df = read.csv("C:\\Thach\\VN trips\\2024_4Dec\\SIS Can Tho\\Datasets\\Bone data.csv")
library(ggplot2)
p = ggplot(data = df, aes(x = weight, y = fnbmd))
p + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
## Warning: Removed 41 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 41 rows containing missing values (`geom_point()`).
library(lessR)
## Warning: package 'lessR' was built under R version 4.3.3
##
## lessR 4.3.9 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read text, Excel, SPSS, SAS, or R data file
## d is default data frame, data= in analysis routines optional
##
## Many examples of reading, writing, and manipulating data,
## graphics, testing means and proportions, regression, factor analysis,
## customization, and descriptive statistics from pivot tables
## Enter: browseVignettes("lessR")
##
## View lessR updates, now including time series forecasting
## Enter: news(package="lessR")
##
## Interactive data analysis
## Enter: interact()
Correlation(weight, fnbmd, data = df)
## Correlation Analysis for Variables weight and fnbmd
##
##
## >>> Pearson's product-moment correlation
##
## Number of paired values with neither missing, n = 2121
## Number of cases (rows of data) deleted: 41
##
## Sample Covariance: s = 1.269
##
## Sample Correlation: r = 0.581
##
## Hypothesis Test of 0 Correlation: t = 32.882, df = 2119, p-value = 0.000
## 95% Confidence Interval for Correlation: 0.552 to 0.609
vars = df[, c("sex", "age", "weight", "height", "fnbmd")]
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
ggpairs(data = vars, mapping = aes(color = sex))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ob = read.csv("C:\\Thach\\VN trips\\2024_4Dec\\SIS Can Tho\\Datasets\\Obesity data.csv")
p = ggplot(data = ob, aes(x = gender, y = pcfat, col = gender))
p1 = p + geom_boxplot()
p1
library(lessR)
ttest(pcfat ~ gender, data = ob)
##
## Compare pcfat across gender with levels F and M
## Grouping Variable: gender
## Response Variable: pcfat
##
##
## ------ Describe ------
##
## pcfat for gender F: n.miss = 0, n = 862, mean = 34.672, sd = 5.187
## pcfat for gender M: n.miss = 0, n = 355, mean = 24.156, sd = 5.764
##
## Mean Difference of pcfat: 10.516
##
## Weighted Average Standard Deviation: 5.362
##
##
## ------ Assumptions ------
##
## Note: These hypothesis tests can perform poorly, and the
## t-test is typically robust to violations of assumptions.
## Use as heuristic guides instead of interpreting literally.
##
## Null hypothesis, for each group, is a normal distribution of pcfat.
## Group F: Sample mean assumed normal because n > 30, so no test needed.
## Group M: Sample mean assumed normal because n > 30, so no test needed.
##
## Null hypothesis is equal variances of pcfat, homogeneous.
## Variance Ratio test: F = 33.223/26.909 = 1.235, df = 354;861, p-value = 0.016
## Levene's test, Brown-Forsythe: t = -2.232, df = 1215, p-value = 0.026
##
##
## ------ Infer ------
##
## --- Assume equal population variances of pcfat for each gender
##
## t-cutoff for 95% range of variation: tcut = 1.962
## Standard Error of Mean Difference: SE = 0.338
##
## Hypothesis Test of 0 Mean Diff: t-value = 31.101, df = 1215, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.663
## 95% Confidence Interval for Mean Difference: 9.853 to 11.180
##
##
## --- Do not assume equal population variances of pcfat for each gender
##
## t-cutoff: tcut = 1.964
## Standard Error of Mean Difference: SE = 0.353
##
## Hypothesis Test of 0 Mean Diff: t = 29.768, df = 602.015, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.694
## 95% Confidence Interval for Mean Difference: 9.823 to 11.210
##
##
## ------ Effect Size ------
##
## --- Assume equal population variances of pcfat for each gender
##
## Standardized Mean Difference of pcfat, Cohen's d: 1.961
##
##
## ------ Practical Importance ------
##
## Minimum Mean Difference of practical importance: mmd
## Minimum Standardized Mean Difference of practical importance: msmd
## Neither value specified, so no analysis
##
##
## ------ Graphics Smoothing Parameter ------
##
## Density bandwidth for gender F: 1.475
## Density bandwidth for gender M: 1.867
m.1 = lm(pcfat ~ gender, data = ob)
summary(m.1)
##
## Call:
## lm(formula = pcfat ~ gender, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.0724 -3.2724 0.1484 3.6276 14.8439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6724 0.1826 189.9 <0.0000000000000002 ***
## genderM -10.5163 0.3381 -31.1 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.362 on 1215 degrees of freedom
## Multiple R-squared: 0.4432, Adjusted R-squared: 0.4428
## F-statistic: 967.3 on 1 and 1215 DF, p-value: < 0.00000000000000022
Dùng gói lessR
library(lessR)
m.2 = reg(pcfat ~ gender, data = ob)
##
## >>> gender is not numeric. Converted to indicator variables.
m.2
## >>> Suggestion
## # Create an R markdown file for interpretative output with Rmd = "file_name"
## reg(pcfat ~ gender, data=ob, Rmd="eg")
##
##
## BACKGROUND
##
## Data Frame: ob
##
## Response Variable: pcfat
## Predictor Variable: genderM
##
## Number of cases (rows) of data: 1217
## Number of cases retained for analysis: 1217
##
##
## BASIC ANALYSIS
##
## Estimate Std Err t-value p-value Lower 95% Upper 95%
## (Intercept) 34.672413 0.182622 189.859 0.000 34.314123 35.030703
## genderM -10.516344 0.338131 -31.101 0.000 -11.179729 -9.852959
##
## Standard deviation of pcfat: 7.182862
##
## Standard deviation of residuals: 5.361759 for df=1215
## 95% range of residuals: 21.038669 = 2 * (1.962 * 5.361759)
##
## R-squared: 0.443 Adjusted R-squared: 0.443 PRESS R-squared: 0.441
##
## Null hypothesis of all 0 population slope coefficients:
## F-statistic: 967.297 df: 1 and 1215 p-value: 0.000
##
## -- Analysis of Variance
##
## df Sum Sq Mean Sq F-value p-value
## Model 1 27808.311497 27808.311497 967.297285 0.000
## Residuals 1215 34929.384159 28.748464
## pcfat 1216 62737.695656 51.593500
##
##
## K-FOLD CROSS-VALIDATION
##
##
## RELATIONS AMONG THE VARIABLES
##
## pcfat genderM
## pcfat 1.00 -0.67
## genderM -0.67 1.00
##
##
## RESIDUALS AND INFLUENCE
##
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance
## [sorted by Cook's Distance]
## [n_res_rows = 20, out of 1217 rows of data, or do n_res_rows="all"]
## ---------------------------------------------------------------------------
## genderM pcfat fitted resid rstdnt dffits cooks
## 210 1 9.200000 24.156069 -14.956069 -2.801192 -0.148882 0.011020
## 509 1 39.000000 24.156069 14.843931 2.780055 0.147758 0.010860
## 179 1 38.700000 24.156069 14.543931 2.723523 0.144754 0.010420
## 518 1 9.700000 24.156069 -14.456069 -2.706970 -0.143874 0.010300
## 200 1 9.800000 24.156069 -14.356069 -2.688132 -0.142873 0.010150
## 563 1 38.300000 24.156069 14.143931 2.648179 0.140749 0.009860
## 318 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 972 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 388 1 10.700000 24.156069 -13.456069 -2.518700 -0.133867 0.008920
## 203 1 11.000000 24.156069 -13.156069 -2.462262 -0.130868 0.008530
## 1137 0 14.600000 34.672413 -20.072413 -3.766065 -0.128347 0.008150
## 893 0 14.700000 34.672413 -19.972413 -3.747085 -0.127700 0.008070
## 688 1 11.400000 24.156069 -12.756069 -2.387042 -0.126870 0.008020
## 403 1 11.700000 24.156069 -12.456069 -2.330649 -0.123873 0.007640
## 858 1 11.900000 24.156069 -12.256069 -2.293064 -0.121875 0.007400
## 158 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 1106 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 827 1 36.000000 24.156069 11.843931 2.215637 0.117760 0.006910
## 756 1 12.400000 24.156069 -11.756069 -2.199135 -0.116883 0.006810
## 196 1 12.500000 24.156069 -11.656069 -2.180355 -0.115885 0.006690
##
##
## PREDICTION ERROR
##
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals
## [sorted by lower bound of prediction interval]
## [to see all intervals add n_pred_rows="all"]
## ----------------------------------------------
##
## genderM pcfat pred s_pred pi.lwr pi.upr width
## 2 1 16.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## 5 1 14.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## ...
## 1209 1 26.400000 24.156069 5.369306 13.621929 34.690209 21.068280
## 1 0 37.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 3 0 34.000000 34.672413 5.364869 24.146979 45.197847 21.050869
## ...
## 1215 0 34.400000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1216 0 41.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1217 0 33.200000 34.672413 5.364869 24.146979 45.197847 21.050869
##
## ----------------------------------
## Plot 1: Distribution of Residuals
## Plot 2: Residuals vs Fitted Values
## ----------------------------------
Cách đơn giản
plot(m.1)
Dùng gói ggfortify
library(ggfortify)
autoplot(m.1)
p = ggplot(data = ob, aes(x = weight, y = pcfat))
p + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
m.3 = lm(pcfat ~ weight, data = ob)
summary(m.3)
##
## Call:
## lm(formula = pcfat ~ weight, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.3122 -4.5234 0.8902 5.2695 16.9742
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.22295 1.22370 23.881 <0.0000000000000002 ***
## weight 0.04319 0.02188 1.975 0.0485 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.174 on 1215 degrees of freedom
## Multiple R-squared: 0.003199, Adjusted R-squared: 0.002378
## F-statistic: 3.899 on 1 and 1215 DF, p-value: 0.04855
autoplot(m.3)
m.4 = lm(pcfat ~ weight + age + gender + height, data = ob)
summary(m.4)
##
## Call:
## lm(formula = pcfat ~ weight + age + gender + height, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.208 -2.543 0.019 2.582 15.706
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.368722 3.505431 13.798 < 0.0000000000000002 ***
## weight 0.439169 0.015594 28.163 < 0.0000000000000002 ***
## age 0.056166 0.007404 7.585 0.0000000000000658 ***
## genderM -11.483254 0.344343 -33.348 < 0.0000000000000002 ***
## height -0.257013 0.023768 -10.813 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.974 on 1212 degrees of freedom
## Multiple R-squared: 0.695, Adjusted R-squared: 0.694
## F-statistic: 690.4 on 4 and 1212 DF, p-value: < 0.00000000000000022
autoplot(m.4)
library(BMA)
## Loading required package: survival
## Loading required package: leaps
## Loading required package: robustbase
##
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
##
## heart
## Loading required package: inline
## Loading required package: rrcov
## Scalable Robust Estimators with High Breakdown Point (version 1.7-4)
yvar = ob[, c("pcfat")]
xvar = ob[, c("gender", "age", "height", "weight", "bmi")]
m.bma = bicreg(xvar, yvar, strict = FALSE, OR = 20)
summary(m.bma)
##
## Call:
## bicreg(x = xvar, y = yvar, strict = FALSE, OR = 20)
##
##
## 3 models were selected
## Best 3 models (cumulative posterior probability = 1 ):
##
## p!=0 EV SD model 1 model 2 model 3
## Intercept 100.0 5.26146 4.582901 7.95773 -0.79279 8.13735
## genderM 100.0 -11.25139 0.429659 -11.44430 -11.42764 -10.80625
## age 100.0 0.05259 0.008048 0.05497 0.05473 0.04715
## height 31.4 0.01759 0.028494 . 0.05598 .
## weight 39.2 0.03102 0.042611 0.07921 . .
## bmi 100.0 1.01265 0.111625 0.89419 1.08852 1.08936
##
## nVar 4 4 3
## r2 0.697 0.696 0.695
## BIC -1423.06312 -1422.62198 -1422.49027
## post prob 0.392 0.314 0.294
imageplot.bma(m.bma)
m.bma = lm(pcfat ~ gender + age + weight + bmi, data = ob)
summary(m.bma)
##
## Call:
## lm(formula = pcfat ~ gender + age + weight + bmi, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.225 -2.557 0.033 2.608 15.646
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.957732 0.852500 9.335 < 0.0000000000000002 ***
## genderM -11.444303 0.342565 -33.408 < 0.0000000000000002 ***
## age 0.054966 0.007395 7.433 0.000000000000199 ***
## weight 0.079207 0.028620 2.768 0.00573 **
## bmi 0.894194 0.080297 11.136 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.963 on 1212 degrees of freedom
## Multiple R-squared: 0.6966, Adjusted R-squared: 0.6956
## F-statistic: 695.7 on 4 and 1212 DF, p-value: < 0.00000000000000022
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following objects are masked from 'package:lessR':
##
## bc, recode, sp
vif(m.bma)
## gender age weight bmi
## 1.878778 1.263468 5.609651 4.663425
autoplot(m.bma)
library(relaimpo)
## Loading required package: MASS
## Loading required package: boot
##
## Attaching package: 'boot'
## The following object is masked from 'package:car':
##
## logit
## The following object is masked from 'package:robustbase':
##
## salinity
## The following object is masked from 'package:survival':
##
## aml
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
ob$sex = ifelse(ob$gender == "F", 1, 0)
m.bma2 = lm(pcfat ~ sex + age + weight + bmi, data = ob)
calc.relimp(m.bma2, type = "lmg", rela = TRUE, rank = TRUE)
## Response variable: pcfat
## Total response variance: 51.5935
## Analysis based on 1217 observations
##
## 4 Regressors:
## sex age weight bmi
## Proportion of variance explained by model: 69.66%
## Metrics are normalized to sum to 100% (rela=TRUE).
##
## Relative importance metrics:
##
## lmg
## sex 0.59317775
## age 0.06893066
## weight 0.09175463
## bmi 0.24613695
##
## Average coefficients for different model sizes:
##
## 1X 2Xs 3Xs 4Xs
## sex 10.51634414 11.71834412 11.80453842 11.44430262
## age 0.12768705 0.10445197 0.05168496 0.05496623
## weight 0.04319324 -0.05539405 -0.06907993 0.07920690
## bmi 1.03619023 1.50631405 1.54278433 0.89419395