RPP Pilot - Fall 24

Alphas

Mutability

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(Mut1, Mut2, Mut3, Mut4, 
##     Mut5, Mut6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82    0.82      0.44 4.7 0.018    5  1     0.48
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.78  0.82  0.85
## Duhachek  0.78  0.82  0.86
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## Mut1      0.78      0.78    0.76      0.42 3.6    0.023 0.0253  0.45
## Mut2      0.79      0.80    0.78      0.44 4.0    0.021 0.0330  0.52
## Mut3      0.78      0.78    0.77      0.42 3.6    0.023 0.0286  0.45
## Mut4      0.76      0.77    0.75      0.40 3.3    0.025 0.0229  0.46
## Mut5      0.78      0.78    0.77      0.42 3.6    0.023 0.0265  0.47
## Mut6      0.85      0.85    0.83      0.54 5.9    0.015 0.0047  0.54
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## Mut1 232  0.76  0.78  0.73   0.65  5.1 1.3
## Mut2 232  0.72  0.72  0.64   0.58  5.0 1.5
## Mut3 232  0.77  0.78  0.72   0.66  5.3 1.3
## Mut4 232  0.83  0.83  0.81   0.72  4.9 1.5
## Mut5 231  0.78  0.78  0.73   0.65  4.8 1.5
## Mut6 231  0.51  0.50  0.33   0.30  4.8 1.5
## 
## Non missing response frequency for each item
##         1    2    3    4    5    6    7 miss
## Mut1 0.01 0.02 0.05 0.22 0.34 0.20 0.15 0.01
## Mut2 0.03 0.02 0.09 0.25 0.26 0.16 0.21 0.01
## Mut3 0.01 0.02 0.05 0.18 0.29 0.23 0.22 0.01
## Mut4 0.04 0.02 0.09 0.22 0.31 0.17 0.16 0.01
## Mut5 0.02 0.06 0.10 0.20 0.30 0.16 0.16 0.01
## Mut6 0.02 0.06 0.10 0.20 0.26 0.22 0.14 0.01

Voice futility

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(Vf1, Vf2, Vf3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.78      0.79    0.73      0.55 3.7 0.025  2.5 1.2      0.5
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.73  0.78  0.82
## Duhachek  0.73  0.78  0.83
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Vf1      0.66      0.66    0.50      0.50 2.0    0.044    NA  0.50
## Vf2      0.63      0.64    0.47      0.47 1.8    0.047    NA  0.47
## Vf3      0.82      0.82    0.69      0.69 4.5    0.024    NA  0.69
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean  sd
## Vf1 232  0.84  0.86  0.78   0.67  2.2 1.3
## Vf2 233  0.86  0.87  0.80   0.68  2.4 1.4
## Vf3 233  0.81  0.78  0.58   0.52  2.9 1.6
## 
## Non missing response frequency for each item
##        1    2    3    4    5    6    7 miss
## Vf1 0.40 0.26 0.16 0.14 0.03 0.01 0.01 0.01
## Vf2 0.32 0.30 0.16 0.13 0.05 0.03 0.01 0.00
## Vf3 0.25 0.22 0.15 0.20 0.13 0.03 0.02 0.00

Confidence in gaining status

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(Conf1, Conf2, Conf3)), check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.61      0.62    0.57      0.35 1.6 0.045  4.8 0.99     0.25
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.51  0.61  0.69
## Duhachek  0.52  0.61  0.70
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## Conf1      0.39      0.39    0.25      0.25 0.65    0.079    NA  0.25
## Conf2      0.34      0.34    0.20      0.20 0.51    0.086    NA  0.20
## Conf3      0.75      0.75    0.60      0.60 2.99    0.033    NA  0.60
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## Conf1 233  0.79  0.80  0.68   0.50  4.7 1.3
## Conf2 232  0.80  0.82  0.72   0.54  4.7 1.2
## Conf3 233  0.66  0.64  0.30   0.25  5.1 1.4
## 
## Non missing response frequency for each item
##          1    2    3    4    5    6    7 miss
## Conf1 0.02 0.04 0.08 0.32 0.27 0.17 0.10 0.00
## Conf2 0.02 0.02 0.08 0.35 0.31 0.13 0.09 0.01
## Conf3 0.02 0.03 0.07 0.23 0.26 0.24 0.16 0.00

Voice

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(V1, V2, V3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##        0.9       0.9    0.87      0.75 9.1 0.011  5.6 1.1     0.78
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88   0.9  0.92
## Duhachek  0.88   0.9  0.92
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## V1      0.88      0.89    0.79      0.79 7.7    0.015    NA  0.79
## V2      0.87      0.87    0.78      0.78 7.0    0.016    NA  0.78
## V3      0.81      0.81    0.69      0.69 4.4    0.024    NA  0.69
## 
##  Item statistics 
##      n raw.r std.r r.cor r.drop mean  sd
## V1 233  0.89  0.90  0.82   0.77  5.8 1.2
## V2 233  0.91  0.91  0.83   0.79  5.4 1.3
## V3 233  0.94  0.94  0.90   0.86  5.6 1.2
## 
## Non missing response frequency for each item
##       1    2    3    4    5    6    7 miss
## V1 0.00 0.00 0.01 0.13 0.22 0.27 0.36    0
## V2 0.01 0.01 0.04 0.19 0.27 0.23 0.24    0
## V3 0.01 0.00 0.01 0.17 0.24 0.29 0.28    0

Task visibility

## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(Task.visibility_1, Task.visibility_2, 
##     Task.visibility_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.87      0.87    0.82      0.69 6.6 0.015  5.1 1.1     0.67
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.83  0.87  0.89
## Duhachek  0.84  0.87  0.90
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Task.visibility_1      0.78      0.78    0.64      0.64 3.6    0.028    NA  0.64
## Task.visibility_2      0.80      0.80    0.67      0.67 4.1    0.026    NA  0.67
## Task.visibility_3      0.85      0.85    0.75      0.75 5.9    0.019    NA  0.75
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean  sd
## Task.visibility_1 233  0.90  0.91  0.84   0.78  5.0 1.3
## Task.visibility_2 233  0.89  0.90  0.82   0.76  5.2 1.2
## Task.visibility_3 233  0.87  0.87  0.75   0.70  5.0 1.3
## 
## Non missing response frequency for each item
##                      1    2    3    4    5    6    7 miss
## Task.visibility_1 0.01 0.03 0.05 0.22 0.33 0.22 0.14    0
## Task.visibility_2 0.02 0.01 0.04 0.19 0.33 0.26 0.15    0
## Task.visibility_3 0.02 0.02 0.09 0.24 0.28 0.21 0.15    0

Demographics

Correlations + Means and SDs

## The ability to suppress reporting of reporting confidence intervals has been deprecated in this version.
## The function argument show.conf.interval will be removed in a later version.
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                  M     SD   1            2            3            4            5            6            7           8           9         
##   1. mut                    4.97  1.04                                                                                                                 
##                                                                                                                                                        
##   2. voicefut               2.52  1.21 -.38**                                                                                                          
##                                        [-.49, -.27]                                                                                                    
##                                                                                                                                                        
##   3. conf                   4.81  0.99 .17*         -.30**                                                                                             
##                                        [.04, .29]   [-.41, -.17]                                                                                       
##                                                                                                                                                        
##   4. voice                  5.60  1.11 .19**        -.29**       .40**                                                                                 
##                                        [.07, .32]   [-.40, -.17] [.28, .50]                                                                            
##                                                                                                                                                        
##   5. taskvisib              5.07  1.15 .30**        -.30**       .37**        .24**                                                                    
##                                        [.18, .42]   [-.41, -.17] [.26, .48]   [.12, .36]                                                               
##                                                                                                                                                        
##   6. Gain.and.loss.status_1 4.54  1.29 .20**        -.14*        .65**        .31**        .23**                                                       
##                                        [.07, .32]   [-.26, -.01] [.57, .72]   [.19, .42]   [.11, .35]                                                  
##                                                                                                                                                        
##   7. Gain.and.loss.status_2 2.81  1.31 -.18**       .43**        -.38**       -.35**       -.37**       -.08                                           
##                                        [-.31, -.06] [.32, .53]   [-.49, -.27] [-.46, -.23] [-.47, -.25] [-.21, .05]                                    
##                                                                                                                                                        
##   8. GPA                    3.67  0.38 -.03         .04          -.04         .01          -.05         -.05         .19**                             
##                                        [-.16, .10]  [-.09, .18]  [-.17, .10]  [-.12, .14]  [-.18, .08]  [-.19, .08]  [.05, .31]                        
##                                                                                                                                                        
##   9. PoliticalSpectrum      5.83  1.87 -.02         -.11         -.01         .06          -.02         -.02         -.06        -.07                  
##                                        [-.14, .11]  [-.23, .02]  [-.14, .12]  [-.07, .19]  [-.15, .11]  [-.15, .11]  [-.19, .07] [-.21, .06]           
##                                                                                                                                                        
##   10. USLength              17.45 6.40 -.02         .09          -.08         -.11         -.01         -.15*        .06         -.08        .29**     
##                                        [-.15, .10]  [-.04, .21]  [-.21, .05]  [-.24, .02]  [-.14, .12]  [-.27, -.02] [-.07, .19] [-.21, .06] [.17, .40]
##                                                                                                                                                        
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Country of origin

## countryBorn
##                                           America                Australia                 Bulgaria                   Canada                    China                    Egypt                 Honduras                    India                indonesia                Indonesia                    Japan              Kyrgyzstan                   Lebanon                   Mexico                  Nigeria          North Macedonia                     Peru                   Russia             Saudi Arabia                Singapore              South Korea                    Spain                   Taiwan         the netherlands                     Tokyo                     U.S.                    U.S.A                       UK                  Ukraine           United Kingdom            United States           United States  United States of America                       us                       US                      usa                      USA                     USA               Uzbekistan  
##                        1                        2                        1                        1                        4                        4                        1                        1                        7                        1                        1                        1                        1                        1                        1                        1                        1                        2                        1                        1                        4                        1                        4                        1                        1                        1                        6                        1                        1                        1                        1                       83                        4                       10                        2                       18                        5                       54                        1                        1

Gender

## Gender
##   Man Woman 
##   103   131

Race

## Race
##    Asian    Black Hispanic    Other    White 
##      110        5       40       27       52

Analysis

Code legend

R Code Construct Coding
mut Mutability 1 (not at all) –> 7 (very much so)
voice Voice 1 (not at all) –> 7 (very much so)
voicefut Futility 1 (not at all) –> 7 (very much so)
conf Confidence in gaining status 1 (not at all) –> 7 (very much so)
taskvisib Task visibility 1 (not at all) –> 7 (very much so)
Gain.and.loss.status_1 Gain status 1 (not at all) –> 7 (very much so)
Gain.and.loss.status_2 Lose status 1 (not at all) –> 7 (very much so)
Gender Gender 1 = Woman, 4 = Man, 3 = “Other”
fromusfinal Nationality “Not US”, “US”
USLength Length of time in US Numeric
Race Race 1 = White, 2 = Black, 4 = Hispanic, 6 = Asian, 12 = Native American, 10 = Pacific Islander, 5 = Other
SexualOrientation Sexual Orientation 1 = Straight, 2 = Lesbian, 3 = Gay, 4 = Bisexual, 5 = Asexual, 6 = Unsure
PoliticalSpectrum Political spectrum 1 = Conservative –> 9 = Liberal
GPA GPA 0.0 –> 4.0

Main Effects

## 
## Call:
## lm(formula = voice ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8181 -0.7229  0.1774  0.9210  2.0472 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.57203    0.35017  13.056  < 2e-16 ***
## mut          0.20768    0.06894   3.013  0.00288 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.086 on 230 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.03378 
## F-statistic: 9.076 on 1 and 230 DF,  p-value: 0.00288
## 
## Call:
## lm(formula = voicefut ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1825 -0.7673 -0.0971  0.6441  3.4573 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.75454    0.36068  13.182  < 2e-16 ***
## mut         -0.44914    0.07101  -6.325  1.3e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.118 on 230 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1482, Adjusted R-squared:  0.1445 
## F-statistic: 40.01 on 1 and 230 DF,  p-value: 1.302e-09
## 
## Call:
## lm(formula = conf ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9261 -0.6617 -0.1008  0.5420  2.4441 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.02715    0.31501  12.784   <2e-16 ***
## mut          0.15864    0.06201   2.558   0.0112 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9768 on 230 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02766,    Adjusted R-squared:  0.02344 
## F-statistic: 6.544 on 1 and 230 DF,  p-value: 0.01117
## 
## Call:
## lm(formula = taskvisib ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4214 -0.7488 -0.0320  0.7497  2.9237 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.40366    0.35343   9.630  < 2e-16 ***
## mut          0.33629    0.06958   4.833 2.45e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.096 on 230 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09221,    Adjusted R-squared:  0.08826 
## F-statistic: 23.36 on 1 and 230 DF,  p-value: 2.455e-06
## 
## Call:
## lm(formula = Gain.and.loss.status_1 ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0458 -0.5951 -0.1853  0.6508  2.8556 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.32487    0.40868   8.136 2.68e-14 ***
## mut          0.24585    0.08055   3.052  0.00254 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.266 on 227 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.03942,    Adjusted R-squared:  0.03519 
## F-statistic: 9.316 on 1 and 227 DF,  p-value: 0.002542
## 
## Call:
## lm(formula = Gain.and.loss.status_2 ~ mut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1880 -0.9170  0.0830  0.9668  4.4314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.96220    0.41745   9.491  < 2e-16 ***
## mut         -0.23226    0.08221  -2.825  0.00515 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.294 on 227 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.03397,    Adjusted R-squared:  0.02971 
## F-statistic: 7.981 on 1 and 227 DF,  p-value: 0.005147

Controls

## 
## Call:
## lm(formula = voice ~ mut + Gender + fromusfinal + USLength + 
##     Race + SexualOrientation + PoliticalSpectrum + GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3386 -0.7798  0.1086  0.8059  2.4735 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.70667    1.12181   4.196 4.07e-05 ***
## mut                        0.19847    0.07446   2.665  0.00831 ** 
## GenderWoman               -0.05325    0.16405  -0.325  0.74582    
## fromusfinalUS              0.22039    0.16884   1.305  0.19326    
## USLength                  -0.02789    0.01325  -2.105  0.03650 *  
## RaceBlack                 -0.04232    0.51316  -0.082  0.93436    
## RaceHispanic              -0.28168    0.22436  -1.256  0.21073    
## RaceOther                 -0.15735    0.24564  -0.641  0.52253    
## RaceWhite                 -0.04920    0.20233  -0.243  0.80812    
## SexualOrientationBisexual -0.14227    0.69498  -0.205  0.83800    
## SexualOrientationGay       0.52747    0.91808   0.575  0.56624    
## SexualOrientationStraight -0.22685    0.65441  -0.347  0.72922    
## SexualOrientationUnsure   -0.25960    0.86093  -0.302  0.76331    
## PoliticalSpectrum          0.07219    0.04466   1.617  0.10751    
## GPA                        0.05512    0.20047   0.275  0.78364    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 203 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.08211,    Adjusted R-squared:  0.01881 
## F-statistic: 1.297 on 14 and 203 DF,  p-value: 0.2114
## 
## Call:
## lm(formula = voicefut ~ mut + Gender + fromusfinal + USLength + 
##     Race + SexualOrientation + PoliticalSpectrum + GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2375 -0.7235 -0.1155  0.6736  3.2782 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.41455    1.12027   3.941 0.000112 ***
## mut                       -0.48455    0.07436  -6.516 5.58e-10 ***
## GenderWoman               -0.18215    0.16382  -1.112 0.267511    
## fromusfinalUS              0.09798    0.16861   0.581 0.561811    
## USLength                   0.01972    0.01323   1.491 0.137630    
## RaceBlack                  0.20238    0.51246   0.395 0.693311    
## RaceHispanic              -0.12127    0.22405  -0.541 0.588904    
## RaceOther                  0.05139    0.24531   0.209 0.834273    
## RaceWhite                 -0.06444    0.20205  -0.319 0.750109    
## SexualOrientationBisexual  0.32289    0.69402   0.465 0.642253    
## SexualOrientationGay       1.13481    0.91682   1.238 0.217230    
## SexualOrientationStraight  0.48552    0.65351   0.743 0.458377    
## SexualOrientationUnsure    0.98859    0.85975   1.150 0.251554    
## PoliticalSpectrum         -0.09081    0.04460  -2.036 0.043010 *  
## GPA                        0.07360    0.20019   0.368 0.713533    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.106 on 203 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.2145, Adjusted R-squared:  0.1603 
## F-statistic: 3.959 on 14 and 203 DF,  p-value: 5.209e-06
## 
## Call:
## lm(formula = conf ~ mut + Gender + fromusfinal + USLength + Race + 
##     SexualOrientation + PoliticalSpectrum + GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7294 -0.7103 -0.1066  0.5711  2.3712 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.5841356  1.0161923   4.511 1.09e-05 ***
## mut                        0.1197914  0.0674523   1.776   0.0772 .  
## GenderWoman               -0.0254903  0.1486004  -0.172   0.8640    
## fromusfinalUS              0.1073736  0.1529452   0.702   0.4835    
## USLength                  -0.0134506  0.0120023  -1.121   0.2638    
## RaceBlack                  0.0009332  0.4648484   0.002   0.9984    
## RaceHispanic              -0.4689574  0.2032326  -2.307   0.0220 *  
## RaceOther                 -0.1307597  0.2225166  -0.588   0.5574    
## RaceWhite                 -0.0640228  0.1832816  -0.349   0.7272    
## SexualOrientationBisexual  0.4594343  0.6295435   0.730   0.4664    
## SexualOrientationGay       0.8458991  0.8316388   1.017   0.3103    
## SexualOrientationStraight  0.3917048  0.5927972   0.661   0.5095    
## SexualOrientationUnsure    0.8037694  0.7798749   1.031   0.3039    
## PoliticalSpectrum          0.0042628  0.0404523   0.105   0.9162    
## GPA                       -0.1301868  0.1815933  -0.717   0.4743    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.004 on 203 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.06694,    Adjusted R-squared:  0.002587 
## F-statistic:  1.04 on 14 and 203 DF,  p-value: 0.415
## 
## Call:
## lm(formula = taskvisib ~ mut + Gender + fromusfinal + USLength + 
##     Race + SexualOrientation + PoliticalSpectrum + GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4423 -0.6776 -0.0474  0.7653  2.7923 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.433115   1.142610   3.880 0.000141 ***
## mut                        0.323618   0.075844   4.267 3.04e-05 ***
## GenderWoman                0.027546   0.167087   0.165 0.869219    
## fromusfinalUS             -0.010023   0.171972  -0.058 0.953583    
## USLength                   0.002710   0.013495   0.201 0.841068    
## RaceBlack                 -0.424387   0.522677  -0.812 0.417772    
## RaceHispanic               0.108766   0.228515   0.476 0.634609    
## RaceOther                 -0.082868   0.250198  -0.331 0.740827    
## RaceWhite                  0.098560   0.206082   0.478 0.632985    
## SexualOrientationBisexual -0.753398   0.707861  -1.064 0.288443    
## SexualOrientationGay       0.416267   0.935097   0.445 0.656679    
## SexualOrientationStraight -0.757019   0.666543  -1.136 0.257405    
## SexualOrientationUnsure   -1.075751   0.876894  -1.227 0.221328    
## PoliticalSpectrum          0.001376   0.045485   0.030 0.975896    
## GPA                       -0.083092   0.204184  -0.407 0.684477    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.128 on 203 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.113,  Adjusted R-squared:  0.05184 
## F-statistic: 1.847 on 14 and 203 DF,  p-value: 0.03405
## 
## Call:
## lm(formula = Gain.and.loss.status_1 ~ mut + Gender + fromusfinal + 
##     USLength + Race + SexualOrientation + PoliticalSpectrum + 
##     GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8397 -0.7890 -0.1036  0.7540  2.7333 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                4.63056    1.30265   3.555 0.000472 ***
## mut                        0.19430    0.08642   2.248 0.025647 *  
## GenderWoman               -0.08245    0.19112  -0.431 0.666618    
## fromusfinalUS              0.05050    0.19676   0.257 0.797718    
## USLength                  -0.02971    0.01549  -1.918 0.056509 .  
## RaceBlack                  0.14352    0.59393   0.242 0.809307    
## RaceHispanic              -0.42485    0.26701  -1.591 0.113156    
## RaceOther                 -0.07481    0.28426  -0.263 0.792675    
## RaceWhite                 -0.21680    0.23541  -0.921 0.358199    
## SexualOrientationBisexual  0.99641    0.80426   1.239 0.216829    
## SexualOrientationGay       0.59656    1.06289   0.561 0.575248    
## SexualOrientationStraight  0.47909    0.75748   0.632 0.527796    
## SexualOrientationUnsure    1.76122    0.99648   1.767 0.078678 .  
## PoliticalSpectrum         -0.00960    0.05177  -0.185 0.853085    
## GPA                       -0.24144    0.23216  -1.040 0.299619    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.282 on 200 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.1005, Adjusted R-squared:  0.03751 
## F-statistic: 1.596 on 14 and 200 DF,  p-value: 0.08273
## 
## Call:
## lm(formula = Gain.and.loss.status_2 ~ mut + Gender + fromusfinal + 
##     USLength + Race + SexualOrientation + PoliticalSpectrum + 
##     GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8791 -0.9399 -0.0015  0.7269  4.3815 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                2.3911705  1.2968009   1.844  0.06668 . 
## mut                       -0.2406101  0.0859189  -2.800  0.00560 **
## GenderWoman               -0.4010355  0.1909078  -2.101  0.03692 * 
## fromusfinalUS              0.1916783  0.1956085   0.980  0.32832   
## USLength                   0.0087410  0.0154619   0.565  0.57248   
## RaceBlack                 -0.8671438  0.5923061  -1.464  0.14476   
## RaceHispanic              -0.1218100  0.2631393  -0.463  0.64393   
## RaceOther                 -0.0004183  0.2838622  -0.001  0.99883   
## RaceWhite                 -0.2152175  0.2349344  -0.916  0.36073   
## SexualOrientationBisexual -0.6775723  0.8018149  -0.845  0.39909   
## SexualOrientationGay      -1.7137994  1.0595456  -1.617  0.10735   
## SexualOrientationStraight -0.4294575  0.7550003  -0.569  0.57012   
## SexualOrientationUnsure    0.8028686  0.9934148   0.808  0.41994   
## PoliticalSpectrum         -0.0380270  0.0516738  -0.736  0.46265   
## GPA                        0.6378222  0.2315567   2.754  0.00642 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.278 on 200 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.1412, Adjusted R-squared:  0.08107 
## F-statistic: 2.349 on 14 and 200 DF,  p-value: 0.004973

Interactions

DV: Voice

Gender

## 
## Call:
## lm(formula = voice ~ mut * Gender, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8171 -0.7319  0.2070  0.8974  2.1226 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.78230    0.58435   8.184 1.94e-14 ***
## mut              0.17247    0.11241   1.534    0.126    
## GenderWoman     -0.31679    0.73298  -0.432    0.666    
## mut:GenderWoman  0.05221    0.14324   0.364    0.716    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03913,    Adjusted R-squared:  0.02648 
## F-statistic: 3.095 on 3 and 228 DF,  p-value: 0.02774

Voice Fut

## 
## Call:
## lm(formula = voice ~ mut * voicefut, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0486 -0.7417  0.1601  0.8897  2.1504 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.90219    0.85822   6.877  5.8e-11 ***
## mut           0.06009    0.15948   0.377    0.707    
## voicefut     -0.32438    0.30823  -1.052    0.294    
## mut:voicefut  0.01838    0.06114   0.301    0.764    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.058 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09404,    Adjusted R-squared:  0.08212 
## F-statistic: 7.889 on 3 and 228 DF,  p-value: 4.971e-05

Confidence

## 
## Call:
## lm(formula = voice ~ mut * conf, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1929 -0.6561  0.0088  0.6761  2.1441 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.71056    1.54828  -0.459 0.646717    
## mut          0.82097    0.28784   2.852 0.004740 ** 
## conf         1.15902    0.31420   3.689 0.000282 ***
## mut:conf    -0.13886    0.05735  -2.421 0.016254 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9986 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1934, Adjusted R-squared:  0.1828 
## F-statistic: 18.23 on 3 and 228 DF,  p-value: 1.23e-10
## JOHNSON-NEYMAN INTERVAL
## 
## When conf is OUTSIDE the interval [5.00, 10.83], the slope of mut is p < .05.
## 
## Note: The range of observed values of conf is [2.00, 7.00]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when conf = 3.827611 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.29   0.09     3.27   0.00
## 
## Slope of mut when conf = 4.816092 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.15   0.06     2.36   0.02
## 
## Slope of mut when conf = 5.804573 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.01   0.08     0.18   0.86

GPA

## 
## Call:
## lm(formula = voice ~ mut * GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8745 -0.7557  0.2217  0.8946  2.1139 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   7.7989     3.7132   2.100   0.0369 *
## mut          -0.4087     0.6489  -0.630   0.5295  
## GPA          -0.8925     1.0203  -0.875   0.3827  
## mut:GPA       0.1713     0.1787   0.959   0.3388  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.102 on 214 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.04256,    Adjusted R-squared:  0.02914 
## F-statistic: 3.171 on 3 and 214 DF,  p-value: 0.02522

From US Final

## 
## Call:
## lm(formula = voice ~ mut * fromusfinal, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8778 -0.6929  0.1818  0.8876  2.1155 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        4.65100    0.47143   9.866   <2e-16 ***
## mut                0.18801    0.09149   2.055    0.041 *  
## fromusfinalUS     -0.20360    0.71031  -0.287    0.775    
## mut:fromusfinalUS  0.05040    0.14044   0.359    0.720    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03893,    Adjusted R-squared:  0.02629 
## F-statistic: 3.079 on 3 and 228 DF,  p-value: 0.02833

Political Spectrum

## 
## Call:
## lm(formula = voice ~ mut * PoliticalSpectrum, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7608 -0.7216  0.1875  0.9461  2.1454 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            3.39240    1.25599   2.701  0.00743 **
## mut                    0.39251    0.24410   1.608  0.10922   
## PoliticalSpectrum      0.19651    0.20050   0.980  0.32808   
## mut:PoliticalSpectrum -0.03053    0.03892  -0.784  0.43361   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.086 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.04558,    Adjusted R-squared:  0.03302 
## F-statistic: 3.629 on 3 and 228 DF,  p-value: 0.01372

Task Visibility

## 
## Call:
## lm(formula = voice ~ mut * taskvisib, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9531 -0.7246  0.1293  0.9216  2.1278 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    1.29779    1.47070   0.882   0.3785  
## mut            0.69497    0.30254   2.297   0.0225 *
## taskvisib      0.68609    0.27522   2.493   0.0134 *
## mut:taskvisib -0.10279    0.05499  -1.869   0.0629 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.063 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.08579,    Adjusted R-squared:  0.07376 
## F-statistic: 7.132 on 3 and 228 DF,  p-value: 0.0001341
## JOHNSON-NEYMAN INTERVAL
## 
## When taskvisib is INSIDE the interval [-20.07, 5.40], the slope of mut is p < .05.
## 
## Note: The range of observed values of taskvisib is [1.00, 7.00]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when taskvisib = 3.928365 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.29   0.11     2.76   0.01
## 
## Slope of mut when taskvisib = 5.076149 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.17   0.07     2.39   0.02
## 
## Slope of mut when taskvisib = 6.223934 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.06   0.09     0.64   0.52

Gain status

## 
## Call:
## lm(formula = voice ~ mut * Gain.and.loss.status_1, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9992 -0.7059  0.0284  0.7261  2.0995 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                 2.75045    1.13761   2.418   0.0164 *
## mut                         0.33937    0.21651   1.567   0.1184  
## Gain.and.loss.status_1      0.47253    0.24379   1.938   0.0538 .
## mut:Gain.and.loss.status_1 -0.04334    0.04509  -0.961   0.3374  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.047 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1173, Adjusted R-squared:  0.1056 
## F-statistic:  9.97 on 3 and 225 DF,  p-value: 3.386e-06

Lose status

## 
## Call:
## lm(formula = voice ~ mut * Gain.and.loss.status_2, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1183 -0.7564  0.1178  0.8451  2.8838 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 7.10459    0.80864   8.786 4.03e-16 ***
## mut                        -0.13282    0.14981  -0.887  0.37625    
## Gain.and.loss.status_2     -0.79790    0.26140  -3.052  0.00254 ** 
## mut:Gain.and.loss.status_2  0.10142    0.04953   2.047  0.04178 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.024 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1553, Adjusted R-squared:  0.144 
## F-statistic: 13.79 on 3 and 225 DF,  p-value: 2.754e-08
## JOHNSON-NEYMAN INTERVAL
## 
## The Johnson-Neyman interval could not be found. Is the p value for your interaction term below the specified alpha?
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when Gain.and.loss.status_2 = 1.494057 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.12   0.08     1.54   0.13
## 
## Slope of mut when Gain.and.loss.status_2 = 2.807860 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.09   0.06     1.60   0.11
## 
## Slope of mut when Gain.and.loss.status_2 = 4.121663 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.07   0.09     0.78   0.44

DV: Voice Futility

Gender

## 
## Call:
## lm(formula = voicefut ~ mut * Gender, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2413 -0.7477 -0.1429  0.6656  3.4340 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       5.6621     0.5965   9.492  < 2e-16 ***
## mut              -0.6052     0.1148  -5.274  3.1e-07 ***
## GenderWoman      -1.3799     0.7482  -1.844   0.0665 .  
## mut:GenderWoman   0.2353     0.1462   1.609   0.1089    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.113 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1643, Adjusted R-squared:  0.1533 
## F-statistic: 14.94 on 3 and 228 DF,  p-value: 6.482e-09

Confidence

## 
## Call:
## lm(formula = voicefut ~ mut * conf, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6549 -0.7452 -0.0929  0.6372  3.4225 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.92355    1.66093   5.975 8.79e-09 ***
## mut         -1.15331    0.30878  -3.735 0.000237 ***
## conf        -1.11475    0.33706  -3.307 0.001094 ** 
## mut:conf     0.15346    0.06152   2.494 0.013329 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.071 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2253, Adjusted R-squared:  0.2151 
## F-statistic: 22.11 on 3 and 228 DF,  p-value: 1.331e-12
## JOHNSON-NEYMAN INTERVAL
## 
## When conf is OUTSIDE the interval [6.17, 17.57], the slope of mut is p < .05.
## 
## Note: The range of observed values of conf is [2.00, 7.00]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when conf = 3.827611 (- 1 SD): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.57   0.10    -5.95   0.00
## 
## Slope of mut when conf = 4.816092 (Mean): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.41   0.07    -5.99   0.00
## 
## Slope of mut when conf = 5.804573 (+ 1 SD): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.26   0.09    -2.95   0.00

GPA

## 
## Call:
## lm(formula = voicefut ~ mut * GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2301 -0.7420 -0.0862  0.6149  3.5650 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  3.67212    3.75369   0.978    0.329
## mut         -0.33123    0.65600  -0.505    0.614
## GPA          0.30519    1.03144   0.296    0.768
## mut:GPA     -0.03582    0.18066  -0.198    0.843
## 
## Residual standard error: 1.114 on 214 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.1603, Adjusted R-squared:  0.1486 
## F-statistic: 13.62 on 3 and 214 DF,  p-value: 3.635e-08

From US Final

## 
## Call:
## lm(formula = voicefut ~ mut * fromusfinal, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3996 -0.7550 -0.1384  0.6870  3.4149 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        4.30806    0.48288   8.922  < 2e-16 ***
## mut               -0.37734    0.09371  -4.027  7.7e-05 ***
## fromusfinalUS      0.94574    0.72756   1.300    0.195    
## mut:fromusfinalUS -0.15243    0.14385  -1.060    0.290    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.117 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1585, Adjusted R-squared:  0.1474 
## F-statistic: 14.31 on 3 and 228 DF,  p-value: 1.412e-08

Political Spectrum

## 
## Call:
## lm(formula = voicefut ~ mut * PoliticalSpectrum, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2756 -0.7210 -0.1258  0.6250  3.4058 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            5.47179    1.28920   4.244 3.19e-05 ***
## mut                   -0.50792    0.25055  -2.027   0.0438 *  
## PoliticalSpectrum     -0.12004    0.20580  -0.583   0.5603    
## mut:PoliticalSpectrum  0.00944    0.03995   0.236   0.8134    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.115 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1608, Adjusted R-squared:  0.1497 
## F-statistic: 14.56 on 3 and 228 DF,  p-value: 1.041e-08

Task Visibility

## 
## Call:
## lm(formula = voicefut ~ mut * taskvisib, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9644 -0.7166 -0.0887  0.6792  3.6179 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    5.580763   1.520035   3.671   0.0003 ***
## mut           -0.399655   0.312693  -1.278   0.2025    
## taskvisib     -0.231807   0.284456  -0.815   0.4160    
## mut:taskvisib  0.004076   0.056839   0.072   0.9429    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.099 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.185,  Adjusted R-squared:  0.1742 
## F-statistic: 17.25 on 3 and 228 DF,  p-value: 3.969e-10

Gain status

## 
## Call:
## lm(formula = voicefut ~ mut * Gain.and.loss.status_1, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3394 -0.7043 -0.1041  0.5956  3.4155 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 6.04327    1.21414   4.977 1.28e-06 ***
## mut                        -0.63850    0.23107  -2.763   0.0062 ** 
## Gain.and.loss.status_1     -0.30615    0.26019  -1.177   0.2406    
## mut:Gain.and.loss.status_1  0.04635    0.04812   0.963   0.3365    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.117 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1535, Adjusted R-squared:  0.1422 
## F-statistic:  13.6 on 3 and 225 DF,  p-value: 3.478e-08

Lose status

## 
## Call:
## lm(formula = voicefut ~ mut * Gain.and.loss.status_2, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5661 -0.6337 -0.1205  0.6579  3.5038 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 2.78721    0.80911   3.445 0.000682 ***
## mut                        -0.25246    0.14990  -1.684 0.093518 .  
## Gain.and.loss.status_2      0.56029    0.26155   2.142 0.033252 *  
## mut:Gain.and.loss.status_2 -0.04133    0.04956  -0.834 0.405202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.024 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.288,  Adjusted R-squared:  0.2785 
## F-statistic: 30.33 on 3 and 225 DF,  p-value: < 2.2e-16

DV: Confidence

Gender

## 
## Call:
## lm(formula = conf ~ mut * Gender, data = mutpresurv)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.92936 -0.64817 -0.09049  0.55864  2.51836 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.52519    0.52425   8.632 1.05e-15 ***
## mut              0.06991    0.10085   0.693    0.489    
## GenderWoman     -0.76680    0.65759  -1.166    0.245    
## mut:GenderWoman  0.13673    0.12851   1.064    0.288    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9779 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0341, Adjusted R-squared:  0.02139 
## F-statistic: 2.683 on 3 and 228 DF,  p-value: 0.04754

GPA

## 
## Call:
## lm(formula = conf ~ mut * GPA, data = mutpresurv)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89420 -0.68300 -0.09627  0.55202  2.49633 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  2.48043    3.36556   0.737    0.462
## mut          0.48463    0.58817   0.824    0.411
## GPA          0.44887    0.92479   0.485    0.628
## mut:GPA     -0.09388    0.16198  -0.580    0.563
## 
## Residual standard error: 0.9989 on 214 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.02558,    Adjusted R-squared:  0.01192 
## F-statistic: 1.873 on 3 and 214 DF,  p-value: 0.1352

From US Final

## 
## Call:
## lm(formula = conf ~ mut * fromusfinal, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9430 -0.6651 -0.1061  0.5392  2.4542 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.97839    0.42423   9.378   <2e-16 ***
## mut                0.17023    0.08233   2.068   0.0398 *  
## fromusfinalUS      0.12283    0.63920   0.192   0.8478    
## mut:fromusfinalUS -0.02926    0.12638  -0.232   0.8171    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9809 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02802,    Adjusted R-squared:  0.01523 
## F-statistic: 2.191 on 3 and 228 DF,  p-value: 0.08995
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when fromusfinal = Not USA: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.17   0.08     2.07   0.04
## 
## Slope of mut when fromusfinal = US: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.14   0.10     1.47   0.14

Political Spectrum

## 
## Call:
## lm(formula = conf ~ mut * PoliticalSpectrum, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9468 -0.6479 -0.1065  0.5439  2.4910 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            3.17983    1.13268   2.807  0.00543 **
## mut                    0.33097    0.22014   1.503  0.13410   
## PoliticalSpectrum      0.14074    0.18081   0.778  0.43716   
## mut:PoliticalSpectrum -0.02866    0.03510  -0.817  0.41499   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9796 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03056,    Adjusted R-squared:  0.01781 
## F-statistic: 2.396 on 3 and 228 DF,  p-value: 0.06902

Task Visibility

## 
## Call:
## lm(formula = conf ~ mut * taskvisib, data = mutpresurv)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65120 -0.46884 -0.06926  0.55661  2.53076 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    4.07523    1.27311   3.201  0.00156 **
## mut           -0.16986    0.26190  -0.649  0.51726   
## taskvisib      0.09927    0.23825   0.417  0.67733   
## mut:taskvisib  0.04225    0.04761   0.887  0.37577   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9203 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1444, Adjusted R-squared:  0.1332 
## F-statistic: 12.83 on 3 and 228 DF,  p-value: 8.935e-08

Gain status

## 
## Call:
## lm(formula = conf ~ mut * Gain.and.loss.status_1, data = mutpresurv)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.15439 -0.54634 -0.00904  0.48079  2.41307 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 3.77982    0.80897   4.672 5.12e-06 ***
## mut                        -0.21907    0.15396  -1.423   0.1562    
## Gain.and.loss.status_1      0.17810    0.17336   1.027   0.3054    
## mut:Gain.and.loss.status_1  0.05815    0.03206   1.814   0.0711 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7443 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.4298, Adjusted R-squared:  0.4222 
## F-statistic: 56.53 on 3 and 225 DF,  p-value: < 2.2e-16

Lose status

## 
## Call:
## lm(formula = conf ~ mut * Gain.and.loss.status_2, data = mutpresurv)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.57186 -0.47898 -0.08813  0.56349  2.36553 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.80104    0.71857   6.681 1.84e-10 ***
## mut                         0.15451    0.13312   1.161    0.247    
## Gain.and.loss.status_2     -0.16081    0.23228  -0.692    0.489    
## mut:Gain.and.loss.status_2 -0.02142    0.04402  -0.487    0.627    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9098 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1564, Adjusted R-squared:  0.1452 
## F-statistic: 13.91 on 3 and 225 DF,  p-value: 2.381e-08

DV: Task Visibility

Gender

## 
## Call:
## lm(formula = taskvisib ~ mut * Gender, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2669 -0.6439 -0.0748  0.7589  3.2545 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.3498     0.5847   7.440 2.04e-12 ***
## mut               0.1529     0.1125   1.359   0.1755    
## GenderWoman      -1.5027     0.7334  -2.049   0.0416 *  
## mut:GenderWoman   0.2964     0.1433   2.068   0.0398 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.091 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.109,  Adjusted R-squared:  0.09724 
## F-statistic: 9.294 on 3 and 228 DF,  p-value: 8.011e-06
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when Gender = Man: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.15   0.11     1.36   0.18
## 
## Slope of mut when Gender = Woman: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.45   0.09     5.06   0.00

GPA

## 
## Call:
## lm(formula = taskvisib ~ mut * GPA, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4257 -0.7191 -0.0292  0.7962  2.9770 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   7.0408     3.7548   1.875   0.0621 .
## mut          -0.2364     0.6562  -0.360   0.7190  
## GPA          -0.9780     1.0317  -0.948   0.3442  
## mut:GPA       0.1541     0.1807   0.853   0.3946  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.114 on 214 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.08808,    Adjusted R-squared:  0.0753 
## F-statistic:  6.89 on 3 and 214 DF,  p-value: 0.0001887

From US Final

## 
## Call:
## lm(formula = taskvisib ~ mut * fromusfinal, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3993 -0.7018 -0.0526  0.7479  2.8186 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.57238    0.47576   7.509 1.34e-12 ***
## mut                0.30449    0.09233   3.298  0.00113 ** 
## fromusfinalUS     -0.38170    0.71684  -0.532  0.59491    
## mut:fromusfinalUS  0.07330    0.14173   0.517  0.60556    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09333,    Adjusted R-squared:  0.0814 
## F-statistic: 7.824 on 3 and 228 DF,  p-value: 5.415e-05

Political Spectrum

## 
## Call:
## lm(formula = taskvisib ~ mut * PoliticalSpectrum, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4220 -0.7409 -0.0502  0.7506  2.9069 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            3.553409   1.272641   2.792  0.00568 **
## mut                    0.312950   0.247336   1.265  0.20706   
## PoliticalSpectrum     -0.024946   0.203155  -0.123  0.90238   
## mut:PoliticalSpectrum  0.003856   0.039438   0.098  0.92221   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.101 on 228 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09232,    Adjusted R-squared:  0.08038 
## F-statistic:  7.73 on 3 and 228 DF,  p-value: 6.12e-05

Gain status

## 
## Call:
## lm(formula = taskvisib ~ mut * Gain.and.loss.status_1, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6487 -0.6668 -0.0623  0.6434  2.5902 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                 1.15505    1.17106   0.986  0.32503   
## mut                         0.62665    0.22288   2.812  0.00536 **
## Gain.and.loss.status_1      0.54426    0.25096   2.169  0.03115 * 
## mut:Gain.and.loss.status_1 -0.07324    0.04641  -1.578  0.11598   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.077 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1305, Adjusted R-squared:  0.1189 
## F-statistic: 11.26 on 3 and 225 DF,  p-value: 6.57e-07
## JOHNSON-NEYMAN INTERVAL
## 
## When Gain.and.loss.status_1 is INSIDE the interval [-11.14, 5.97], the slope of mut is p < .05.
## 
## Note: The range of observed values of Gain.and.loss.status_1 is [1.00, 7.00]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of mut when Gain.and.loss.status_1 = 3.256951 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.39   0.09     4.20   0.00
## 
## Slope of mut when Gain.and.loss.status_1 = 4.545852 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.29   0.07     4.20   0.00
## 
## Slope of mut when Gain.and.loss.status_1 = 5.834752 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.20   0.09     2.18   0.03

Lose status

## 
## Call:
## lm(formula = taskvisib ~ mut * Gain.and.loss.status_2, data = mutpresurv)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6286 -0.5321  0.0160  0.6001  3.0330 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 3.95833    0.82332   4.808 2.79e-06 ***
## mut                         0.37720    0.15253   2.473   0.0141 *  
## Gain.and.loss.status_2     -0.07982    0.26614  -0.300   0.7645    
## mut:Gain.and.loss.status_2 -0.03849    0.05043  -0.763   0.4462    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.042 on 225 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1928, Adjusted R-squared:  0.1821 
## F-statistic: 17.92 on 3 and 225 DF,  p-value: 1.836e-10