title: ‘Data Analytics Course: A Case Study of Trends in Germany Job Posts (March to Sept 2024)’ author: “Rani” date: “2024-12-21” output: pdf_document

A Preview of the Dataset

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##   company_website date_first_seen date_last_seen         location
## 1       bosch.com      2024-03-04     2024-04-05 Bamberg, Germany
## 2       bosch.com      2024-03-04     2024-07-03          Germany
## 3       bosch.com      2024-03-04     2024-05-07          Germany
## 4       bosch.com      2024-03-05     2024-05-01          Germany
## 5       bosch.com      2024-03-05     2024-05-01          Germany
## 6       bosch.com      2024-03-05     2024-03-12 Bamberg, Germany
##                              industry
## 1                          Management
## 2 Educational Instruction and Library
## 3  Transportation and Material Moving
## 4 Educational Instruction and Library
## 5 Educational Instruction and Library
## 6                          Production
##                                                job_category
## 1 Property, Real Estate, and Community Association Managers
## 2                        Farm and Home Management Educators
## 3                                Stockers and Order Fillers
## 4                                                    Tutors
## 5                                                    Tutors
## 6                             Production Workers, All Other
##                                             keywords unique_keywords
## 1                                        Real Estate     Real Estate
## 2                                                            Jenkins
## 3                                                             Django
## 4             Jenkins, Django, Linux, Python, Docker           Linux
## 5 Jenkins, Django, Linux, Python, Internship, Docker          Python
## 6                                                             Docker

Duration of Job Posts

## Time differences in days
## [1]  32 121  64  57  57   7

Number of Posts

## # A tibble: 7 × 2
## # Groups:   year_month [7]
##   year_month     n
##   <date>     <int>
## 1 2024-04-01   230
## 2 2024-05-01   182
## 3 2024-07-01   162
## 4 2024-06-01   155
## 5 2024-08-01   139
## 6 2024-03-01    87
## 7 2024-09-01    22

Visualization 1: How Long Are Job Posts?

What The Trend Might Mean?

Low Job Post Yet Extended Duration in March:

  • Longer job postings might mean companies are targeting best new hires

April to August:

  • Timing aligns with graduations (May to June) and summer
  • Postings target would-be and new graduates.

Significant Drop in September:

  • Companies shift to other business priorities such as year-end planning

Top Keywords: What Skills Companies Look For?

## # A tibble: 20 × 2
##    keywords                 n
##    <chr>                <int>
##  1 SAP SuccessFactors     291
##  2 SAP                    220
##  3 Internship             104
##  4 HRIS                    91
##  5 Growth                  60
##  6 Social Media            47
##  7 Microsoft               46
##  8 Python                  45
##  9 Contentful              30
## 10 Power BI                30
## 11 Microsoft Azure         23
## 12 Java                    22
## 13 C++                     21
## 14 Scrum                   21
## 15 Docker                  20
## 16 Kubernetes              18
## 17 Business Development    17
## 18 Back-End                16
## 19 Meister                 16
## 20 NoSQL                   16

Visualization 2: The Top Keywords

What All This Means?

Which Company Used Most of the Top Keywords?

## # A tibble: 20 × 3
## # Groups:   keywords [20]
##    keywords             company_website     n
##    <chr>                <chr>           <int>
##  1 SAP SuccessFactors   heraeus.com       241
##  2 SAP                  zf.com            129
##  3 Internship           bosch.com          61
##  4 HRIS                 bosch.com          54
##  5 Python               bosch.com          33
##  6 Contentful           contentful.com     30
##  7 Social Media         contentful.com     30
##  8 Growth               bosch.com          25
##  9 Microsoft            bosch.com          21
## 10 Java                 bosch.com          20
## 11 Scrum                bosch.com          19
## 12 NoSQL                bosch.com          16
## 13 Power BI             bosch.com          16
## 14 Microsoft Azure      bosch.com          15
## 15 Back-End             bosch.com          14
## 16 Docker               bosch.com          14
## 17 Kubernetes           bosch.com          12
## 18 C++                  zf.com             11
## 19 Meister              bosch.com          10
## 20 Business Development contentful.com      7

Visualization 3: What Companies Used the Top Keywords?

What This Means?

  • Bosch is expanding its workforce in all key areas
  • Heraeus is leaning towards Human Capital Management and Workforce Development

Job Seekers Should:

  • Choose Peak Hiring Periods
  • During slower hiring periods (e.g., March, September onwards), focus on networking, upskilling, and updating portfolios
  • Target In-Demand Skills. Focus on upskilling based on Top 20 Keywords
  • Research Company Hiring Trends