This Project is dedicated to my two daughters.
“There is nothing new about poverty. What is new, however, is that we have the resources to get rid of it.”
Martin Luther King.
Love, Dad.

 

#1. Introduction

In this project, I am an analyst working for a car maker, and I have access to a dataset that can be used to study the fuel economy of cars. As a car maker, I am interested in identifying and understanding factors that contribute to better fuel economy. This dataset includes several key variables related to fuel economy. Using this data, I will develop models to predict fuel economy and uncover insights to improve vehicle efficiency.

#2. Data Loading:

data(mtcars)
head(mtcars, 10)
library(ggplot2)
library(tidyverse)

#3. Pearson’s Correlation

Pearson correlation coefficients

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
## [1] -0.7761684
## [1] -0.7768859
## [1] -0.7082234
## [1] 0.418684
## [1] 0.6811719
## 
##  Pearson's product-moment correlation
## 
## data:  mtcars$mpg and mtcars$hp
## t = -6.7424, df = 30, p-value = 1.788e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8852686 -0.5860994
## sample estimates:
##        cor 
## -0.7761684
## 
##  Pearson's product-moment correlation
## 
## data:  mtcars$mpg and mtcars$hp + mtcars$qsec + mtcars$drat
## t = -6.7581, df = 30, p-value = 1.713e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8856589 -0.5872846
## sample estimates:
##        cor 
## -0.7768859
## 
##  Pearson's product-moment correlation
## 
## data:  mtcars$hp and mtcars$qsec
## t = -5.4946, df = 30, p-value = 5.766e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8475998 -0.4774331
## sample estimates:
##        cor 
## -0.7082234
## 
##  Pearson's product-moment correlation
## 
## data:  mtcars$mpg and mtcars$qsec
## t = 2.5252, df = 30, p-value = 0.01708
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.08195487 0.66961864
## sample estimates:
##      cor 
## 0.418684
## 
##  Pearson's product-moment correlation
## 
## data:  mtcars$mpg and mtcars$drat
## t = 5.096, df = 30, p-value = 1.776e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4360484 0.8322010
## sample estimates:
##       cor 
## 0.6811719

#4. Linear and Multi Regression Models

I am writing the general form and prediction equation of a regression model for fuel economy using horsepower, quarter-mile time, and rear axle ratio as predictors. I will include interaction terms for horsepower and quarter-mile time, as well as for horsepower and rear axle ratio. Next, I am creating the regression model based on these predictors and interactions. Finally, I will write the prediction model equation using the outputs obtained from my R script.

Linear Regression Model for MPG and HP

“MPG = β0 + β1 * HP + ϵ”

” MPG: is the dependent variabnle that I aim to predict” ” HP: is the independent variable used as a predictor” ” β0: The intercept of the regression line, representing the predicted MPG when HP is 0” ” β1: The slope coefficent, representing the change in MPG for each unit increase in. HP” ” ϵ: The error term, representing the difference between the opbderved MPG values and the values predicted by the model”

model <- lm(mpg ~ hp, data = mtcars)
## 
## Call:
## lm(formula = mpg ~ hp, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7121 -2.1122 -0.8854  1.5819  8.2360 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 30.09886    1.63392  18.421  < 2e-16 ***
## hp          -0.06823    0.01012  -6.742 1.79e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.863 on 30 degrees of freedom
## Multiple R-squared:  0.6024, Adjusted R-squared:  0.5892 
## F-statistic: 45.46 on 1 and 30 DF,  p-value: 1.788e-07
## R-squared: 0.6024373
## Adjusted R-squared: 0.5891853

Multiple Linear Regression Model for MPG on QSEC, DRAT and HP

“MPG = β0 + β1 * HP + β2 * QSEC + β3 * DRAT + ϵ”

” MPG: is the dependent variabnle that I aim to predict fuel economy” ” HP: Predictor variable for horsepowe” ” QSEC: Predictor variable for a.” ” DRAT: Predictor variable for rear axle ratio” ” β0: Intercept of the regression line, representing the predicted MPG when all predictors are zero.” ” β1, β2, β3 : Coefficients representing the change in MPG for a one-unit increase in HP, QSEC, and DRAT, respectively.” ” ϵ: Error term representing the difference between observed and predicted MPG values”

model1 <- lm(mpg ~ hp + qsec + drat, data = mtcars)
## 
## Call:
## lm(formula = mpg ~ hp + qsec + drat, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7977 -2.4804 -0.4937  1.1381  7.3188 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.73662   13.01979   1.362 0.183968    
## hp          -0.05797    0.01421  -4.080 0.000339 ***
## qsec        -0.28407    0.48923  -0.581 0.566116    
## drat         4.42875    1.29169   3.429 0.001897 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.207 on 28 degrees of freedom
## Multiple R-squared:  0.7443, Adjusted R-squared:  0.7168 
## F-statistic: 27.16 on 3 and 28 DF,  p-value: 1.937e-08
## R-squared: 0.7442512
## Adjusted R-squared: 0.7168495

Linear Regression Model for HP and QSEC

“HP = β0 + β1 * QSEC + ϵ”

” HP: is the dependent variabnle that I aim to predict” ” QSEC: is the independent variable used as a predictor” ” β0: The intercept of the regression line, representing the predicted HPx when QSEC is 0” ” β1: The slope coefficent, representing the change in HP for each unit increase in. QSEC” ” ϵ: The error term, representing the difference between the opbderved HP values and the values predicted by the model”

model2 <- lm(hp ~ qsec, data = mtcars)
## 
## Call:
## lm(formula = hp ~ qsec, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -86.903 -33.629   5.336  27.925 100.032 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  631.704     88.700   7.122 6.38e-08 ***
## qsec         -27.174      4.946  -5.495 5.77e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 49.2 on 30 degrees of freedom
## Multiple R-squared:  0.5016, Adjusted R-squared:  0.485 
## F-statistic: 30.19 on 1 and 30 DF,  p-value: 5.766e-06
## R-squared: 0.5015804
## Adjusted R-squared: 0.4849664

Linear Regression Model for HP and DRAT

“HP = β0 + β1 * DRAT + ϵ”

” HP: is the dependent variabnle that I aim to predict” ” QSEC: is the independent variable used as a predictor” ” β0: The intercept of the regression line, representing the predicted HP when QSEC is 0” ” β1: The slope coefficent, representing the change in HP for each unit increase in. QSEC” ” ϵ: The error term, representing the difference between the opbderved HP values and the values predicted by the model”

model3 <- lm(hp ~ drat, data = mtcars)
## 
## Call:
## lm(formula = hp ~ drat, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -89.828 -40.261  -7.934   7.247 185.058 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   353.65      76.05    4.65 6.24e-05 ***
## drat          -57.55      20.92   -2.75  0.00999 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 62.28 on 30 degrees of freedom
## Multiple R-squared:  0.2014, Adjusted R-squared:  0.1748 
## F-statistic: 7.565 on 1 and 30 DF,  p-value: 0.009989
## R-squared: 0.2013847
## Adjusted R-squared: 0.1747642

Multiple Linear Regression Model for MPG with 160HP with each unit of change of QSEC

“MPG = β0 + β1 * HP + β2 * QSEC”

” MPG: is the dependent variabnle that I aim to predict fuel economy” ” HP: Predictor variable for horsepowe” ” QSEC: Predictor variable for quarter-mile time.” ” β0: representing the predicted value of MPG when both HP and QSEC are zero.” ” β1: Coefficients representing the change in MPG for a one-unit increase in HP while holding QSEC constant.” ” β2: Coefficient Slope for QSEC. It represents the change in MPG for each unit increase in QSEC, holding HP constant.”

model4 <- lm(mpg ~ hp + qsec, data = mtcars)
## 
## Call:
## lm(formula = mpg ~ hp + qsec, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1782 -2.6030 -0.5098  1.2866  8.7178 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 48.32371   11.10331   4.352 0.000153 ***
## hp          -0.08459    0.01393  -6.071 1.31e-06 ***
## qsec        -0.88658    0.53459  -1.658 0.108007    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.755 on 29 degrees of freedom
## Multiple R-squared:  0.6369, Adjusted R-squared:  0.6118 
## F-statistic: 25.43 on 2 and 29 DF,  p-value: 4.176e-07

Multiple Linear Regression Prediction Model for MPG with 160HP with each unit of change of QSEC

new_data <- data.frame(hp = 160, qsec = c(1, 2))
prediction_model <- predict(model4, newdata = new_data)
##        1        2 
## 33.90224 33.01566
##         1 
## 0.8865796

Display the summary to get the F-test results

## Overall F-test P-value: 25.43136 2 29

T-Test. Extract coefficients table for p-values

Create and View a Normal Q-Q plot of residuals

##                                     Car    Fitted
## Mazda RX4                     Mazda RX4 24.425370
## Mazda RX4 Wag             Mazda RX4 Wag 23.928885
## Datsun 710                   Datsun 710 23.957305
## Hornet 4 Drive           Hornet 4 Drive 21.783362
## Hornet Sportabout     Hornet Sportabout 18.430337
## Valiant                         Valiant 21.514796
## Duster 360                   Duster 360 13.554988
## Merc 240D                     Merc 240D 25.347344
## Merc 230                       Merc 230 19.984693
## Merc 280                       Merc 280 21.694354
## Merc 280C                     Merc 280C 21.162406
## Merc 450SE                   Merc 450SE 17.670472
## Merc 450SL                   Merc 450SL 17.493156
## Merc 450SLC                 Merc 450SLC 17.138524
## Cadillac Fleetwood   Cadillac Fleetwood 15.041430
## Lincoln Continental Lincoln Continental 14.337352
## Chrysler Imperial     Chrysler Imperial 13.423088
## Fiat 128                       Fiat 128 25.478859
## Honda Civic                 Honda Civic 27.505412
## Toyota Corolla           Toyota Corolla 25.182223
## Toyota Corona             Toyota Corona 22.377722
## Dodge Challenger       Dodge Challenger 20.678150
## AMC Javelin                 AMC Javelin 20.296921
## Camaro Z28                   Camaro Z28 13.936217
## Pontiac Firebird       Pontiac Firebird 18.403740
## Fiat X1-9                     Fiat X1-9 25.984209
## Porsche 914-2             Porsche 914-2 25.819858
## Lotus Europa               Lotus Europa 23.781496
## Ford Pantera L           Ford Pantera L 13.135737
## Ferrari Dino               Ferrari Dino 19.777938
## Maserati Bora             Maserati Bora  7.040973
## Volvo 142E                   Volvo 142E 22.612682
##                                     Car   Residuals
## Mazda RX4                     Mazda RX4 -3.42536974
## Mazda RX4 Wag             Mazda RX4 Wag -2.92888515
## Datsun 710                   Datsun 710 -1.15730529
## Hornet 4 Drive           Hornet 4 Drive -0.38336246
## Hornet Sportabout     Hornet Sportabout  0.26966269
## Valiant                         Valiant -3.41479557
## Duster 360                   Duster 360  0.74501179
## Merc 240D                     Merc 240D -0.94734397
## Merc 230                       Merc 230  2.81530738
## Merc 280                       Merc 280 -2.49435367
## Merc 280C                     Merc 280C -3.36240589
## Merc 450SE                   Merc 450SE -1.27047184
## Merc 450SL                   Merc 450SL -0.19315591
## Merc 450SLC                 Merc 450SLC -1.93852406
## Cadillac Fleetwood   Cadillac Fleetwood -4.64142957
## Lincoln Continental Lincoln Continental -3.93735187
## Chrysler Imperial     Chrysler Imperial  1.27691194
## Fiat 128                       Fiat 128  6.92114100
## Honda Civic                 Honda Civic  2.89458775
## Toyota Corolla           Toyota Corolla  8.71777720
## Toyota Corona             Toyota Corona -0.87772164
## Dodge Challenger       Dodge Challenger -5.17815035
## AMC Javelin                 AMC Javelin -5.09692111
## Camaro Z28                   Camaro Z28 -0.63621745
## Pontiac Firebird       Pontiac Firebird  0.79626007
## Fiat X1-9                     Fiat X1-9  1.31579062
## Porsche 914-2             Porsche 914-2  0.18014154
## Lotus Europa               Lotus Europa  6.61850442
## Ford Pantera L           Ford Pantera L  2.66426292
## Ferrari Dino               Ferrari Dino -0.07793834
## Maserati Bora             Maserati Bora  7.95902698
## Volvo 142E                   Volvo 142E -1.21268239

Multiple Linear Regression Model for MPG with 160HP with each unit of change of DRAT

“MPG = β0 + β1 * HP + β2 * DRAT”

” MPG: is the dependent variabnle that I aim to predict fuel economy” ” HP: Predictor variable for horsepowe” ” DRAT: Predictor variable for rear axle ratio.” ” β0: representing the predicted value of MPG when both HP and DRAT are zero.” ” β1: Coefficients representing the change in MPG for a one-unit increase in HP while holding DRAT constant.” ” β2: Coefficient Slope for DRAT It represents the change in MPG for each unit increase in DRAT, holding HP constant.”

model5 <- lm(mpg ~ hp + drat, data = mtcars)
## 
## Call:
## lm(formula = mpg ~ hp + drat, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0369 -2.3487 -0.6034  1.1897  7.7500 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 10.789861   5.077752   2.125 0.042238 *  
## hp          -0.051787   0.009293  -5.573 5.17e-06 ***
## drat         4.698158   1.191633   3.943 0.000467 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.17 on 29 degrees of freedom
## Multiple R-squared:  0.7412, Adjusted R-squared:  0.7233 
## F-statistic: 41.52 on 2 and 29 DF,  p-value: 3.081e-09
## [1] "To see the actual change, I will create a prediction model to show the change"
new_data <- data.frame(hp = 160, drat = c(1, 2))
prediction_model2 <- predict(model5, newdata = new_data)
##         1         2 
##  7.202155 11.900313
##         1 
## -4.698158

Display the summary to get the F-test results and P-value

## Overall F-test P-value: 41.52167 2 29

T-Test

Extract coefficients table for p-values

Create a Normal Q-Q plot of residuals

#5. Model with Interaction Term and Qualitative Predictor

“General form: MPG=β0+β1⋅HP+β2⋅QSEC+β3⋅(HP⋅QSEC)+β4⋅CYL6+β5⋅CYL8+ϵ”

“Predicted general form: MPG-hat=β0+β1⋅HP+β2⋅QSEC+β3⋅(HP⋅QSEC)+β4⋅CYL6+β5⋅CYL8+ϵ”

model6 <- lm(mpg~ hp + qsec +qsec:hp + factor(cyl), data = mtcars)
## 
## Call:
## lm(formula = mpg ~ hp + qsec + qsec:hp + factor(cyl), data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0004 -1.6264 -0.2424  1.3322  5.7974 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  24.505565  13.186080   1.858   0.0745 .
## hp            0.141850   0.079164   1.792   0.0848 .
## qsec          0.531630   0.746717   0.712   0.4828  
## factor(cyl)6 -4.408372   1.627676  -2.708   0.0118 *
## factor(cyl)8 -4.580823   2.555742  -1.792   0.0847 .
## hp:qsec      -0.012526   0.005251  -2.386   0.0246 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.692 on 26 degrees of freedom
## Multiple R-squared:  0.8327, Adjusted R-squared:  0.8005 
## F-statistic: 25.88 on 5 and 26 DF,  p-value: 2.526e-09

Display the summary to get the F-test results

## Overall F-test P-value: 25.88205 5 26

T-Test. Extract coefficients table for p-values

Create a Normal Q-Q plot of residuals

#6. Prediction Models

Prediction Model for predicted fuel economy for a car that has 175 horsepower, 14.2 quarter mile time and 3.91 rear-axle ratio?

new_data1 <- data.frame(hp = 175, qsec = 14.2, drat = 3.91)
prediction_model3 <- predict(model1, newdata1 = new_data1)
##           Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
##           23.955867           23.796785           24.109210           19.477748 
##   Hornet Sportabout             Valiant          Duster 360           Merc 240D 
##           16.706976           18.128834           13.249800           24.802909 
##            Merc 230            Merc 280           Merc 280C          Merc 450SE 
##           23.084598           22.768097           22.597652           15.954863 
##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
##           15.898048           15.784418           13.720749           13.496484 
##   Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
##           13.759132           26.448790           31.294723           27.004637 
##       Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
##           22.815301           16.471698           18.076760           15.674904 
##    Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
##           16.388441           26.610713           27.336415           23.081217 
##      Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
##           17.002014           19.220283            9.845972           24.335959
##                                     Car   Predict
## Mazda RX4                     Mazda RX4 23.955867
## Mazda RX4 Wag             Mazda RX4 Wag 23.796785
## Datsun 710                   Datsun 710 24.109210
## Hornet 4 Drive           Hornet 4 Drive 19.477748
## Hornet Sportabout     Hornet Sportabout 16.706976
## Valiant                         Valiant 18.128834
## Duster 360                   Duster 360 13.249800
## Merc 240D                     Merc 240D 24.802909
## Merc 230                       Merc 230 23.084598
## Merc 280                       Merc 280 22.768097
## Merc 280C                     Merc 280C 22.597652
## Merc 450SE                   Merc 450SE 15.954863
## Merc 450SL                   Merc 450SL 15.898048
## Merc 450SLC                 Merc 450SLC 15.784418
## Cadillac Fleetwood   Cadillac Fleetwood 13.720749
## Lincoln Continental Lincoln Continental 13.496484
## Chrysler Imperial     Chrysler Imperial 13.759132
## Fiat 128                       Fiat 128 26.448790
## Honda Civic                 Honda Civic 31.294723
## Toyota Corolla           Toyota Corolla 27.004637
## Toyota Corona             Toyota Corona 22.815301
## Dodge Challenger       Dodge Challenger 16.471698
## AMC Javelin                 AMC Javelin 18.076760
## Camaro Z28                   Camaro Z28 15.674904
## Pontiac Firebird       Pontiac Firebird 16.388441
## Fiat X1-9                     Fiat X1-9 26.610713
## Porsche 914-2             Porsche 914-2 27.336415
## Lotus Europa               Lotus Europa 23.081217
## Ford Pantera L           Ford Pantera L 17.002014
## Ferrari Dino               Ferrari Dino 19.220283
## Maserati Bora             Maserati Bora  9.845972
## Volvo 142E                   Volvo 142E 24.335959

Predict with 95% Conf Interval

Convert the result to a data frame for easy viewing

##                           fit       lwr      upr
## Mazda RX4           23.955867 16.976208 30.93553
## Mazda RX4 Wag       23.796785 16.948899 30.64467
## Datsun 710          24.109210 17.370295 30.84813
## Hornet 4 Drive      19.477748 12.583415 26.37208
## Hornet Sportabout   16.706976  9.933170 23.48078
## Valiant             18.128834 10.962522 25.29515
## Duster 360          13.249800  6.362600 20.13700
## Merc 240D           24.802909 17.944540 31.66128
## Merc 230            23.084598 15.121567 31.04763
## Merc 280            22.768097 16.053721 29.48247
## Merc 280C           22.597652 15.834798 29.36051
## Merc 450SE          15.954863  9.179293 22.73043
## Merc 450SL          15.898048  9.126116 22.66998
## Merc 450SLC         15.784418  9.001975 22.56686
## Cadillac Fleetwood  13.720749  6.835247 20.60625
## Lincoln Continental 13.496484  6.606825 20.38614
## Chrysler Imperial   13.759132  6.854298 20.66397
## Fiat 128            26.448790 19.608904 33.28868
## Honda Civic         31.294723 23.994106 38.59534
## Toyota Corolla      27.004637 20.081856 33.92742
## Toyota Corona       22.815301 15.984610 29.64599
## Dodge Challenger    16.471698  9.291140 23.65226
## AMC Javelin         18.076760 11.259460 24.89406
## Camaro Z28          15.674904  8.690133 22.65967
## Pontiac Firebird    16.388441  9.587063 23.18982
## Fiat X1-9           26.610713 19.773972 33.44745
## Porsche 914-2       27.336415 20.237929 34.43490
## Lotus Europa        23.081217 16.212903 29.94953
## Ford Pantera L      17.002014  9.576316 24.42771
## Ferrari Dino        19.220283 12.308670 26.13190
## Maserati Bora        9.845972  2.239377 17.45257
## Volvo 142E          24.335959 17.554492 31.11743

Prediction Model for predicted fuel economy for a car that has 175 horsepower, 14.2 quarter mile time and cyl is 6?

new_data2 <- data.frame(hp = 175, qsec = 14.2, cyl = "6")
prediction_model3 <- predict(model6, newdata = new_data2)
##        1 
## 21.34244
##   Car  Predict
## 1   1 21.34244

Predict with 95% Conf Interval

Convert the result to a data frame for easy viewing

##                           fit       lwr      upr
## Mazda RX4           23.955867 16.976208 30.93553
## Mazda RX4 Wag       23.796785 16.948899 30.64467
## Datsun 710          24.109210 17.370295 30.84813
## Hornet 4 Drive      19.477748 12.583415 26.37208
## Hornet Sportabout   16.706976  9.933170 23.48078
## Valiant             18.128834 10.962522 25.29515
## Duster 360          13.249800  6.362600 20.13700
## Merc 240D           24.802909 17.944540 31.66128
## Merc 230            23.084598 15.121567 31.04763
## Merc 280            22.768097 16.053721 29.48247
## Merc 280C           22.597652 15.834798 29.36051
## Merc 450SE          15.954863  9.179293 22.73043
## Merc 450SL          15.898048  9.126116 22.66998
## Merc 450SLC         15.784418  9.001975 22.56686
## Cadillac Fleetwood  13.720749  6.835247 20.60625
## Lincoln Continental 13.496484  6.606825 20.38614
## Chrysler Imperial   13.759132  6.854298 20.66397
## Fiat 128            26.448790 19.608904 33.28868
## Honda Civic         31.294723 23.994106 38.59534
## Toyota Corolla      27.004637 20.081856 33.92742
## Toyota Corona       22.815301 15.984610 29.64599
## Dodge Challenger    16.471698  9.291140 23.65226
## AMC Javelin         18.076760 11.259460 24.89406
## Camaro Z28          15.674904  8.690133 22.65967
## Pontiac Firebird    16.388441  9.587063 23.18982
## Fiat X1-9           26.610713 19.773972 33.44745
## Porsche 914-2       27.336415 20.237929 34.43490
## Lotus Europa        23.081217 16.212903 29.94953
## Ford Pantera L      17.002014  9.576316 24.42771
## Ferrari Dino        19.220283 12.308670 26.13190
## Maserati Bora        9.845972  2.239377 17.45257
## Volvo 142E          24.335959 17.554492 31.11743