title: ‘Data Analytics Course: A Case Study of Trends in Germany Job Posts (March to Sept 2024)’ author: “Rani” date: “2024-12-21” output: pdf_document
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## company_website date_first_seen date_last_seen location
## 1 bosch.com 2024-03-04 2024-04-05 Bamberg, Germany
## 2 bosch.com 2024-03-04 2024-07-03 Germany
## 3 bosch.com 2024-03-04 2024-05-07 Germany
## 4 bosch.com 2024-03-05 2024-05-01 Germany
## 5 bosch.com 2024-03-05 2024-05-01 Germany
## 6 bosch.com 2024-03-05 2024-03-12 Bamberg, Germany
## industry
## 1 Management
## 2 Educational Instruction and Library
## 3 Transportation and Material Moving
## 4 Educational Instruction and Library
## 5 Educational Instruction and Library
## 6 Production
## job_category
## 1 Property, Real Estate, and Community Association Managers
## 2 Farm and Home Management Educators
## 3 Stockers and Order Fillers
## 4 Tutors
## 5 Tutors
## 6 Production Workers, All Other
## keywords unique_keywords
## 1 Real Estate Real Estate
## 2 Jenkins
## 3 Django
## 4 Jenkins, Django, Linux, Python, Docker Linux
## 5 Jenkins, Django, Linux, Python, Internship, Docker Python
## 6 Docker
## Time differences in days
## [1] 32 121 64 57 57 7
## # A tibble: 7 × 2
## # Groups: year_month [7]
## year_month n
## <date> <int>
## 1 2024-04-01 230
## 2 2024-05-01 182
## 3 2024-07-01 162
## 4 2024-06-01 155
## 5 2024-08-01 139
## 6 2024-03-01 87
## 7 2024-09-01 22
## # A tibble: 20 × 2
## keywords n
## <chr> <int>
## 1 SAP SuccessFactors 291
## 2 SAP 220
## 3 Internship 104
## 4 HRIS 91
## 5 Growth 60
## 6 Social Media 47
## 7 Microsoft 46
## 8 Python 45
## 9 Contentful 30
## 10 Power BI 30
## 11 Microsoft Azure 23
## 12 Java 22
## 13 C++ 21
## 14 Scrum 21
## 15 Docker 20
## 16 Kubernetes 18
## 17 Business Development 17
## 18 Back-End 16
## 19 Meister 16
## 20 NoSQL 16
SAP SuccessFactors, SAP, HRIS
Python, Microsoft Azure, Java, C++, Power BI, NoSQL
Scrum, Docker, Kubernetes
Social Media, Contentful
Growth, Business Development
Growing Popularity of Internships
Pipeline for Talent: Allow companies to train and evaluate interns for potential full-time roles.
Entry-Level Opportunities: Internships targeting students and recent graduates making them a significant portion of job postings
## # A tibble: 20 × 3
## # Groups: keywords [20]
## keywords company_website n
## <chr> <chr> <int>
## 1 SAP SuccessFactors heraeus.com 241
## 2 SAP zf.com 129
## 3 Internship bosch.com 61
## 4 HRIS bosch.com 54
## 5 Python bosch.com 33
## 6 Contentful contentful.com 30
## 7 Social Media contentful.com 30
## 8 Growth bosch.com 25
## 9 Microsoft bosch.com 21
## 10 Java bosch.com 20
## 11 Scrum bosch.com 19
## 12 NoSQL bosch.com 16
## 13 Power BI bosch.com 16
## 14 Microsoft Azure bosch.com 15
## 15 Back-End bosch.com 14
## 16 Docker bosch.com 14
## 17 Kubernetes bosch.com 12
## 18 C++ zf.com 11
## 19 Meister bosch.com 10
## 20 Business Development contentful.com 7
Datasource: LinkedIn Job Postings (2023-2024) Link: https://www.kaggle.com/datasets/arshkon/linkedin-job-postings
Extracted Data: job_posts_germany.csv Link: https://drive.google.com/file/d/1uHkm9GXve-Kj4ZoZ_5r8Hrd1ZoTxhPMi/view?usp=sharing
Changelog File: https://drive.google.com/file/d/16DTYNxxunZnicSLEBsQ09i4nlDVIQ8hF/view?usp=sharing