library(tidyverse) library(nycflights13)
late_flights <- flights %>% filter(arr_delay > 5) %>% group_by(month) %>% summarise(late_flights = n())
print(late_flights)
carrier_traffic <- flights %>% group_by(month, carrier) %>% summarise(total_flights = n(), .groups = “drop”) %>% group_by(month) %>% mutate(percentage = (total_flights / sum(total_flights)) * 100)
print(carrier_traffic)
latest_flights <- flights %>% group_by(month) %>% filter(dep_delay == max(dep_delay, na.rm = TRUE))
print(latest_flights)
responses <- read.csv(“multipleChoiceResponses1.csv”)
usefulness_counts <- responses %>% select(starts_with(“LearningPlatformUsefulness”)) %>% pivot_longer(cols = everything(), names_to = “platform”, values_to = “usefulness”) %>% filter(!is.na(usefulness)) %>% mutate(platform = str_remove(platform, “LearningPlatformUsefulness”)) %>% count(platform, usefulness)
print(usefulness_counts)
response_summary <- responses %>% select(starts_with(“LearningPlatformUsefulness”)) %>% pivot_longer(cols = everything(), names_to = “platform”, values_to = “usefulness”) %>% filter(!is.na(usefulness)) %>% mutate(platform = str_remove(platform, “LearningPlatformUsefulness”)) %>% group_by(platform) %>% summarise( total = n(), at_least_useful = sum(usefulness != “Not Useful”), perc_usefulness = at_least_useful / total )
print(response_summary)
library(tidytext)
twitter_data <- readRDS(“twitter_data.rds”)
follower_stats <- twitter_data %>% group_by(complaint_label) %>% summarise( avg_followers = mean(followers_count, na.rm = TRUE), min_followers = min(followers_count, na.rm = TRUE), max_followers = max(followers_count, na.rm = TRUE) )
print(follower_stats)
word_counts <- twitter_data %>% unnest_tokens(word, text) %>% count(word, sort = TRUE)
print(word_counts)