先读取数据,求财务指标间的相关系数矩阵

setwd("D:\\Rdownload\\lianxi\\seventh")  #设定工作路径
case7.1<-read.csv("case7.1.csv",header=T)   #读入数据
data<-case7.1[,-1]
name<-case7.1[,1]
da<-scale(data)
da
##                 x1          x2          x3           x4          x5
##  [1,] -0.031866321  0.16707031  0.17028963 -0.364330015 -0.96353615
##  [2,] -0.710190348 -0.58277282 -0.32970970  0.891528229  1.26198298
##  [3,] -0.005776935  0.48279374 -0.06884049  0.268589661 -0.17521040
##  [4,]  0.180575819  1.19317144  0.88767997  0.012016471 -0.40764060
##  [5,] -0.512656428 -0.93796167 -1.35144747 -1.411759238 -1.05069748
##  [6,] -0.367301279 -0.58277282 -0.54710072  0.176998316  0.03397678
##  [7,]  0.381836794 -0.26704940 -1.04710005  0.052528028  0.18408794
##  [8,]  1.634127306  0.28546660  0.67028896  0.229839477 -0.61682778
##  [9,] -0.620741026 -0.81956539 -0.28623150  0.802872505  1.61450211
## [10,] -1.265521557 -0.46437654 -0.89492634 -0.296810755 -1.03326521
## [11,]  0.046401836 -0.34598025 -0.43840521  0.329063433  0.49980563
## [12,] -0.803366725 -0.26704940  0.17028963  0.559803167  1.09928184
## [13,] -0.579743420 -0.42491111 -0.24275330  0.302642853  0.82617636
## [14,] -0.471658822 -0.74063453 -0.67753533  0.003796735  0.06690439
## [15,]  0.568189549  1.62729115  1.56159212 -0.177037458 -0.60326935
## [16,] -0.743733844 -0.46437654 -0.59057892  2.101003678  3.77997678
## [17,] -0.065409817 -0.85903082 -0.69927443 -0.856339931 -0.42023057
## [18,]  2.152187963  0.36439745  0.23550693 -0.078987749 -0.53644567
## [19,] -0.646830411  0.52225916  0.47463705 -0.431262152 -0.63232312
## [20,] -0.639376301 -1.41154681 -1.54709938  0.897399469  1.07507036
## [21,] -0.177221470  0.60119002  0.80072357 -0.136525902  0.54144937
## [22,] -0.948721874 -1.17475424 -1.30796927  0.129441272  0.45428805
## [23,]  0.806721075 -0.89849624 -0.54710072 -0.386053603 -1.10589965
## [24,]  0.366928574 -0.93796167 -0.43840521  0.502852139 -0.27593015
## [25,]  0.348293298  2.65339227  2.69202539 -0.208742154 -0.84635259
## [26,]  0.519737833  1.31156772  1.49637481  0.050179532 -0.36502840
## [27,] -0.173494415 -0.06972226 -0.22101420  0.293835993  0.56566085
## [28,]  0.676274147  0.24600117  0.86594087 -0.290939515 -0.82214112
## [29,] -0.248035516 -0.18811854  0.17028963 -0.458856980 -0.12388207
## [30,] -0.475385877  0.00920860 -0.22101420  0.199896153  0.10273738
## [31,] -1.213342786 -0.85903082 -0.76449173 -0.164707854 -0.48511733
## [32,]  3.754821653  2.10087628  1.60507032 -0.219897510 -0.82892033
## [33,] -0.084045092 -0.54330739  0.08333322  0.394821322 -0.18876883
## [34,]  0.176848764  0.60119002  0.06159412  0.213987129  0.60633613
## [35,]  0.691182367  0.75905173  1.19202739 -0.120086430 -0.29433088
## [36,] -0.695282128 -0.03025683 -0.26449240  0.545712191  0.98694058
## [37,] -0.385936555  0.99584430  0.30072424  0.583875251  0.78646954
## [38,] -1.485417807 -2.39818251 -2.17753332 -4.639767013 -2.05983191
## [39,]  1.294965292  1.46942944  1.36594021 -0.145332762 -1.39934277
## [40,]  1.343417008  1.78515286  1.71376583 -0.135938778 -0.59164784
## [41,] -0.363574224  0.48279374  0.49637615  0.416544910  0.76322652
## [42,] -0.352393059  0.24600117  0.84420177  0.337870294 -0.37180761
## [43,]  0.016585395 -0.74063453 -0.76449173  1.316606008  0.01267067
## [44,] -0.184675580  0.16707031  0.60507166 -0.154726746 -0.08223832
## [45,]  0.374382684 -0.89849624 -1.39492567  1.773975607  2.78440077
## [46,] -0.210764966 -1.17475424 -1.06883915  0.165842960 -0.38827142
## [47,] -0.400844775  0.40386288  0.84420177 -0.354936031 -0.80470885
## [48,] -0.862999607 -2.08245908 -2.19927243 -4.130730501 -0.84054184
## [49,] -0.154859139 -0.14865311 -0.65579623  1.065316935  1.82175237
## [50,] -0.762369119  1.39049858  0.58333255  0.703648548  1.17869549
## [51,] -0.415752996 -0.46437654 -0.54710072 -0.357284527 -0.69043067
## [52,] -1.157436959 -0.34598025 -0.59057892  0.473495938  0.88041007
## [53,] -0.546199924 -0.34598025 -0.41666611 -0.316772971 -0.74175901
## [54,]  3.415659640  2.17980714  1.62680942 -0.091317353 -1.00808527
## [55,]  1.634127306  0.28546660  0.67028896  0.229839477 -0.61682778
## [56,] -0.825729056 -0.70116910 -0.22101420  0.531621215  0.13760190
## [57,] -0.389663610  0.44332831 -0.26449240 -0.226355874  0.59471462
## [58,] -0.818274946 -0.81956539 -0.63405712  0.069554624 -0.20910647
## [59,]  0.799266965  0.75905173  1.80072223 -0.019101101 -0.26140327
## [60,] -0.385936555 -0.54330739 -0.56883982 -0.452398616 -0.81729882
##                 x6           x7           x8          x9         x10
##  [1,] -0.624655604 -0.803001413 -0.628790505 -0.75113243 -0.67137652
##  [2,]  1.091604205  0.988306983  0.269833283  0.18778311  0.10993446
##  [3,]  0.156422810  0.514698793  0.659502005  0.09230017  0.12495967
##  [4,] -0.177259853  0.373380220  1.063939512 -0.41694215 -0.37087229
##  [5,] -1.597119977 -2.273478456 -2.620304411 -1.06940888 -0.95685553
##  [6,]  0.050166320 -0.056304630  0.219846624 -0.46468362 -0.40092272
##  [7,] -0.120092619  0.109840179  0.467507795  1.62002715  1.22180009
##  [8,]  0.001698447  0.547163871  0.774244107  0.09230017  0.12495967
##  [9,]  0.881576756  0.535705608  0.315275699 -0.19414864 -0.14549413
## [10,] -0.553196560 -0.732342127 -0.628790505 -0.76704625 -0.71645215
## [11,]  0.225396322  0.275984988 -0.089161808 -0.40102833 -0.37087229
## [12,]  0.636751859  0.791606808  0.941244987  0.41057663  0.35033784
## [13,]  0.198055471  0.180499466 -0.151645131 -0.49651127 -0.46102356
## [14,] -0.156754215 -0.350400038 -0.407258724 -0.57608038 -0.55117483
## [15,] -0.405928792 -0.508906005  0.032396656  0.23552458  0.20008573
## [16,]  4.124574562  3.010690344  1.354770978  1.81099302  1.79275811
## [17,] -1.047817417 -1.385463099 -1.725088805 -1.30811622 -1.33248581
## [18,] -0.308993046 -0.300747566 -0.217536635 -0.54425274 -0.52112441
## [19,] -0.642054327 -0.753348942 -0.794655325 -0.83070154 -0.76152778
## [20,]  1.056185375  0.222513095 -0.124379681 -0.67156332 -0.61127567
## [21,] -0.359325068 -0.283560172 -0.069848781  1.06304336  1.07154797
## [22,]  0.127217810 -0.233907701 -0.424299630 -0.49651127 -0.52112441
## [23,] -0.650132306 -0.887028673 -0.738988365 -0.78296008 -0.71645215
## [24,]  0.381984835  0.293172382  0.236887531  0.36283516  0.35033784
## [25,] -0.450046984  0.123208152  0.953741652  0.25143840  0.30526221
## [26,] -0.141219640 -0.062033761  0.632236555  1.09487100  1.29692614
## [27,]  0.235338450  0.352373405  0.140322395  0.39466280  0.38038826
## [28,] -0.561274539 -0.879389831 -0.943479240 -0.25780393 -0.88172947
## [29,] -0.693007732 -0.990153037 -0.892356521 -0.87844301 -0.80660342
## [30,]  0.034010362  0.237790779 -0.056216056  0.01273106  0.01978319
## [31,] -0.397229430 -0.799181992 -0.610613538 -0.73521861 -0.65635131
## [32,] -0.464338793 -0.564287608  0.366398418 -0.22597628 -0.16051934
## [33,]  0.288156004  0.205325701  0.007403327 -0.16232099 -0.28072103
## [34,]  0.122868129  0.631191130  0.150546939 -0.63973567 -0.55117483
## [35,] -0.335091132 -0.350400038  1.284335233  0.42649045  0.41043868
## [36,]  0.576477709  0.720947521  0.628828374  0.02864488  0.06485883
## [37,]  0.627431114  1.624240561  1.099157385 -0.19414864 -0.13046892
## [38,] -1.830138597 -2.283027008 -3.540513346 -1.27628858 -1.66304045
## [39,] -0.381073473 -0.140331889 -0.366360549 -0.24189010 -0.43097314
## [40,] -0.358082302  0.077375102  0.125553610 -0.03501041  0.23013615
## [41,]  0.322953451  0.948203064  0.674270790  1.25400923  0.86119502
## [42,]  0.280699408  0.480324005  0.501589607  0.01273106  0.04983362
## [43,]  1.378061762  1.532574460  0.998048008  3.13184030  2.64919514
## [44,] -0.355596770 -0.512725426 -0.069848781 -0.21006246 -0.08539328
## [45,]  3.103642315  1.767468845  1.792154238  3.95935908  4.51232133
## [46,] -0.063546767 -0.411510772 -0.385673576 -0.52833891 -0.49107398
## [47,] -0.617199008 -0.741890679 -0.462925684 -0.49651127 -0.58122525
## [48,] -3.032514676 -2.300214402 -2.656658344 -1.02166742 -0.91177990
## [49,]  1.484318253  1.723545505  1.054851029  0.07638635  0.07988404
## [50,]  0.869770479  2.397673291  1.992100871  1.34949216  1.37205220
## [51,] -0.620927306 -0.789633440 -0.795791386 -0.86252919 -0.77655300
## [52,]  0.519310475  0.596816342  0.811734100  0.23552458  0.42546390
## [53,] -0.573702199 -0.730432416 -0.571987484 -0.71930479 -0.59625046
## [54,] -0.311478578 -0.002832737  0.902618933  2.38389064  2.19843881
## [55,]  0.001698447  0.547163871  0.774244107  0.09230017  0.12495967
## [56,]  0.564671433  0.340915143  0.068750589 -0.24189010 -0.14549413
## [57,] -0.438862091 -0.741890679 -0.494735376 -0.71930479 -0.65635131
## [58,] -0.109529108 -0.274011620 -0.113019077 -0.36920069 -0.32579666
## [59,] -0.234427088 -0.102137680  0.315275699 -0.19414864 -0.20559497
## [60,] -0.728426562 -0.906125777 -1.028683771 -0.79887390 -0.88172947
##               x11         x12
##  [1,] -0.60999466 -0.54917188
##  [2,] -0.20848799  0.08887014
##  [3,]  0.19823306 -0.25893472
##  [4,] -0.75599709 -0.97613232
##  [5,] -1.52250984 -1.27356545
##  [6,] -0.66735276 -0.72427363
##  [7,]  0.56323913  1.39133937
##  [8,]  0.30773488 -0.34768493
##  [9,] -0.08334305 -0.46761764
## [10,] -0.77685458 -0.78903730
## [11,] -0.35970479 -0.41244859
## [12,]  0.28687739 -0.17018452
## [13,] -0.48484973 -0.51079341
## [14,] -0.59956592 -0.42444186
## [15,]  0.58931099  0.58059425
## [16,]  1.09510511  0.87562871
## [17,] -0.97500073 -0.22535356
## [18,] -0.28148920 -0.62592881
## [19,] -0.98542948 -0.68349651
## [20,] -0.79771207 -0.94494982
## [21,]  1.11074823  2.37478759
## [22,] -0.40663414 -0.21815760
## [23,] -0.71949649 -0.44123244
## [24,]  0.30773488  0.50383731
## [25,]  0.40680795 -0.29011722
## [26,]  1.80947413  1.57843439
## [27,]  0.43809419  1.00755469
## [28,] -0.02598496  1.79191462
## [29,] -0.77685458 -0.64511805
## [30,]  0.74052779  0.48224943
## [31,] -0.53699345 -0.44363109
## [32,]  0.23994804 -0.45802302
## [33,] -0.49527847 -0.33329300
## [34,] -0.88635640 -0.92096328
## [35,]  0.75617090 -0.35727954
## [36,]  0.08351686 -0.32129973
## [37,] -0.42749163 -0.75785479
## [38,] -1.31393494 -0.86339558
## [39,] -0.13027240 -0.10302220
## [40,] -0.68821025  0.56140501
## [41,]  1.26717940  0.65015522
## [42,]  0.40159358 -0.26373203
## [43,]  4.00472491  2.11093562
## [44,]  0.33380674  0.23278939
## [45,]  2.67505995  4.44242750
## [46,] -0.61520904 -0.27812395
## [47,] -0.23977422 -0.43163782
## [48,] -1.59551105 -1.30954526
## [49,] -0.36491916 -0.53477995
## [50,]  0.83438649  0.40309384
## [51,] -0.82378393 -0.96653771
## [52,]  0.47459479  0.36231672
## [53,] -0.57349406 -0.12940739
## [54,]  2.46127068  1.72475230
## [55,]  0.30773488 -0.34768493
## [56,]  0.34423548 -0.07183969
## [57,] -0.59435155 -0.74346287
## [58,] -0.32841856 -0.31890108
## [59,] -0.34927604 -0.44842840
## [60,] -1.03757320  0.21839746
## attr(,"scaled:center")
##         x1         x2         x3         x4         x5         x6         x7 
##  4.7355000  0.6676667  1.1716667  8.8953333 24.8791667 12.8226667  5.6948333 
##         x8         x9        x10        x11        x12 
##  7.9448333  0.5820000  0.5368333  2.0398333  5.8995000 
## attr(,"scaled:scale")
##         x1         x2         x3         x4         x5         x6         x7 
##  2.6830835  0.2533863  0.4600006 17.0321771 10.3256807 16.0931345  5.2363959 
##         x8         x9        x10        x11        x12 
##  8.8023488  0.6283845  0.6655481  1.9177763  4.1690044
dat<-cor(da)
dat
##              x1           x2          x3         x4         x5           x6
## x1   1.00000000  0.608661931  0.58947060 0.09053822 -0.2843693 -0.069306629
## x2   0.60866193  1.000000000  0.92147919 0.24088930 -0.1316852  0.007508128
## x3   0.58947060  0.921479190  1.00000000 0.21192221 -0.2129252 -0.039329247
## x4   0.09053822  0.240889296  0.21192221 1.00000000  0.6776357  0.855226472
## x5  -0.28436926 -0.131685164 -0.21292519 0.67763574  1.0000000  0.851567015
## x6  -0.06930663  0.007508128 -0.03932925 0.85522647  0.8515670  1.000000000
## x7   0.01364721  0.236915648  0.15475471 0.82195700  0.7697468  0.896056873
## x8   0.26189269  0.506892663  0.44369218 0.82052037  0.5694569  0.732129001
## x9   0.24549351  0.238633994  0.15593649 0.52917899  0.4828813  0.637953909
## x10  0.23735981  0.244965246  0.15212406 0.55578193  0.5226647  0.660032176
## x11  0.29673784  0.305663291  0.27768545 0.51170635  0.3286049  0.539324412
## x12  0.20859956  0.149535772  0.12208860 0.38518366  0.3278747  0.455056527
##             x7        x8        x9       x10       x11       x12
## x1  0.01364721 0.2618927 0.2454935 0.2373598 0.2967378 0.2085996
## x2  0.23691565 0.5068927 0.2386340 0.2449652 0.3056633 0.1495358
## x3  0.15475471 0.4436922 0.1559365 0.1521241 0.2776855 0.1220886
## x4  0.82195700 0.8205204 0.5291790 0.5557819 0.5117063 0.3851837
## x5  0.76974677 0.5694569 0.4828813 0.5226647 0.3286049 0.3278747
## x6  0.89605687 0.7321290 0.6379539 0.6600322 0.5393244 0.4550565
## x7  1.00000000 0.8738672 0.6546178 0.6649649 0.5690159 0.3808832
## x8  0.87386720 1.0000000 0.6796509 0.7062190 0.6517245 0.4093588
## x9  0.65461779 0.6796509 1.0000000 0.9847536 0.9230638 0.8459829
## x10 0.66496486 0.7062190 0.9847536 1.0000000 0.8954067 0.8291282
## x11 0.56901593 0.6517245 0.9230638 0.8954067 1.0000000 0.8004992
## x12 0.38088318 0.4093588 0.8459829 0.8291282 0.8004992 1.0000000

##从样本数据各变量的相关系数上可以看出,x2和x3, x4、x5、x6、x7和x8, x9、x10、x11和x12之间存在较强的相关性。

极大似然法

factanal(da,factors=3,rotation="none")
## 
## Call:
## factanal(x = da, factors = 3, rotation = "none")
## 
## Uniquenesses:
##    x1    x2    x3    x4    x5    x6    x7    x8    x9   x10   x11   x12 
## 0.538 0.079 0.080 0.196 0.213 0.077 0.077 0.103 0.005 0.025 0.131 0.245 
## 
## Loadings:
##     Factor1 Factor2 Factor3
## x1   0.244   0.587  -0.241 
## x2   0.267   0.922         
## x3   0.183   0.941         
## x4   0.591   0.103   0.667 
## x5   0.528  -0.326   0.634 
## x6   0.688  -0.188   0.644 
## x7   0.708           0.648 
## x8   0.733   0.338   0.495 
## x9   0.994                 
## x10  0.987                 
## x11  0.919          -0.124 
## x12  0.829          -0.251 
## 
##                Factor1 Factor2 Factor3
## SS loadings      5.799   2.364   2.071
## Proportion Var   0.483   0.197   0.173
## Cumulative Var   0.483   0.680   0.853
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 91.48 on 33 degrees of freedom.
## The p-value is 2.12e-07

主因子法

library(psych)  #加载psych包
fa=principal(da,3,rotate="none",method="pc")
fa
## Principal Components Analysis
## Call: principal(r = da, nfactors = 3, rotate = "none", method = "pc")
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PC1   PC2   PC3   h2    u2 com
## x1  0.24  0.78 -0.07 0.67 0.333 1.2
## x2  0.36  0.83  0.29 0.91 0.090 1.6
## x3  0.29  0.85  0.30 0.90 0.097 1.5
## x4  0.81 -0.15  0.40 0.85 0.155 1.5
## x5  0.67 -0.59  0.25 0.86 0.142 2.3
## x6  0.84 -0.41  0.23 0.93 0.070 1.6
## x7  0.87 -0.22  0.34 0.93 0.075 1.4
## x8  0.89  0.13  0.33 0.92 0.081 1.3
## x9  0.90  0.03 -0.41 0.97 0.029 1.4
## x10 0.91  0.01 -0.37 0.96 0.043 1.3
## x11 0.84  0.16 -0.40 0.90 0.099 1.5
## x12 0.72  0.05 -0.59 0.87 0.133 1.9
## 
##                        PC1  PC2  PC3
## SS loadings           6.50 2.65 1.50
## Proportion Var        0.54 0.22 0.12
## Cumulative Var        0.54 0.76 0.89
## Proportion Explained  0.61 0.25 0.14
## Cumulative Proportion 0.61 0.86 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  9.42  with prob <  1 
## 
## Fit based upon off diagonal values = 1

主成分法

library(psych)  #加载psych包
fac=principal(da,3,rotate="none")
fac
## Principal Components Analysis
## Call: principal(r = da, nfactors = 3, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PC1   PC2   PC3   h2    u2 com
## x1  0.24  0.78 -0.07 0.67 0.333 1.2
## x2  0.36  0.83  0.29 0.91 0.090 1.6
## x3  0.29  0.85  0.30 0.90 0.097 1.5
## x4  0.81 -0.15  0.40 0.85 0.155 1.5
## x5  0.67 -0.59  0.25 0.86 0.142 2.3
## x6  0.84 -0.41  0.23 0.93 0.070 1.6
## x7  0.87 -0.22  0.34 0.93 0.075 1.4
## x8  0.89  0.13  0.33 0.92 0.081 1.3
## x9  0.90  0.03 -0.41 0.97 0.029 1.4
## x10 0.91  0.01 -0.37 0.96 0.043 1.3
## x11 0.84  0.16 -0.40 0.90 0.099 1.5
## x12 0.72  0.05 -0.59 0.87 0.133 1.9
## 
##                        PC1  PC2  PC3
## SS loadings           6.50 2.65 1.50
## Proportion Var        0.54 0.22 0.12
## Cumulative Var        0.54 0.76 0.89
## Proportion Explained  0.61 0.25 0.14
## Cumulative Proportion 0.61 0.86 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  9.42  with prob <  1 
## 
## Fit based upon off diagonal values = 1

##从上述极大似然法、主因子法和主成分法得出的因子分析结果上可以看出,极大似然法前三个因子累计贡献率有85.3%,而主因子法和主成分法累计贡献率达到了89%,说明主成分法和主因子法效果比极大似然分析法效果好,其原因在于,极大似然法做因子分析要求数据样本要服从多元正态分布,但在实际中大多数数据都很难满足多元正态要求。接下来为了更好地解释因子的含义,我们基于主成分法采用方差最大化作因子正交旋转。(主成分法和主因子法得到的结果一致,我们在后面的过程中选择主成分法)

用主成分法采用方差最大化作因子正交旋转

fac1=principal(da,3,rotate="varimax")  
fac1
## Principal Components Analysis
## Call: principal(r = da, nfactors = 3, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       RC1  RC3   RC2   h2    u2 com
## x1  -0.15 0.26  0.76 0.67 0.333 1.3
## x2   0.13 0.07  0.94 0.91 0.090 1.1
## x3   0.08 0.02  0.95 0.90 0.097 1.0
## x4   0.88 0.22  0.16 0.85 0.155 1.2
## x5   0.85 0.21 -0.32 0.86 0.142 1.4
## x6   0.89 0.35 -0.12 0.93 0.070 1.3
## x7   0.91 0.30  0.10 0.93 0.075 1.2
## x8   0.79 0.34  0.42 0.92 0.081 1.9
## x9   0.40 0.89  0.12 0.97 0.029 1.4
## x10  0.43 0.87  0.12 0.96 0.043 1.5
## x11  0.31 0.87  0.23 0.90 0.099 1.4
## x12  0.15 0.92  0.04 0.87 0.133 1.1
## 
##                        RC1  RC3  RC2
## SS loadings           4.25 3.64 2.77
## Proportion Var        0.35 0.30 0.23
## Cumulative Var        0.35 0.66 0.89
## Proportion Explained  0.40 0.34 0.26
## Cumulative Proportion 0.40 0.74 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  9.42  with prob <  1 
## 
## Fit based upon off diagonal values = 1
fac1$loadings 
## 
## Loadings:
##     RC1    RC3    RC2   
## x1  -0.155  0.261  0.758
## x2   0.132         0.942
## x3                 0.947
## x4   0.877  0.220  0.164
## x5   0.845  0.208 -0.317
## x6   0.892  0.347 -0.118
## x7   0.910  0.296  0.101
## x8   0.792  0.340  0.420
## x9   0.397  0.894  0.118
## x10  0.434  0.869  0.116
## x11  0.312  0.866  0.230
## x12  0.147  0.918       
## 
##                  RC1   RC3   RC2
## SS loadings    4.246 3.638 2.769
## Proportion Var 0.354 0.303 0.231
## Cumulative Var 0.354 0.657 0.888

##从上述因子正交旋转的结果可以看出,方差累计贡献率达到了89%. 第一个因子主要和营业利润率(x4)、毛利率(x5)、成本费用利润率(x6)、总资产报酬率(x7)和净资产收益率-加权(扣除非经常性损益)(x8)五个指标有很强的正相关,相关系数分别为0.877、0.845、0.892和0.910;第二个因子主要和每股收益(x9)、扣除非经常性损益每股收益(x10)、每股未分配利润(x11)和每股净资产(x12)四个指标有很强的正相关,相关系数分别为0.894、0.869、0.866和0.918;第三个因子主要和存货周转率(x1)、总资产周转率(x2)、流动资产周转率(x3)三个指标有很强的正相关,相关系数分别为0.758、0.942和0.947;所以第一个因子可称为“企业盈利能力因子”,第二个因子称为“股东回报因子”,第三个因子称为“企业运营能力因子”.

##在了解各个综合因子的具体含义后,可采用回归估计等估计方法计算样本的因子得分,绘制前两个因子载荷、得分及信息重叠图.

plot(fac1$loadings,,type="n",xlab="Factor1",ylab="Factor2")  #输出因子载荷图
text(fac1$loadings,paste("x",1:12,sep=""),cex=1.5)

fac1_plotdata<-fac1$scores
fac1_plotdata
##                 RC1         RC3         RC2
##  [1,] -0.5999661592 -0.56013562  0.24368649
##  [2,]  1.1669650078 -0.27391127 -0.67679954
##  [3,]  0.3717616793 -0.13640160  0.28935997
##  [4,]  0.5083379905 -1.06622471  1.11570555
##  [5,] -1.7603133124 -0.59796323 -1.06358033
##  [6,]  0.3203043635 -0.67170793 -0.40333798
##  [7,] -0.3605736648  1.59450094 -0.51532778
##  [8,]  0.0878853290 -0.02912843  1.01899352
##  [9,]  1.1699831403 -0.57172183 -0.70028210
## [10,] -0.4359993776 -0.66344241 -0.67754046
## [11,]  0.4293302604 -0.50661864 -0.29165436
## [12,]  1.0313571525 -0.13826741 -0.27330211
## [13,]  0.5682620562 -0.70131627 -0.45744820
## [14,] -0.0178401702 -0.49500496 -0.64013814
## [15,] -0.5350266169  0.38429288  1.35305971
## [16,]  3.2002753335  0.62314023 -1.18241353
## [17,] -1.1044549336 -0.54468835 -0.67178748
## [18,] -0.3823792523 -0.39769958  0.92350164
## [19,] -0.4046776027 -0.88706980  0.26200198
## [20,]  1.0514418051 -0.96811089 -1.32424792
## [21,] -0.6005258328  1.69083886  0.16240253
## [22,]  0.1653022801 -0.33256976 -1.23605127
## [23,] -0.8571337408 -0.30964819 -0.18245809
## [24,]  0.0423184529  0.53627285 -0.38156464
## [25,]  0.0006364157 -0.28255945  2.30887462
## [26,] -0.4883365127  1.55616739  1.13130353
## [27,]  0.1664096355  0.60692313 -0.29470156
## [28,] -1.1173981101  0.55644783  0.48304356
## [29,] -0.4806816685 -0.71604241 -0.08065096
## [30,]  0.0385546447  0.33654555 -0.24083851
## [31,] -0.3369374994 -0.47129138 -0.85869262
## [32,] -0.6407913290 -0.12822700  2.56750406
## [33,]  0.2916313068 -0.42539079 -0.12231075
## [34,]  0.7390834489 -1.13372943  0.34095664
## [35,] -0.0645084110  0.18343238  1.12554562
## [36,]  0.9634075958 -0.37292304 -0.31291896
## [37,]  1.4384845496 -1.03692946  0.49718301
## [38,] -3.1609081915  0.04825025 -2.29715171
## [39,] -0.5704266866 -0.25262177  1.55658524
## [40,] -0.2774624548 -0.10334633  1.69396623
## [41,]  0.5158306188  0.83915764  0.16324765
## [42,]  0.3768502088 -0.20345341  0.45192504
## [43,]  0.2307349677  3.31679142 -0.71015078
## [44,] -0.2994061814  0.10107567  0.23644619
## [45,]  1.2401851462  4.23973726 -1.51829394
## [46,] -0.1666857658 -0.30182427 -0.81991106
## [47,] -0.5036411847 -0.45678558  0.46355536
## [48,] -2.8289505115 -0.06110120 -1.96054190
## [49,]  1.8800356718 -0.76060278 -0.41127039
## [50,]  1.6226742283  0.34811486  0.54498510
## [51,] -0.4707628809 -0.75233279 -0.37400419
## [52,]  0.7612342008  0.19673482 -0.69641796
## [53,] -0.5494071967 -0.33536806 -0.34759939
## [54,] -1.1344669213  2.61590943  2.31448499
## [55,]  0.0878853290 -0.02912843  1.01899352
## [56,]  0.4733529019 -0.15399734 -0.54496739
## [57,] -0.0142564085 -0.78178447 -0.09248126
## [58,] -0.0051614156 -0.29635606 -0.68570583
## [59,]  0.0420879391 -0.54756040  1.28085467
## [60,] -0.8135236669 -0.31934667 -0.50162333
rownames(fac1_plotdata)<-unlist(name)
plot(fac1_plotdata[, 1], fac1_plotdata[, 2], type = "n", xlab="Factor1", ylab = "Factor2")  #输出因子得分图
text(fac1_plotdata[,1],fac1_plotdata[,2],labels=rownames(fac1_plotdata), cex = 1.5)

biplot(fac1_plotdata,fac1$loadings)  #输出信息重叠图

##由因子得分图可知,新坐标的盈利能力和兆丰股份、苏威孚B、华域汽车的股东回报大大领先于其他企业.

weights <- runif(nrow(fac1$scores))
weighted_fac1_scores <- fac1$scores * weights  #计算加权因子得分
ranked_weighted_fac1_scores <- data.frame(matrix(nrow = nrow(weighted_fac1_scores), ncol = ncol(weighted_fac1_scores)))
for (i in 1:ncol(weighted_fac1_scores)) {
  col_name <- paste0("Rank_Factor", i)
  rank_scores <- rank(-weighted_fac1_scores[, i])
  ranked_weighted_fac1_scores[, col_name] <- rank_scores
}  #单因子排序
w1 <- 0.354
w2 <- 0.213
w3 <- 0.303
composite_scores <- w1 * weighted_fac1_scores[, 1] + w2 * weighted_fac1_scores[, 2] + w3 * weighted_fac1_scores[, 3]
composite_rank <- rank(-composite_scores)
ranked_weighted_fac1_scores <- data.frame(ranked_weighted_fac1_scores, composite_rank)
colnames(ranked_weighted_fac1_scores)[ncol(ranked_weighted_fac1_scores)] <- "Composite_Rank"  #综合因子排序
ranked_weighted_fac1_scores  #查看排名结果
##    X1 X2 X3 Rank_Factor1 Rank_Factor2 Rank_Factor3 Composite_Rank
## 1  NA NA NA           40           28           24             38
## 2  NA NA NA            4           41           54             21
## 3  NA NA NA           13           33           15              9
## 4  NA NA NA           16           55            8             15
## 5  NA NA NA           59           54           57             59
## 6  NA NA NA           15           58           51             50
## 7  NA NA NA           44            5           39             28
## 8  NA NA NA           25           20            9              8
## 9  NA NA NA           21           25           29             31
## 10 NA NA NA           39           31           33             42
## 11 NA NA NA           12           53           45             40
## 12 NA NA NA            6           30           41             11
## 13 NA NA NA            9           57           52             43
## 14 NA NA NA           32           32           38             45
## 15 NA NA NA           54            7            3              6
## 16 NA NA NA            1            9           56              2
## 17 NA NA NA           55           44           48             57
## 18 NA NA NA           38           27           20             30
## 19 NA NA NA           45           45           23             44
## 20 NA NA NA            7           56           58             49
## 21 NA NA NA           37           13           25             27
## 22 NA NA NA           20           42           59             54
## 23 NA NA NA           57           38           36             55
## 24 NA NA NA           29           14           31             33
## 25 NA NA NA           30           37            1              3
## 26 NA NA NA           51            2            4              4
## 27 NA NA NA           22           11           35             26
## 28 NA NA NA           58            4           11             47
## 29 NA NA NA           43           35           26             41
## 30 NA NA NA           26           10           44             29
## 31 NA NA NA           47           47           53             56
## 32 NA NA NA           46           24            5             17
## 33 NA NA NA           19           49           34             36
## 34 NA NA NA            5           60           13             20
## 35 NA NA NA           33           16           19             25
## 36 NA NA NA            3           51           47             12
## 37 NA NA NA           11           46           21             19
## 38 NA NA NA           50           18           42             51
## 39 NA NA NA           53           39            2             10
## 40 NA NA NA           42           23            7             18
## 41 NA NA NA           14            6           22              7
## 42 NA NA NA           17           34           14             14
## 43 NA NA NA           23            3           40             16
## 44 NA NA NA           48           15           16             34
## 45 NA NA NA           10            1           55              5
## 46 NA NA NA           34           21           30             37
## 47 NA NA NA           52           50           12             46
## 48 NA NA NA           60           26           60             60
## 49 NA NA NA            8           43           37             22
## 50 NA NA NA            2            8           10              1
## 51 NA NA NA           49           52           43             53
## 52 NA NA NA           24           17           28             32
## 53 NA NA NA           36           22           27             39
## 54 NA NA NA           41           12           17             23
## 55 NA NA NA           28           19           18             24
## 56 NA NA NA           18           29           46             35
## 57 NA NA NA           35           59           32             52
## 58 NA NA NA           31           36           50             48
## 59 NA NA NA           27           48            6             13
## 60 NA NA NA           56           40           49             58

##从盈利能力来看,排在前面的分别是新坐标、中原内配、贝斯特、继峰股份.

##从股东回报来看,排在前面的分别是越博动力、兆丰股份、苏威孚、德尔股份.

##从运营能力来看,排在前面的分别是亚普股份、万向钱潮、众泰汽车、富奥B.

##从综合指标来看,排在前面的分别是新坐标、亚普股份、继峰股份、岱美股份.