Environment Setup

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)

Data Import & Summary Functions

hotel_bookings <- read.csv("C:\\Users\\corey\\Downloads\\hotel_bookings.csv")
head(hotel_bookings)
##          hotel is_canceled lead_time arrival_date_year arrival_date_month
## 1 Resort Hotel           0       342              2015               July
## 2 Resort Hotel           0       737              2015               July
## 3 Resort Hotel           0         7              2015               July
## 4 Resort Hotel           0        13              2015               July
## 5 Resort Hotel           0        14              2015               July
## 6 Resort Hotel           0        14              2015               July
##   arrival_date_week_number arrival_date_day_of_month stays_in_weekend_nights
## 1                       27                         1                       0
## 2                       27                         1                       0
## 3                       27                         1                       0
## 4                       27                         1                       0
## 5                       27                         1                       0
## 6                       27                         1                       0
##   stays_in_week_nights adults children babies meal country market_segment
## 1                    0      2        0      0   BB     PRT         Direct
## 2                    0      2        0      0   BB     PRT         Direct
## 3                    1      1        0      0   BB     GBR         Direct
## 4                    1      1        0      0   BB     GBR      Corporate
## 5                    2      2        0      0   BB     GBR      Online TA
## 6                    2      2        0      0   BB     GBR      Online TA
##   distribution_channel is_repeated_guest previous_cancellations
## 1               Direct                 0                      0
## 2               Direct                 0                      0
## 3               Direct                 0                      0
## 4            Corporate                 0                      0
## 5                TA/TO                 0                      0
## 6                TA/TO                 0                      0
##   previous_bookings_not_canceled reserved_room_type assigned_room_type
## 1                              0                  C                  C
## 2                              0                  C                  C
## 3                              0                  A                  C
## 4                              0                  A                  A
## 5                              0                  A                  A
## 6                              0                  A                  A
##   booking_changes deposit_type agent company days_in_waiting_list customer_type
## 1               3   No Deposit  NULL    NULL                    0     Transient
## 2               4   No Deposit  NULL    NULL                    0     Transient
## 3               0   No Deposit  NULL    NULL                    0     Transient
## 4               0   No Deposit   304    NULL                    0     Transient
## 5               0   No Deposit   240    NULL                    0     Transient
## 6               0   No Deposit   240    NULL                    0     Transient
##   adr required_car_parking_spaces total_of_special_requests reservation_status
## 1   0                           0                         0          Check-Out
## 2   0                           0                         0          Check-Out
## 3  75                           0                         0          Check-Out
## 4  75                           0                         0          Check-Out
## 5  98                           0                         1          Check-Out
## 6  98                           0                         1          Check-Out
##   reservation_status_date
## 1              2015-07-01
## 2              2015-07-01
## 3              2015-07-02
## 4              2015-07-02
## 5              2015-07-03
## 6              2015-07-03
colnames(hotel_bookings)
##  [1] "hotel"                          "is_canceled"                   
##  [3] "lead_time"                      "arrival_date_year"             
##  [5] "arrival_date_month"             "arrival_date_week_number"      
##  [7] "arrival_date_day_of_month"      "stays_in_weekend_nights"       
##  [9] "stays_in_week_nights"           "adults"                        
## [11] "children"                       "babies"                        
## [13] "meal"                           "country"                       
## [15] "market_segment"                 "distribution_channel"          
## [17] "is_repeated_guest"              "previous_cancellations"        
## [19] "previous_bookings_not_canceled" "reserved_room_type"            
## [21] "assigned_room_type"             "booking_changes"               
## [23] "deposit_type"                   "agent"                         
## [25] "company"                        "days_in_waiting_list"          
## [27] "customer_type"                  "adr"                           
## [29] "required_car_parking_spaces"    "total_of_special_requests"     
## [31] "reservation_status"             "reservation_status_date"

Plot Creation

ggplot(data = hotel_bookings)+
  geom_bar(mapping = aes(x = market_segment), color = "red")+
  facet_wrap(~hotel)+
  theme(axis.text.x = element_text(angle = 45, size = 6, vjust = 0.4, color = "green"))+
  theme(plot.title = element_text(hjust = 0.5, face = "bold", color = "steelblue", size = 15))+
  theme(text = element_text(color = "steelblue", face = "bold", size = 12))+
  labs(title = "Booking Groups",
       caption = paste0("Data from: ", 'mindate', " to ", 'maxdate'),
       x = "Market Segment",
       y = "Number of Bookings")

mindate <- min(hotel_bookings$arrival_date_year)
maxdate <- max(hotel_bookings$arrival_date_year)