Resultados_valentina

Autor/a
Afiliación

Alejandra Velasco Reyes Ph.D

Universidad del Cauca

Análisis de valentina

Analisis de resultados P.aeruginosa

# P. aeruginosa
P.aeruginosa<-read.csv("P.aeruginosa_R.csv", header = T, sep = ";", dec = ".")

str(P.aeruginosa)
'data.frame':   126 obs. of  3 variables:
 $ Concentraciones: chr  "C -" "C + " "1 mg/mL " "0.5 mg/mL " ...
 $ Tiempo         : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Absorbancia    : num  0.082 0.068 0.1 0.09 0.108 0.091 0.082 0.077 0.067 0.096 ...
P.aeruginosa$Tiempo=as.factor(P.aeruginosa$Tiempo)
library(FSA)

Summarize(P.aeruginosa$Absorbancia ~ P.aeruginosa$Tiempo + P.aeruginosa$Concentraciones)
   P.aeruginosa$Tiempo P.aeruginosa$Concentraciones n      mean        sd   min
1                    0                   0.05 mg/mL 3 0.0906667 0.0109697 0.082
2                   24                   0.05 mg/mL 3 0.7016667 0.0040415 0.697
3                   48                   0.05 mg/mL 3 0.9553333 0.0320832 0.922
4                   72                   0.05 mg/mL 3 1.1580000 0.0820731 1.078
5                   96                   0.05 mg/mL 3 1.0736667 0.2082218 0.836
6                  120                   0.05 mg/mL 3 1.1306667 0.3198395 0.762
7                    0                    0.1 mg/mL 3 0.0880000 0.0026458 0.086
8                   24                    0.1 mg/mL 3 0.7110000 0.0160000 0.695
9                   48                    0.1 mg/mL 3 0.8696667 0.0299388 0.849
10                  72                    0.1 mg/mL 3 1.0140000 0.1330451 0.914
11                  96                    0.1 mg/mL 3 1.0463333 0.2491312 0.802
12                 120                    0.1 mg/mL 3 1.1070000 0.2569883 0.838
13                   0                   0.25 mg/mL 3 0.0970000 0.0096437 0.090
14                  24                   0.25 mg/mL 3 0.7486667 0.0316280 0.723
15                  48                   0.25 mg/mL 3 0.8216667 0.0515978 0.772
16                  72                   0.25 mg/mL 3 0.8760000 0.0841249 0.784
17                  96                   0.25 mg/mL 3 0.9266667 0.1024809 0.817
18                 120                   0.25 mg/mL 3 0.9686667 0.1467526 0.841
19                   0                   0.5 mg/mL  3 0.0906667 0.0005774 0.090
20                  24                   0.5 mg/mL  3 0.7160000 0.0256320 0.692
21                  48                   0.5 mg/mL  3 0.8876667 0.0540031 0.855
22                  72                   0.5 mg/mL  3 0.9510000 0.0796994 0.903
23                  96                   0.5 mg/mL  3 1.0540000 0.1927096 0.833
24                 120                   0.5 mg/mL  3 1.1060000 0.2819858 0.782
25                   0                     1 mg/mL  3 0.0970000 0.0026458 0.095
26                  24                     1 mg/mL  3 0.7456667 0.0378594 0.719
27                  48                     1 mg/mL  3 1.0946667 0.0876375 1.010
28                  72                     1 mg/mL  3 1.1466667 0.0880473 1.045
29                  96                     1 mg/mL  3 0.7256667 0.0587310 0.685
30                 120                     1 mg/mL  3 0.6393333 0.0659116 0.567
31                   0                          C - 3 0.0800000 0.0026458 0.077
32                  24                          C - 3 0.8373333 0.0506392 0.794
33                  48                          C - 3 0.9083333 0.0614925 0.867
34                  72                          C - 3 0.9250000 0.0583866 0.885
35                  96                          C - 3 0.9253333 0.0632166 0.883
36                 120                          C - 3 1.0086667 0.1039920 0.911
37                   0                         C +  3 0.0680000 0.0010000 0.067
38                  24                         C +  3 0.0766667 0.0245425 0.062
39                  48                         C +  3 0.0756667 0.0236925 0.061
40                  72                         C +  3 0.0760000 0.0242693 0.061
41                  96                         C +  3 0.0806667 0.0265016 0.062
42                 120                         C +  3 0.0720000 0.0108167 0.063
       Q1 median     Q3   max
1  0.0845  0.087 0.0950 0.103
2  0.7005  0.704 0.7040 0.704
3  0.9400  0.958 0.9720 0.986
4  1.1160  1.154 1.1980 1.242
5  0.9985  1.161 1.1925 1.224
6  1.0290  1.296 1.3150 1.334
7  0.0865  0.087 0.0890 0.091
8  0.7030  0.711 0.7190 0.727
9  0.8525  0.856 0.8800 0.904
10 0.9385  0.963 1.0640 1.165
11 0.9195  1.037 1.1685 1.300
12 0.9855  1.133 1.2415 1.350
13 0.0915  0.093 0.1005 0.108
14 0.7310  0.739 0.7615 0.784
15 0.7950  0.818 0.8465 0.875
16 0.8395  0.895 0.9220 0.949
17 0.8800  0.943 0.9815 1.020
18 0.8885  0.936 1.0325 1.129
19 0.0905  0.091 0.0910 0.091
20 0.7025  0.713 0.7280 0.743
21 0.8565  0.858 0.9040 0.950
22 0.9050  0.907 0.9750 1.043
23 0.9875  1.142 1.1645 1.187
24 1.0110  1.240 1.2680 1.296
25 0.0955  0.096 0.0980 0.100
26 0.7240  0.729 0.7590 0.789
27 1.0495  1.089 1.1370 1.185
28 1.1210  1.197 1.1975 1.198
29 0.6920  0.699 0.7460 0.793
30 0.6110  0.655 0.6755 0.696
31 0.0790  0.081 0.0815 0.082
32 0.8095  0.825 0.8590 0.893
33 0.8730  0.879 0.9290 0.979
34 0.8915  0.898 0.9450 0.992
35 0.8890  0.895 0.9465 0.998
36 0.9540  0.997 1.0575 1.118
37 0.0675  0.068 0.0685 0.069
38 0.0625  0.063 0.0840 0.105
39 0.0620  0.063 0.0830 0.103
40 0.0620  0.063 0.0835 0.104
41 0.0655  0.069 0.0900 0.111
42 0.0660  0.069 0.0765 0.084
library(lattice)
histogram(~ Absorbancia | Tiempo, 
 data=P.aeruginosa,
 layout=c(1,3)) 

histogram(~ Absorbancia | Concentraciones, 
 data=P.aeruginosa,
 layout=c(1,3)) 

####### Tiempo 0
tiempo_0 <- 0
datos_0 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_0)
datos_0
   Concentraciones Tiempo Absorbancia
1              C -      0       0.082
2             C +       0       0.068
3         1 mg/mL       0       0.100
4       0.5 mg/mL       0       0.090
5       0.25 mg/mL      0       0.108
6        0.1 mg/mL      0       0.091
7       0.05 mg/mL      0       0.082
8              C -      0       0.077
9             C +       0       0.067
10        1 mg/mL       0       0.096
11      0.5 mg/mL       0       0.091
12      0.25 mg/mL      0       0.090
13       0.1 mg/mL      0       0.087
14      0.05 mg/mL      0       0.087
15             C -      0       0.081
16            C +       0       0.069
17        1 mg/mL       0       0.095
18      0.5 mg/mL       0       0.091
19      0.25 mg/mL      0       0.093
20       0.1 mg/mL      0       0.086
21      0.05 mg/mL      0       0.103
# Realizar el análisis de Kruskal-Wallis
resultado_tiempo0 <- kruskal.test(datos_0$Absorbancia ~ datos_0$Concentraciones, data = datos_0)
print(resultado_tiempo0)

    Kruskal-Wallis rank sum test

data:  datos_0$Absorbancia by datos_0$Concentraciones
Kruskal-Wallis chi-squared = 15.395, df = 6, p-value = 0.0174
# analisis post-hoc
library(dunn.test)
dunn.test(datos_0$Absorbancia, datos_0$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 15.3947, df = 6, p-value = 0.02

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.296753
         |     0.3833
         |
0.25 mg/ |  -0.824315  -1.121068
         |     0.2049     0.1311
         |
0.5 mg/m |  -0.230808  -0.527561   0.593506
         |     0.4087     0.2989     0.2764
         |
1 mg/mL  |  -1.187013  -1.483767  -0.362698  -0.956205
         |     0.1176     0.0689     0.3584     0.1695
         |
     C - |   1.351876   1.055123   2.176192   1.582685   2.538890
         |     0.0882     0.1457    0.0148*     0.0567    0.0056*
         |
    C +  |   1.978356   1.681603   2.802671   2.209164   3.165370   0.626479
         |    0.0239*     0.0463    0.0025*    0.0136*    0.0008*     0.2655

alpha = 0.05
Reject Ho if p <= alpha/2
library(ggplot2)
ggplot(datos_0, aes(x = datos_0$Concentraciones, y = datos_0$Absorbancia)) +
  geom_point() +
  labs(title = "Absorbancia vs Tiempo para diferentes Concentraciones",
       x = "Concentracion",
       y = "Absorbancia") +
  theme_minimal()

###### tiempo_24
tiempo_24 <- 24 
datos_24 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_24)


# Realizar el análisis de Kruskal-Wallis
resultado_tiempo24 <- kruskal.test(datos_24$Absorbancia ~ datos_24$Concentraciones, data = datos_24)
print(resultado_tiempo24)

    Kruskal-Wallis rank sum test

data:  datos_24$Absorbancia by datos_24$Concentraciones
Kruskal-Wallis chi-squared = 16.184, df = 6, p-value = 0.0128
# analisis post-hoc

dunn.test(datos_24$Absorbancia, datos_24$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 16.1837, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.394899
         |     0.3465
         |
0.25 mg/ |  -1.513780  -1.118881
         |     0.0650     0.1316
         |
0.5 mg/m |  -0.592348  -0.197449   0.921431
         |     0.2768     0.4217     0.1784
         |
1 mg/mL  |  -1.447963  -1.053064   0.065816  -0.855615
         |     0.0738     0.1462     0.4738     0.1961
         |
     C - |  -2.566845  -2.171945  -1.053064  -1.974496  -1.118881
         |    0.0051*    0.0149*     0.1462    0.0242*     0.1316
         |
    C +  |   0.987248   1.382147   2.501028   1.579597   2.435212   3.554093
         |     0.1618     0.0835    0.0062*     0.0571    0.0074*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
####### tiempo_48
tiempo_48 <- 48 
datos_48 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_48)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo48 <- kruskal.test(datos_48$Absorbancia ~ datos_48$Concentraciones, data = datos_48)
print(resultado_tiempo48)

    Kruskal-Wallis rank sum test

data:  datos_48$Absorbancia by datos_48$Concentraciones
Kruskal-Wallis chi-squared = 16.693, df = 6, p-value = 0.01048
# analisis post-hoc
dunn.test(datos_48$Absorbancia, datos_48$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 16.6926, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   1.381698
         |     0.0835
         |
0.25 mg/ |   1.842264   0.460566
         |     0.0327     0.3226
         |
0.5 mg/m |   1.118517  -0.263180  -0.723746
         |     0.1317     0.3962     0.2346
         |
1 mg/mL  |  -0.789542  -2.171240  -2.631806  -1.908059
         |     0.2149    0.0150*    0.0042*     0.0282
         |
     C - |   0.592156  -0.789542  -1.250108  -0.526361   1.381698
         |     0.2769     0.2149     0.1056     0.2993     0.0835
         |
    C +  |   2.763397   1.381698   0.921132   1.644879   3.552939   2.171240
         |    0.0029*     0.0835     0.1785     0.0500    0.0002*    0.0150*

alpha = 0.05
Reject Ho if p <= alpha/2
###### tiempo_72
tiempo_72 <- 72 
datos_72 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_72)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo72 <- kruskal.test(datos_72$Absorbancia ~ datos_72$Concentraciones, data = datos_72)
print(resultado_tiempo72)

    Kruskal-Wallis rank sum test

data:  datos_72$Absorbancia by datos_72$Concentraciones
Kruskal-Wallis chi-squared = 16.208, df = 6, p-value = 0.01268
# analisis post-hoc
dunn.test(datos_72$Absorbancia, datos_72$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 16.2078, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.921132
         |     0.1785
         |
0.25 mg/ |   2.171240   1.250108
         |    0.0150*     0.1056
         |
0.5 mg/m |   1.513288   0.592156  -0.657951
         |     0.0651     0.2769     0.2553
         |
1 mg/mL  |   0.000000  -0.921132  -2.171240  -1.513288
         |     0.5000     0.1785    0.0150*     0.0651
         |
     C - |   1.908059   0.986927  -0.263180   0.394771   1.908059
         |     0.0282     0.1618     0.3962     0.3465     0.0282
         |
    C +  |   3.158168   2.237035   0.986927   1.644879   3.158168   1.250108
         |    0.0008*    0.0126*     0.1618     0.0500    0.0008*     0.1056

alpha = 0.05
Reject Ho if p <= alpha/2
####### tiempo_96
tiempo_96 <- 96 
datos_96 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_96)


# Realizar el análisis de Kruskal-Wallis
resultado_tiempo96 <- kruskal.test(datos_96$Absorbancia ~ datos_96$Concentraciones, data = datos_96)
print(resultado_tiempo96)

    Kruskal-Wallis rank sum test

data:  datos_96$Absorbancia by datos_96$Concentraciones
Kruskal-Wallis chi-squared = 13.576, df = 6, p-value = 0.03475
# analisis post-hoc
dunn.test(datos_96$Absorbancia, datos_96$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 13.5758, df = 6, p-value = 0.03

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.263180
         |     0.3962
         |
0.25 mg/ |   0.789542   0.526361
         |     0.2149     0.2993
         |
0.5 mg/m |   0.197385  -0.065795  -0.592156
         |     0.4218     0.4738     0.2769
         |
1 mg/mL  |   2.171240   1.908059   1.381698   1.973855
         |    0.0150*     0.0282     0.0835    0.0242*
         |
     C - |   0.723746   0.460566  -0.065795   0.526361  -1.447493
         |     0.2346     0.3226     0.4738     0.2993     0.0739
         |
    C +  |   2.763397   2.500216   1.973855   2.566011   0.592156   2.039650
         |    0.0029*    0.0062*    0.0242*    0.0051*     0.2769    0.0207*

alpha = 0.05
Reject Ho if p <= alpha/2
####### tiempo_120
tiempo_120 <- 120 
datos_120 <- subset(P.aeruginosa, P.aeruginosa$Tiempo == tiempo_120)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo120 <- kruskal.test(datos_120$Absorbancia ~ datos_120$Concentraciones, data = datos_120)
print(resultado_tiempo120)

    Kruskal-Wallis rank sum test

data:  datos_120$Absorbancia by datos_120$Concentraciones
Kruskal-Wallis chi-squared = 13.251, df = 6, p-value = 0.03922
# analisis post-hoc
dunn.test(datos_120$Absorbancia, datos_120$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 13.251, df = 6, p-value = 0.04

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.032908
         |     0.4869
         |
0.25 mg/ |   0.559440   0.592348
         |     0.2879     0.2768
         |
0.5 mg/m |   0.131633   0.164541  -0.427807
         |     0.4476     0.4347     0.3344
         |
1 mg/mL  |   2.007404   2.040312   1.447963   1.875771
         |    0.0224*    0.0207*     0.0738     0.0303
         |
     C - |   0.493624   0.526532  -0.065816   0.361990  -1.513780
         |     0.3108     0.2993     0.4738     0.3587     0.0650
         |
    C +  |   2.599753   2.632661   2.040312   2.468120   0.592348   2.106129
         |    0.0047*    0.0042*    0.0207*    0.0068*     0.2768    0.0176*

alpha = 0.05
Reject Ho if p <= alpha/2
# GRÁFICO 
ggplot(P.aeruginosa, aes(x = P.aeruginosa$Tiempo,  
  y = ifelse(P.aeruginosa$Concentraciones == "C + ", 
  NA, P.aeruginosa$Absorbancia),
  color = factor(P.aeruginosa$Concentraciones, 
  levels = c("C -", "0.05 mg/mL", "0.1 mg/mL", "0.25 mg/mL", 
  "0.5 mg/mL ", "1 mg/mL ")), 
  group = P.aeruginosa$Concentraciones)) +
  stat_summary(fun = mean, geom = "line", size = 0.5, na.rm = TRUE) +
  stat_summary(fun = mean, geom = "point", size = 2, na.rm = TRUE) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),   geom = "errorbar", width = 0.1) +
  scale_y_continuous(name = "Absorbancia (modificada)", 
  limits = c(0, 2), breaks = seq(0, 2, by = 0.5)) +
  labs(y = "Absorbancia", x = "Tiempo", color = "Concentración") +
  theme_minimal()

Analisis de resultados S. aureus

# S.aureus 
S.aureus<-read.csv("S.aureus_R.csv", header = T, sep = ";", dec = ".")
str(S.aureus)
'data.frame':   126 obs. of  3 variables:
 $ Concentraciones: chr  "C -" "C + " "1 mg/mL " "0.5 mg/mL " ...
 $ Tiempo         : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Absorbancia    : num  0.1 0.115 0.096 0.094 0.089 0.087 0.086 0.088 0.797 0.099 ...
S.aureus$Tiempo=as.factor(S.aureus$Tiempo)
library(FSA)
Summarize(S.aureus$Absorbancia ~ S.aureus$Tiempo + S.aureus$Concentraciones)
   S.aureus$Tiempo S.aureus$Concentraciones n      mean        sd   min     Q1
1                0               0.05 mg/mL 3 0.0856667 0.0005774 0.085 0.0855
2               24               0.05 mg/mL 3 0.4336667 0.0102144 0.422 0.4300
3               48               0.05 mg/mL 3 0.5206667 0.0063509 0.517 0.5170
4               72               0.05 mg/mL 3 0.4556667 0.0257941 0.427 0.4450
5               96               0.05 mg/mL 3 0.4126667 0.0298385 0.393 0.3955
6              120               0.05 mg/mL 3 0.3743333 0.0656531 0.304 0.3445
7                0                0.1 mg/mL 3 0.0876667 0.0011547 0.087 0.0870
8               24                0.1 mg/mL 3 0.4276667 0.0277909 0.406 0.4120
9               48                0.1 mg/mL 3 0.5030000 0.0121244 0.492 0.4965
10              72                0.1 mg/mL 3 0.4393333 0.0433628 0.409 0.4145
11              96                0.1 mg/mL 3 0.4113333 0.0637207 0.356 0.3765
12             120                0.1 mg/mL 3 0.3636667 0.0909414 0.268 0.3210
13               0               0.25 mg/mL 3 0.0873333 0.0015275 0.086 0.0865
14              24               0.25 mg/mL 3 0.4526667 0.0075056 0.445 0.4490
15              48               0.25 mg/mL 3 0.4826667 0.0205994 0.461 0.4730
16              72               0.25 mg/mL 3 0.4270000 0.0095394 0.421 0.4215
17              96               0.25 mg/mL 3 0.3836667 0.0136137 0.373 0.3760
18             120               0.25 mg/mL 3 0.3200000 0.0137477 0.305 0.3140
19               0               0.5 mg/mL  3 0.0920000 0.0017321 0.091 0.0910
20              24               0.5 mg/mL  3 0.4813333 0.0213854 0.458 0.4720
21              48               0.5 mg/mL  3 0.5230000 0.0405093 0.483 0.5025
22              72               0.5 mg/mL  3 0.4850000 0.0589491 0.435 0.4525
23              96               0.5 mg/mL  3 0.4723333 0.0488092 0.427 0.4465
24             120               0.5 mg/mL  3 0.4196667 0.0290230 0.388 0.4070
25               0                 1 mg/mL  3 0.0976667 0.0015275 0.096 0.0970
26              24                 1 mg/mL  3 0.6930000 0.0406325 0.659 0.6705
27              48                 1 mg/mL  3 0.7946667 0.0335609 0.767 0.7760
28              72                 1 mg/mL  3 0.6613333 0.0361432 0.620 0.6485
29              96                 1 mg/mL  3 0.6023333 0.0457967 0.551 0.5840
30             120                 1 mg/mL  3 0.5516667 0.0642599 0.491 0.5180
31               0                      C - 3 0.1060000 0.0216333 0.088 0.0940
32              24                      C - 3 0.8286667 0.0950018 0.720 0.7950
33              48                      C - 3 1.1766667 0.0744737 1.091 1.1520
34              72                      C - 3 1.2356667 0.0563678 1.191 1.2040
35              96                      C - 3 1.2726667 0.0220303 1.258 1.2600
36             120                      C - 3 1.2963333 0.0040415 1.292 1.2945
37               0                     C +  3 0.3423333 0.3937529 0.115 0.1150
38              24                     C +  3 0.0763333 0.0159478 0.063 0.0675
39              48                     C +  3 0.1860000 0.0217025 0.172 0.1735
40              72                     C +  3 0.1986667 0.0203060 0.185 0.1870
41              96                     C +  3 0.2190000 0.0204206 0.203 0.2075
42             120                     C +  3 0.1996667 0.0176163 0.189 0.1895
   median     Q3   max
1   0.086 0.0860 0.086
2   0.438 0.4395 0.441
3   0.517 0.5225 0.528
4   0.463 0.4700 0.477
5   0.398 0.4225 0.447
6   0.385 0.4095 0.434
7   0.087 0.0880 0.089
8   0.418 0.4385 0.459
9   0.501 0.5085 0.516
10  0.420 0.4545 0.489
11  0.397 0.4390 0.481
12  0.374 0.4115 0.449
13  0.087 0.0880 0.089
14  0.453 0.4565 0.460
15  0.485 0.4935 0.502
16  0.422 0.4300 0.438
17  0.379 0.3890 0.399
18  0.323 0.3275 0.332
19  0.091 0.0925 0.094
20  0.486 0.4930 0.500
21  0.522 0.5430 0.564
22  0.470 0.5100 0.550
23  0.466 0.4950 0.524
24  0.426 0.4355 0.445
25  0.098 0.0985 0.099
26  0.682 0.7100 0.738
27  0.785 0.8085 0.832
28  0.677 0.6820 0.687
29  0.617 0.6280 0.639
30  0.545 0.5820 0.619
31  0.100 0.1150 0.130
32  0.870 0.8830 0.896
33  1.213 1.2195 1.226
34  1.217 1.2580 1.299
35  1.262 1.2800 1.298
36  1.297 1.2985 1.300
37  0.115 0.4560 0.797
38  0.072 0.0830 0.094
39  0.175 0.1930 0.211
40  0.189 0.2055 0.222
41  0.212 0.2270 0.242
42  0.190 0.2050 0.220
######## Tiempo 0 
# Cambia esto al tiempo que desees analizar
tiempo_0 <- 0
datos_0 <- subset(S.aureus, S.aureus$Tiempo == tiempo_0)
datos_0
   Concentraciones Tiempo Absorbancia
1              C -      0       0.100
2             C +       0       0.115
3         1 mg/mL       0       0.096
4       0.5 mg/mL       0       0.094
5       0.25 mg/mL      0       0.089
6        0.1 mg/mL      0       0.087
7       0.05 mg/mL      0       0.086
8              C -      0       0.088
9             C +       0       0.797
10        1 mg/mL       0       0.099
11      0.5 mg/mL       0       0.091
12      0.25 mg/mL      0       0.087
13       0.1 mg/mL      0       0.087
14      0.05 mg/mL      0       0.085
15             C -      0       0.130
16            C +       0       0.115
17        1 mg/mL       0       0.098
18      0.5 mg/mL       0       0.091
19      0.25 mg/mL      0       0.086
20       0.1 mg/mL      0       0.089
21      0.05 mg/mL      0       0.086
# Realizar el análisis de Kruskal-Wallis
resultado_tiempo0 <- kruskal.test(datos_0$Absorbancia ~ datos_0$Concentraciones, data = datos_0)
print(resultado_tiempo0)

    Kruskal-Wallis rank sum test

data:  datos_0$Absorbancia by datos_0$Concentraciones
Kruskal-Wallis chi-squared = 16.922, df = 6, p-value = 0.009575
# analisis post-hoc
library(dunn.test)
dunn.test(datos_0$Absorbancia, datos_0$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 16.9217, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.957455
         |     0.1692
         |
0.25 mg/ |  -0.759361   0.198094
         |     0.2238     0.4215
         |
0.5 mg/m |  -1.914911  -0.957455  -1.155549
         |     0.0278     0.1692     0.1239
         |
1 mg/mL  |  -2.509193  -1.551738  -1.749832  -0.594282
         |    0.0061*     0.0604     0.0401     0.2762
         |
     C - |  -2.509193  -1.551738  -1.749832  -0.594282   0.000000
         |    0.0061*     0.0604     0.0401     0.2762     0.5000
         |
    C +  |  -3.367602  -2.410146  -2.608241  -1.452691  -0.858408  -0.858408
         |    0.0004*    0.0080*    0.0046*     0.0732     0.1953     0.1953

alpha = 0.05
Reject Ho if p <= alpha/2
######## tiempo_24
tiempo_24 <- 24 
datos_24 <- subset(S.aureus, S.aureus$Tiempo == tiempo_24)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo24 <- kruskal.test(datos_24$Absorbancia ~ datos_24$Concentraciones, data = datos_24)
print(resultado_tiempo24)

    Kruskal-Wallis rank sum test

data:  datos_24$Absorbancia by datos_24$Concentraciones
Kruskal-Wallis chi-squared = 18.216, df = 6, p-value = 0.005713
# analisis post-hoc
dunn.test(datos_24$Absorbancia, datos_24$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 18.2165, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.000000
         |     0.5000
         |
0.25 mg/ |  -0.723746  -0.723746
         |     0.2346     0.2346
         |
0.5 mg/m |  -1.250108  -1.250108  -0.526361
         |     0.1056     0.1056     0.2993
         |
1 mg/mL  |  -2.039650  -2.039650  -1.315903  -0.789542
         |    0.0207*    0.0207*     0.0941     0.2149
         |
     C - |  -2.500216  -2.500216  -1.776469  -1.250108  -0.460566
         |    0.0062*    0.0062*     0.0378     0.1056     0.3226
         |
    C +  |   0.986927   0.986927   1.710674   2.237035   3.026577   3.487143
         |     0.1618     0.1618     0.0436    0.0126*    0.0012*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
######## tiempo_48
tiempo_48 <- 48 
datos_48 <- subset(S.aureus, S.aureus$Tiempo == tiempo_48)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo48 <- kruskal.test(datos_48$Absorbancia ~ datos_48$Concentraciones, data = datos_48)
print(resultado_tiempo48)

    Kruskal-Wallis rank sum test

data:  datos_48$Absorbancia by datos_48$Concentraciones
Kruskal-Wallis chi-squared = 17.83, df = 6, p-value = 0.006672
# analisis post-hoc
dunn.test(datos_48$Absorbancia, datos_48$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 17.8298, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.789798
         |     0.2148
         |
0.25 mg/ |   1.184697   0.394899
         |     0.1181     0.3465
         |
0.5 mg/m |   0.263266  -0.526532  -0.921431
         |     0.3962     0.2993     0.1784
         |
1 mg/mL  |  -0.921431  -1.711230  -2.106129  -1.184697
         |     0.1784     0.0435    0.0176*     0.1181
         |
     C - |  -1.513780  -2.303578  -2.698478  -1.777046  -0.592348
         |     0.0650    0.0106*    0.0035*     0.0378     0.2768
         |
    C +  |   2.040312   1.250514   0.855615   1.777046   2.961744   3.554093
         |    0.0207*     0.1056     0.1961     0.0378    0.0015*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
######## tiempo_72
tiempo_72 <- 72 
datos_72 <- subset(S.aureus, S.aureus$Tiempo == tiempo_72)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo72 <- kruskal.test(datos_72$Absorbancia ~ datos_72$Concentraciones, data = datos_72)
print(resultado_tiempo72)

    Kruskal-Wallis rank sum test

data:  datos_72$Absorbancia by datos_72$Concentraciones
Kruskal-Wallis chi-squared = 17.247, df = 6, p-value = 0.008418
# analisis post-hoc
dunn.test(datos_72$Absorbancia, datos_72$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 17.2468, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.592156
         |     0.2769
         |
0.25 mg/ |   0.592156   0.000000
         |     0.2769     0.5000
         |
0.5 mg/m |  -0.263180  -0.855337  -0.855337
         |     0.3962     0.1962     0.1962
         |
1 mg/mL  |  -1.250108  -1.842264  -1.842264  -0.986927
         |     0.1056     0.0327     0.0327     0.1618
         |
     C - |  -1.842264  -2.434421  -2.434421  -1.579084  -0.592156
         |     0.0327    0.0075*    0.0075*     0.0572     0.2769
         |
    C +  |   1.710674   1.118517   1.118517   1.973855   2.960782   3.552939
         |     0.0436     0.1317     0.1317    0.0242*    0.0015*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
######## tiempo_96
tiempo_96 <- 96 
datos_96 <- subset(S.aureus, S.aureus$Tiempo == tiempo_96)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo96 <- kruskal.test(datos_96$Absorbancia ~ datos_96$Concentraciones, data = datos_96)
print(resultado_tiempo96)

    Kruskal-Wallis rank sum test

data:  datos_96$Absorbancia by datos_96$Concentraciones
Kruskal-Wallis chi-squared = 17.628, df = 6, p-value = 0.007233
# analisis post-hoc
dunn.test(datos_96$Absorbancia, datos_96$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 17.6277, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.131590
         |     0.4477
         |
0.25 mg/ |   0.460566   0.328975
         |     0.3226     0.3711
         |
0.5 mg/m |  -0.723746  -0.855337  -1.184313
         |     0.2346     0.1962     0.1181
         |
1 mg/mL  |  -1.513288  -1.644879  -1.973855  -0.789542
         |     0.0651     0.0500    0.0242*     0.2149
         |
     C - |  -2.105445  -2.237035  -2.566011  -1.381698  -0.592156
         |    0.0176*    0.0126*    0.0051*     0.0835     0.2769
         |
    C +  |   1.447493   1.315903   0.986927   2.171240   2.960782   3.552939
         |     0.0739     0.0941     0.1618    0.0150*    0.0015*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
####### tiempo_120
tiempo_120 <- 120 
datos_120 <- subset(S.aureus, S.aureus$Tiempo == tiempo_120)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo120 <- kruskal.test(datos_120$Absorbancia ~ datos_120$Concentraciones, data = datos_120)
print(resultado_tiempo120)

    Kruskal-Wallis rank sum test

data:  datos_120$Absorbancia by datos_120$Concentraciones
Kruskal-Wallis chi-squared = 17.247, df = 6, p-value = 0.008418
# analisis post-hoc
dunn.test(datos_120$Absorbancia, datos_120$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 17.2468, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.000000
         |     0.5000
         |
0.25 mg/ |   0.460566   0.460566
         |     0.3226     0.3226
         |
0.5 mg/m |  -0.592156  -0.592156  -1.052722
         |     0.2769     0.2769     0.1462
         |
1 mg/mL  |  -1.513288  -1.513288  -1.973855  -0.921132
         |     0.0651     0.0651    0.0242*     0.1785
         |
     C - |  -2.105445  -2.105445  -2.566011  -1.513288  -0.592156
         |    0.0176*    0.0176*    0.0051*     0.0651     0.2769
         |
    C +  |   1.447493   1.447493   0.986927   2.039650   2.960782   3.552939
         |     0.0739     0.0739     0.1618    0.0207*    0.0015*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha/2
# GRÁFICO
ggplot(S.aureus, aes(x = S.aureus$Tiempo,  
  y = ifelse(S.aureus$Concentraciones == "C + ", 
  NA, S.aureus$Absorbancia),
  color = factor(S.aureus$Concentraciones, 
  levels = c("C -", "0.05 mg/mL", "0.1 mg/mL", "0.25 mg/mL", 
  "0.5 mg/mL ", "1 mg/mL ")), 
  group = S.aureus$Concentraciones)) +
  stat_summary(fun = mean, geom = "line", size = 0.5, na.rm = TRUE) +
  stat_summary(fun = mean, geom = "point", size = 2, na.rm = TRUE) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),   geom = "errorbar", width = 0.1) +
    labs(y = "Absorbancia", x = "Tiempo", color = "Concentración") +
  theme_minimal()

Analisis de los datos de C. albincans

# C.albicans 
C.albicans<-read.csv("C.albicans_R.csv", header = T, sep = ";", dec = ".")
str(C.albicans)
'data.frame':   126 obs. of  3 variables:
 $ Concentraciones: chr  "C -" "C + " "1 mg/mL " "0.5 mg/mL " ...
 $ Tiempo         : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Absorbancia    : num  0.076 0.102 0.096 0.089 0.088 0.092 0.09 0.087 0.104 0.098 ...
C.albicans$Tiempo=as.factor(C.albicans$Tiempo)
library(FSA)
Summarize(C.albicans$Absorbancia ~ C.albicans$Tiempo + C.albicans$Concentraciones)
   C.albicans$Tiempo C.albicans$Concentraciones n      mean        sd   min
1                  0                 0.05 mg/mL 3 0.0886667 0.0023094 0.086
2                 24                 0.05 mg/mL 3 0.2693333 0.0249065 0.253
3                 48                 0.05 mg/mL 3 0.4463333 0.0690821 0.403
4                 72                 0.05 mg/mL 3 0.6000000 0.0475710 0.554
5                 96                 0.05 mg/mL 3 0.6340000 0.1003544 0.559
6                120                 0.05 mg/mL 3 0.6466667 0.0996059 0.566
7                  0                  0.1 mg/mL 3 0.0916667 0.0035119 0.088
8                 24                  0.1 mg/mL 3 0.3433333 0.0780150 0.291
9                 48                  0.1 mg/mL 3 0.5076667 0.0346747 0.469
10                72                  0.1 mg/mL 3 0.5836667 0.0192180 0.563
11                96                  0.1 mg/mL 3 0.6350000 0.0452990 0.587
12               120                  0.1 mg/mL 3 0.6733333 0.0771514 0.605
13                 0                 0.25 mg/mL 3 0.0883333 0.0005774 0.088
14                24                 0.25 mg/mL 3 0.3246667 0.0085049 0.316
15                48                 0.25 mg/mL 3 0.4556667 0.0025166 0.453
16                72                 0.25 mg/mL 3 0.5126667 0.0607810 0.446
17                96                 0.25 mg/mL 3 0.5500000 0.0721942 0.468
18               120                 0.25 mg/mL 3 0.5720000 0.0752861 0.486
19                 0                 0.5 mg/mL  3 0.0900000 0.0045826 0.086
20                24                 0.5 mg/mL  3 0.3103333 0.0127017 0.303
21                48                 0.5 mg/mL  3 0.4753333 0.0427122 0.427
22                72                 0.5 mg/mL  3 0.5256667 0.0435928 0.500
23                96                 0.5 mg/mL  3 0.6203333 0.0665307 0.571
24               120                 0.5 mg/mL  3 0.6486667 0.0446356 0.609
25                 0                   1 mg/mL  3 0.0966667 0.0011547 0.096
26                24                   1 mg/mL  3 0.3070000 0.0419404 0.269
27                48                   1 mg/mL  3 0.4996667 0.0353883 0.460
28                72                   1 mg/mL  3 0.6926667 0.1220833 0.552
29                96                   1 mg/mL  3 0.8306667 0.1021094 0.713
30               120                   1 mg/mL  3 0.8720000 0.0780833 0.784
31                 0                        C - 3 0.0816667 0.0055076 0.076
32                24                        C - 3 0.6386667 0.0472582 0.602
33                48                        C - 3 0.8250000 0.0619919 0.756
34                72                        C - 3 0.9916667 0.0525959 0.934
35                96                        C - 3 1.0300000 0.0888313 0.935
36               120                        C - 3 1.0940000 0.0459021 1.045
37                 0                       C +  3 0.1086667 0.0098658 0.102
38                24                       C +  3 0.2606667 0.0150111 0.252
39                48                       C +  3 0.4000000 0.0915369 0.307
40                72                       C +  3 0.4623333 0.0822091 0.369
41                96                       C +  3 0.5616667 0.0875233 0.462
42               120                       C +  3 0.6206667 0.1240739 0.479
       Q1 median     Q3   max
1  0.0880  0.090 0.0900 0.090
2  0.2550  0.257 0.2775 0.298
3  0.4065  0.410 0.4680 0.526
4  0.5755  0.597 0.6230 0.649
5  0.5770  0.595 0.6715 0.748
6  0.5910  0.616 0.6870 0.758
7  0.0900  0.092 0.0935 0.095
8  0.2985  0.306 0.3695 0.433
9  0.4935  0.518 0.5270 0.536
10 0.5750  0.587 0.5940 0.601
11 0.6140  0.641 0.6590 0.677
12 0.6315  0.658 0.7075 0.757
13 0.0880  0.088 0.0885 0.089
14 0.3205  0.325 0.3290 0.333
15 0.4545  0.456 0.4570 0.458
16 0.4865  0.527 0.5460 0.565
17 0.5230  0.578 0.5910 0.604
18 0.5450  0.604 0.6150 0.626
19 0.0875  0.089 0.0920 0.095
20 0.3030  0.303 0.3140 0.325
21 0.4590  0.491 0.4995 0.508
22 0.5005  0.501 0.5385 0.576
23 0.5825  0.594 0.6450 0.696
24 0.6245  0.640 0.6685 0.697
25 0.0960  0.096 0.0970 0.098
26 0.2845  0.300 0.3260 0.352
27 0.4855  0.511 0.5195 0.528
28 0.6535  0.755 0.7630 0.771
29 0.7980  0.883 0.8895 0.896
30 0.8415  0.899 0.9160 0.933
31 0.0790  0.082 0.0845 0.087
32 0.6120  0.622 0.6570 0.692
33 0.7995  0.843 0.8595 0.876
34 0.9690  1.004 1.0205 1.037
35 0.9895  1.044 1.0775 1.111
36 1.0730  1.101 1.1185 1.136
37 0.1030  0.104 0.1120 0.120
38 0.2520  0.252 0.2650 0.278
39 0.3550  0.403 0.4465 0.490
40 0.4315  0.494 0.5090 0.524
41 0.5295  0.597 0.6115 0.626
42 0.5760  0.673 0.6915 0.710
# Tiempo 0 
# Cambia esto al tiempo que desees analizar
tiempo_0 <- 0
datos_0 <- subset(C.albicans, C.albicans$Tiempo == tiempo_0)
datos_0
   Concentraciones Tiempo Absorbancia
1              C -      0       0.076
2             C +       0       0.102
3         1 mg/mL       0       0.096
4       0.5 mg/mL       0       0.089
5       0.25 mg/mL      0       0.088
6        0.1 mg/mL      0       0.092
7       0.05 mg/mL      0       0.090
8              C -      0       0.087
9             C +       0       0.104
10        1 mg/mL       0       0.098
11      0.5 mg/mL       0       0.086
12      0.25 mg/mL      0       0.088
13       0.1 mg/mL      0       0.088
14      0.05 mg/mL      0       0.090
15             C -      0       0.082
16            C +       0       0.120
17        1 mg/mL       0       0.096
18      0.5 mg/mL       0       0.095
19      0.25 mg/mL      0       0.089
20       0.1 mg/mL      0       0.095
21      0.05 mg/mL      0       0.086
# Realizar el análisis de Kruskal-Wallis
resultado_tiempo0 <- kruskal.test(datos_0$Absorbancia ~ datos_0$Concentraciones, data = datos_0)
print(resultado_tiempo0)

    Kruskal-Wallis rank sum test

data:  datos_0$Absorbancia by datos_0$Concentraciones
Kruskal-Wallis chi-squared = 16.051, df = 6, p-value = 0.01349
# analisis post-hoc
library(dunn.test)
dunn.test(datos_0$Absorbancia, datos_0$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 16.0505, df = 6, p-value = 0.01

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.527906
         |     0.2988
         |
0.25 mg/ |   0.197964   0.725871
         |     0.4215     0.2340
         |
0.5 mg/m |  -0.065988   0.461917  -0.263953
         |     0.4737     0.3221     0.3959
         |
1 mg/mL  |  -1.616712  -1.088806  -1.814677  -1.550724
         |     0.0530     0.1381     0.0348     0.0605
         |
     C - |   1.220783   1.748689   1.022818   1.286771   2.837495
         |     0.1111     0.0402     0.1532     0.0991    0.0023*
         |
    C +  |  -2.210607  -1.682701  -2.408572  -2.144618  -0.593894  -3.431390
         |    0.0135*     0.0462    0.0080*    0.0160*     0.2763    0.0003*

alpha = 0.05
Reject Ho if p <= alpha/2
######## tiempo_24
tiempo_24 <- 24 
datos_24 <- subset(C.albicans, C.albicans$Tiempo == tiempo_24)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo24 <- kruskal.test(datos_24$Absorbancia ~ datos_24$Concentraciones, data = datos_24)
print(resultado_tiempo24)

    Kruskal-Wallis rank sum test

data:  datos_24$Absorbancia by datos_24$Concentraciones
Kruskal-Wallis chi-squared = 15.316, df = 6, p-value = 0.01794
# analisis post-hoc
dunn.test(datos_24$Absorbancia, datos_24$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 15.3155, df = 6, p-value = 0.02

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -1.448905
         |     0.0737
         |
0.25 mg/ |  -1.876991  -0.428085
         |     0.0303     0.3343
         |
0.5 mg/m |  -1.350116   0.098789   0.526874
         |     0.0885     0.4607     0.2991
         |
1 mg/mL  |  -1.053749   0.395156   0.823241   0.296367
         |     0.1460     0.3464     0.2052     0.3835
         |
     C - |  -2.963670  -1.514765  -1.086679  -1.613554  -1.909921
         |    0.0015*     0.0649     0.1386     0.0533     0.0281
         |
    C +  |   0.395156   1.844061   2.272147   1.745272   1.448905   3.358826
         |     0.3464     0.0326    0.0115*     0.0405     0.0737    0.0004*

alpha = 0.05
Reject Ho if p <= alpha/2
####### tiempo_48
tiempo_48 <- 48 
datos_48 <- subset(C.albicans, C.albicans$Tiempo == tiempo_48)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo48 <- kruskal.test(datos_48$Absorbancia ~ datos_48$Concentraciones, data = datos_48)
print(resultado_tiempo48)

    Kruskal-Wallis rank sum test

data:  datos_48$Absorbancia by datos_48$Concentraciones
Kruskal-Wallis chi-squared = 12.853, df = 6, p-value = 0.04544
# analisis post-hoc
dunn.test(datos_48$Absorbancia, datos_48$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 12.8525, df = 6, p-value = 0.05

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -1.349239
         |     0.0886
         |
0.25 mg/ |   0.098724   1.447963
         |     0.4607     0.0738
         |
0.5 mg/m |  -0.493624   0.855615  -0.592348
         |     0.3108     0.1961     0.2768
         |
1 mg/mL  |  -1.151789   0.197449  -1.250514  -0.658165
         |     0.1247     0.4217     0.1056     0.2552
         |
     C - |  -2.468120  -1.118881  -2.566845  -1.974496  -1.316330
         |    0.0068*     0.1316    0.0051*    0.0242*     0.0940
         |
    C +  |   0.526532   1.875771   0.427807   1.020156   1.678321   2.994652
         |     0.2993     0.0303     0.3344     0.1538     0.0466    0.0014*

alpha = 0.05
Reject Ho if p <= alpha/2
######### tiempo_72
tiempo_72 <- 72 
datos_72 <- subset(C.albicans, C.albicans$Tiempo == tiempo_72)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo72 <- kruskal.test(datos_72$Absorbancia ~ datos_72$Concentraciones, data = datos_72)
print(resultado_tiempo72)

    Kruskal-Wallis rank sum test

data:  datos_72$Absorbancia by datos_72$Concentraciones
Kruskal-Wallis chi-squared = 14.996, df = 6, p-value = 0.02029
# analisis post-hoc
dunn.test(datos_72$Absorbancia, datos_72$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 14.9957, df = 6, p-value = 0.02

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |   0.065795
         |     0.4738
         |
0.25 mg/ |   1.250108   1.184313
         |     0.1056     0.1181
         |
0.5 mg/m |   1.184313   1.118517  -0.065795
         |     0.1181     0.1317     0.4738
         |
1 mg/mL  |  -0.263180  -0.328975  -1.513288  -1.447493
         |     0.3962     0.3711     0.0651     0.0739
         |
     C - |  -1.381698  -1.447493  -2.631806  -2.566011  -1.118517
         |     0.0835     0.0739    0.0042*    0.0051*     0.1317
         |
    C +  |   1.908059   1.842264   0.657951   0.723746   2.171240   3.289758
         |     0.0282     0.0327     0.2553     0.2346    0.0150*    0.0005*

alpha = 0.05
Reject Ho if p <= alpha/2
###### tiempo_96
tiempo_96 <- 96 
datos_96 <- subset(C.albicans, C.albicans$Tiempo == tiempo_96)

# Realizar el análisis de Kruskal-Wallis
resultado_tiempo96 <- kruskal.test(datos_96$Absorbancia ~ datos_96$Concentraciones, data = datos_96)
print(resultado_tiempo96)

    Kruskal-Wallis rank sum test

data:  datos_96$Absorbancia by datos_96$Concentraciones
Kruskal-Wallis chi-squared = 13.177, df = 6, p-value = 0.0403
# analisis post-hoc
dunn.test(datos_96$Absorbancia, datos_96$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 13.1775, df = 6, p-value = 0.04

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.263180
         |     0.3962
         |
0.25 mg/ |   0.657951   0.921132
         |     0.2553     0.1785
         |
0.5 mg/m |   0.131590   0.394771  -0.526361
         |     0.4477     0.3465     0.2993
         |
1 mg/mL  |  -1.513288  -1.250108  -2.171240  -1.644879
         |     0.0651     0.1056    0.0150*     0.0500
         |
     C - |  -2.171240  -1.908059  -2.829192  -2.302830  -0.657951
         |    0.0150*     0.0282    0.0023*    0.0106*     0.2553
         |
    C +  |   0.394771   0.657951  -0.263180   0.263180   1.908059   2.566011
         |     0.3465     0.2553     0.3962     0.3962     0.0282    0.0051*

alpha = 0.05
Reject Ho if p <= alpha/2
###### tiempo_120
tiempo_120 <- 120 
datos_120 <- subset(C.albicans, C.albicans$Tiempo == tiempo_120)

# Realizar el análisis de Kruskal-Wallis

resultado_tiempo120 <- kruskal.test(datos_120$Absorbancia ~ datos_120$Concentraciones, data = datos_120)
print(resultado_tiempo120)

    Kruskal-Wallis rank sum test

data:  datos_120$Absorbancia by datos_120$Concentraciones
Kruskal-Wallis chi-squared = 13.801, df = 6, p-value = 0.03194
# analisis post-hoc
dunn.test(datos_120$Absorbancia, datos_120$Concentraciones)
  Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 13.8009, df = 6, p-value = 0.03

                           Comparison of x by group                            
                                (No adjustment)                                
Col Mean-|
Row Mean |   0.05 mg/   0.1 mg/m   0.25 mg/   0.5 mg/m   1 mg/mL         C -
---------+------------------------------------------------------------------
0.1 mg/m |  -0.263180
         |     0.3962
         |
0.25 mg/ |   0.723746   0.986927
         |     0.2346     0.1618
         |
0.5 mg/m |  -0.131590   0.131590  -0.855337
         |     0.4477     0.4477     0.1962
         |
1 mg/mL  |  -1.710674  -1.447493  -2.434421  -1.579084
         |     0.0436     0.0739    0.0075*     0.0572
         |
     C - |  -2.302830  -2.039650  -3.026577  -2.171240  -0.592156
         |    0.0106*    0.0207*    0.0012*    0.0150*     0.2769
         |
    C +  |   0.000000   0.263180  -0.723746   0.131590   1.710674   2.302830
         |     0.5000     0.3962     0.2346     0.4477     0.0436    0.0106*

alpha = 0.05
Reject Ho if p <= alpha/2
#### Gráfico

ggplot(C.albicans, aes(x = C.albicans$Tiempo,  
  y = ifelse(C.albicans$Concentraciones == "C + ", 
  NA, C.albicans$Absorbancia),
  color = factor(C.albicans$Concentraciones, 
  levels = c("C -", "0.05 mg/mL", "0.1 mg/mL", "0.25 mg/mL", 
  "0.5 mg/mL ", "1 mg/mL ")), 
  group = C.albicans$Concentraciones)) +
  stat_summary(fun = mean, geom = "line", size = 0.5, na.rm = TRUE) +
  stat_summary(fun = mean, geom = "point", size = 2, na.rm = TRUE) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),   geom = "errorbar", width = 0.1) +
  labs(y = "Absorbancia (nm)", x = "Tiempo (Horas)", color = "Concentración") +
  theme_minimal()

Analisis de regresión

Hallando el Concentración minima inhibitoria para los datos de S.aureus y para C. albicans en el tiempo de 24 horas

# S.aureus
Cons.S.aureus<-subset(datos_24, datos_24$Concentraciones %in% c("0.05 mg/mL", "0.1 mg/mL", "0.25 mg/mL", "0.5 mg/mL ", "1 mg/mL "))

library(dplyr)

Adjuntando el paquete: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
# concentracion minima inhibitoria S.aureus
 
cmi <- Cons.S.aureus %>%
  filter(Cons.S.aureus$Absorbancia <= 0.1) %>%
  summarise(CMI = min(Cons.S.aureus$Concentraciones))

print(cmi)
         CMI
1 0.05 mg/mL
# se guarda como Cons.S.aureus1 para poder hacer la gráfica

# GRÁFICA
# se cragan los datos
Cons.S.aureus1<-read.csv("Cons.S.aureus1.csv", header = T, sep = ";", dec = ".")
str(Cons.S.aureus1)
'data.frame':   15 obs. of  3 variables:
 $ Concentraciones: num  1 0.5 0.25 0.1 0.05 1 0.5 0.25 0.1 0.05 ...
 $ Tiempo         : int  24 24 24 24 24 24 24 24 24 24 ...
 $ Absorbancia    : num  0.789 0.692 0.723 0.727 0.704 0.729 0.743 0.784 0.711 0.704 ...
resumen <- Cons.S.aureus1 %>%
  group_by(Concentraciones) %>%
  summarise(
    media_absorbancia = mean(Absorbancia),
    desviacion_absorbancia = sd(Absorbancia)
  )

# Grafico de los datos 

ggplot(resumen, aes(x = Concentraciones, 
                    y = media_absorbancia)) +
  geom_point(size = 2) +
  geom_errorbar(aes(ymin = media_absorbancia - desviacion_absorbancia, 
                    ymax = media_absorbancia + desviacion_absorbancia), 
                    width = 0.02) +
  scale_y_continuous(name = "Absorbancia (modificada)", 
  limits = c(0.6, 1), breaks = seq(0.6, 1, by = 0.1)) +
  labs(x = "Concentración (mg/L)", 
       y = "Absorbancia", 
       title = "Curva de Inhibición del Crecimiento Bacteriano") +
  theme_minimal()