library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data <- data.frame(
  Treatment = rep(c("A", "B", "C", "D"), each = 3)[1:12],
  Block = c(1,2,4, 2,3,4, 1,2,3, 1,3,4),
  Value = c(79,83,86, 75,78,84, 86,88,90, 92,94,80)
)


model <- aov(Value ~ Treatment + Block, data = data)

summary(model)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    3  189.6   63.19   2.397  0.154
## Block        1    4.8    4.80   0.182  0.682
## Residuals    7  184.5   26.36
treatment_means <- data %>%
  group_by(Treatment) %>%
  summarise(Mean = mean(Value))

block_means <- data %>%
  group_by(Block) %>%
  summarise(Mean = mean(Value))


print("Treatment Means:")
## [1] "Treatment Means:"
print(treatment_means)
## # A tibble: 4 × 2
##   Treatment  Mean
##   <chr>     <dbl>
## 1 A          82.7
## 2 B          79  
## 3 C          88  
## 4 D          88.7
print("\nBlock Means:")
## [1] "\nBlock Means:"
print(block_means)
## # A tibble: 4 × 2
##   Block  Mean
##   <dbl> <dbl>
## 1     1  85.7
## 2     2  82  
## 3     3  87.3
## 4     4  83.3
# Input data
data <- data.frame(
  Tekanan = c(1, 2, 3, 4),
  A = c(79, 83, NA, 86),
  B = c(NA, 75, 78, 84),
  C = c(86, 88, 90, NA),
  D = c(92, NA, 94, 80)
)

# Ubah data ke long format
library(tidyr)
data_long <- data %>%
  pivot_longer(cols = A:D, names_to = "Logam", values_to = "Nilai") %>%
  na.omit()

# Analisis varians
model <- aov(Nilai ~ Logam + Tekanan, data = data_long)
summary(model)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Logam        3  189.6   63.19   2.397  0.154
## Tekanan      1    4.8    4.80   0.182  0.682
## Residuals    7  184.5   26.36
# Uji Tukey HSD
tukey <- TukeyHSD(model, "Logam")
## Warning in replications(paste("~", xx), data = mf): non-factors ignored:
## Tekanan
print(tukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nilai ~ Logam + Tekanan, data = data_long)
## 
## $Logam
##           diff        lwr      upr     p adj
## B-A -3.6666667 -17.543551 10.21022 0.8178877
## C-A  5.3333333  -8.543551 19.21022 0.6060830
## D-A  6.0000000  -7.876884 19.87688 0.5206258
## C-B  9.0000000  -4.876884 22.87688 0.2274683
## D-B  9.6666667  -4.210218 23.54355 0.1856738
## D-C  0.6666667 -13.210218 14.54355 0.9984283
# Visualisasi
plot(tukey, las = 1, col = "blue")

# Input data
data_aircrew <- data.frame(
  Bahan_Mentah = rep(1:5, each = 5),
  Operator = rep(1:5, times = 5),
  Uji_Perakitan = c(
    "α", "γ", "ε", "β", "δ",
    "β", "δ", "α", "γ", "ε",
    "γ", "ε", "β", "δ", "α",
    "δ", "α", "γ", "ε", "β",
    "ε", "β", "δ", "α", "γ"
  ),
  Nilai = c(
    21, 22, 17, 23, 29,
    27, 24, 32, 27, 33,
    28, 38, 26, 29, 21,
    26, 31, 26, 23, 22,
    29, 32, 27, 28, 32
  )
)

# Analisis varians (ANOVA)
model_aircrew <- aov(Nilai ~ as.factor(Bahan_Mentah) + as.factor(Operator) + as.factor(Uji_Perakitan), data = data_aircrew)
summary(model_aircrew)
##                          Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(Bahan_Mentah)   4 171.84   42.96   1.730  0.208
## as.factor(Operator)       4  47.44   11.86   0.478  0.752
## as.factor(Uji_Perakitan)  4  10.64    2.66   0.107  0.978
## Residuals                12 297.92   24.83
# Uji Tukey HSD
tukey_bahan <- TukeyHSD(model_aircrew, "as.factor(Bahan_Mentah)")
print(tukey_bahan)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nilai ~ as.factor(Bahan_Mentah) + as.factor(Operator) + as.factor(Uji_Perakitan), data = data_aircrew)
## 
## $`as.factor(Bahan_Mentah)`
##     diff        lwr       upr     p adj
## 2-1  6.2  -3.844543 16.244543 0.3364788
## 3-1  6.0  -4.044543 16.044543 0.3656022
## 4-1  3.2  -6.844543 13.244543 0.8435507
## 5-1  7.2  -2.844543 17.244543 0.2150673
## 3-2 -0.2 -10.244543  9.844543 0.9999957
## 4-2 -3.0 -13.044543  7.044543 0.8709633
## 5-2  1.0  -9.044543 11.044543 0.9974811
## 4-3 -2.8 -12.844543  7.244543 0.8957632
## 5-3  1.2  -8.844543 11.244543 0.9949156
## 5-4  4.0  -6.044543 14.044543 0.7135068
tukey_operator <- TukeyHSD(model_aircrew, "as.factor(Operator)")
print(tukey_operator)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nilai ~ as.factor(Bahan_Mentah) + as.factor(Operator) + as.factor(Uji_Perakitan), data = data_aircrew)
## 
## $`as.factor(Operator)`
##     diff        lwr       upr     p adj
## 2-1  3.2  -6.844543 13.244543 0.8435507
## 3-1 -0.6 -10.644543  9.444543 0.9996604
## 4-1 -0.2 -10.244543  9.844543 0.9999957
## 5-1  1.2  -8.844543 11.244543 0.9949156
## 3-2 -3.8 -13.844543  6.244543 0.7484002
## 4-2 -3.4 -13.444543  6.644543 0.8137769
## 5-2 -2.0 -12.044543  8.044543 0.9663186
## 4-3  0.4  -9.644543 10.444543 0.9999321
## 5-3  1.8  -8.244543 11.844543 0.9768950
## 5-4  1.4  -8.644543 11.444543 0.9908732
tukey_uji <- TukeyHSD(model_aircrew, "as.factor(Uji_Perakitan)")
print(tukey_uji)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nilai ~ as.factor(Bahan_Mentah) + as.factor(Operator) + as.factor(Uji_Perakitan), data = data_aircrew)
## 
## $`as.factor(Uji_Perakitan)`
##              diff        lwr       upr     p adj
## β-α -6.000000e-01 -10.644543  9.444543 0.9996604
## γ-α  4.000000e-01  -9.644543 10.444543 0.9999321
## δ-α  4.000000e-01  -9.644543 10.444543 0.9999321
## ε-α  1.400000e+00  -8.644543 11.444543 0.9908732
## γ-β  1.000000e+00  -9.044543 11.044543 0.9974811
## δ-β  1.000000e+00  -9.044543 11.044543 0.9974811
## ε-β  2.000000e+00  -8.044543 12.044543 0.9663186
## δ-γ  3.552714e-15 -10.044543 10.044543 1.0000000
## ε-γ  1.000000e+00  -9.044543 11.044543 0.9974811
## ε-δ  1.000000e+00  -9.044543 11.044543 0.9974811
# Visualisasi
plot(tukey_bahan, las = 1, col = "blue")

plot(tukey_operator, las = 1, col = "green")

plot(tukey_uji, las = 1, col = "purple")

library(dplyr)

# Membuat data dalam bentuk data frame
latin_square_data <- data.frame(
  Kapal = rep(1:4, each = 4),
  Operator = rep(1:4, times = 4),
  Nilai = c(20, 24, 15, 5, 25, 15, 8, 37, 34, 9, 56, 35, 7, 52, 40, 25)
)

# Tambahkan faktor untuk Kapal dan Operator
latin_square_data$Kapal <- factor(latin_square_data$Kapal)
latin_square_data$Operator <- factor(latin_square_data$Operator)

# Model ANOVA untuk desain bujur sangkar latin
anova_model <- aov(Nilai ~ Kapal + Operator + as.factor((1:4)[latin_square_data$Kapal]), data = latin_square_data)

# Output hasil ANOVA
summary(anova_model)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Kapal        3  810.2  270.06   0.873  0.490
## Operator     3  137.2   45.73   0.148  0.929
## Residuals    9 2784.6  309.40
# Visualisasi data (opsional)
library(ggplot2)
ggplot(latin_square_data, aes(x = Operator, y = Nilai, color = Kapal)) +
  geom_point(size = 3) +
  geom_line(aes(group = Kapal)) +
  theme_minimal() +
  labs(title = "Tingkat Kecelakaan Berdasarkan Jenis Kapal dan Operator",
       x = "Operator",
       y = "Tingkat Kecelakaan")

# Library yang diperlukan
library(dplyr)
library(tidyr)
library(ggplot2)


# 1. Aplikasi RBSL (Rancangan Bujur Sangkar Latin)
# Contoh: Analisis produktivitas koperasi berdasarkan 4 jenis produk (A, B, C, D) dan 4 cabang koperasi
rbsl_data <- data.frame(
  Cabang = rep(1:4, each = 4),
  Produk = rep(1:4, times = 4),
  Nilai = c(80, 85, 90, 88, 78, 82, 87, 84, 88, 91, 85, 86, 81, 83, 79, 87)
)

rbsl_data$Cabang <- factor(rbsl_data$Cabang)
rbsl_data$Produk <- factor(rbsl_data$Produk)

# Model ANOVA untuk RBSL
anova_rbsl <- aov(Nilai ~ Cabang + Produk, data = rbsl_data)

# Hasil ANOVA untuk RBSL
cat("Hasil ANOVA RBSL:\n")
## Hasil ANOVA RBSL:
summary(anova_rbsl)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Cabang       3  70.25   23.42   1.938  0.194
## Produk       3  46.75   15.58   1.290  0.336
## Residuals    9 108.75   12.08
 # RSBY
rby_data <- data.frame(
  Harga = factor(rep(c("H1", "H2"), each = 4)),
  Kualitas = factor(rep(c("K1", "K2"), times = 4)),
  Lokasi = factor(rep(c("L1", "L2"), each = 2, times = 2)),
  Pendapatan = c(100, 105, 95, 98, 110, 115, 90, 92)
)

# Model ANOVA untuk RBSY
anova_rbsy <- aov(Pendapatan ~ Harga * Kualitas * Lokasi, data = rby_data)

# Hasil ANOVA untuk RBSY
cat("\nHasil ANOVA RBSY:\n")
## 
## Hasil ANOVA RBSY:
summary(anova_rbsy)
##                       Df Sum Sq Mean Sq
## Harga                  1   10.1    10.1
## Kualitas               1   28.1    28.1
## Lokasi                 1  378.1   378.1
## Harga:Kualitas         1    0.1     0.1
## Harga:Lokasi           1  120.1   120.1
## Kualitas:Lokasi        1    3.1     3.1
## Harga:Kualitas:Lokasi  1    0.1     0.1
# Visualisasi opsional untuk kedua model
library(ggplot2)

# Visualisasi RBSL
ggplot(rbsl_data, aes(x = Produk, y = Nilai, color = Cabang)) +
  geom_point(size = 3) +
  geom_line(aes(group = Cabang)) +
  theme_minimal() +
  labs(title = "Produktivitas Berdasarkan Produk dan Cabang",
       x = "Produk",
       y = "Nilai Produktivitas")

# Visualisasi RBSY
ggplot(rby_data, aes(x = Harga, y = Pendapatan, fill = Lokasi)) +
  geom_bar(stat = "identity", position = "dodge") +
  facet_grid(~Kualitas) +
  theme_minimal() +
  labs(title = "Pendapatan Berdasarkan Harga, Kualitas, dan Lokasi",
       x = "Harga",
       y = "Pendapatan")