brkn"))
d1 <- cohen.d(discontent ~ cond,data = df_bsc %>% filter(cond != "brkn"))
kept-ctrl: t(1202.35) = -0.49; d = 0.03.