Setting up my environment

Notes: Setting up my R environment by loading the ‘tidyverse’ and ‘palmerpenguins’ packages

library(tidyverse)
## Warning: package 'dplyr' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(palmerpenguins)
library(ggplot2)

library(palmerpenguins)

data(penguins)

View(penguins)

Visualizations

Here we will go through a series of visualizations

Flipper and body mass in purple

Here, we plot flipper length against body mass

ggplot(data = penguins) + 
  geom_point(mapping = aes(x = flipper_length_mm, y = body_mass_g, color = "purple"))
## Warning: Removed 2 rows containing missing values (`geom_point()`).

Flipper length and body mass by species

Here, we plot flipper length against body mass and look at the breakdown by species

ggplot(data = penguins) +

  geom_point(mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species, shape = species))
## Warning: Removed 2 rows containing missing values (`geom_point()`).

Flipper length and body mass by species and sex

ggplot(data = penguins) +
  geom_point(mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species, shape = species)) + 
  facet_wrap(~sex)
## Warning: Removed 2 rows containing missing values (`geom_point()`).