raw<-read.table("G:\\My Drive\\document for each subject\\senior_project\\67\\ploy_sp.csv", header=TRUE, sep = ",")
library(vegan)
sp<-raw[1:18,2:ncol(raw)]
sp_log <- log1p (sp)  # log-transform raw species composition data
dist_sp <- vegdist (sp_log, method = 'bray') # calculate Bray-Curtis distance matrix
Warning: you have empty rows: their dissimilarities may be
                 meaningless in method “bray”
dist_sp_sqrt <- sqrt (dist_sp) # square-root BC distance matrix to make distances metric
clus_ward <- hclust (dist_sp_sqrt, method = 'ward.D2')  # calculate Ward's algorithm (using the correct ''method = 'ward.D2''')
clus_ward_cut <- cutree (clus_ward, k = 3) # "cut the tree" - to which groups individual samples belong?
plot (clus_ward, cex = .5)  # argument cex reduced the size of the dendrogram leaf labels to make them readable
clus_in_dendro <- unique (clus_ward_cut[clus_ward$order]) # make sure to know which box is which cluster!
rect.hclust (clus_ward, k = 3, border = clus_in_dendro)
legend ('topleft', legend = paste ('Cluster', 1:3), col = 1:3, pch = 22, bty = 'n')

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQpyYXc8LXJlYWQudGFibGUoIkc6XFxNeSBEcml2ZVxcZG9jdW1lbnQgZm9yIGVhY2ggc3ViamVjdFxcc2VuaW9yX3Byb2plY3RcXDY3XFxwbG95X3NwLmNzdiIsIGhlYWRlcj1UUlVFLCBzZXAgPSAiLCIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHZlZ2FuKQ0KYGBgDQpgYGB7cn0NCnNwPC1yYXdbMToxOCwyOm5jb2wocmF3KV0NCmBgYA0KDQoNCmBgYHtyfQ0Kc3BfbG9nIDwtIGxvZzFwIChzcCkgICMgbG9nLXRyYW5zZm9ybSByYXcgc3BlY2llcyBjb21wb3NpdGlvbiBkYXRhDQpkaXN0X3NwIDwtIHZlZ2Rpc3QgKHNwX2xvZywgbWV0aG9kID0gJ2JyYXknKSAjIGNhbGN1bGF0ZSBCcmF5LUN1cnRpcyBkaXN0YW5jZSBtYXRyaXgNCmRpc3Rfc3Bfc3FydCA8LSBzcXJ0IChkaXN0X3NwKSAjIHNxdWFyZS1yb290IEJDIGRpc3RhbmNlIG1hdHJpeCB0byBtYWtlIGRpc3RhbmNlcyBtZXRyaWMNCmNsdXNfd2FyZCA8LSBoY2x1c3QgKGRpc3Rfc3Bfc3FydCwgbWV0aG9kID0gJ3dhcmQuRDInKSAgIyBjYWxjdWxhdGUgV2FyZCdzIGFsZ29yaXRobSAodXNpbmcgdGhlIGNvcnJlY3QgJydtZXRob2QgPSAnd2FyZC5EMicnJykNCmNsdXNfd2FyZF9jdXQgPC0gY3V0cmVlIChjbHVzX3dhcmQsIGsgPSAzKSAjICJjdXQgdGhlIHRyZWUiIC0gdG8gd2hpY2ggZ3JvdXBzIGluZGl2aWR1YWwgc2FtcGxlcyBiZWxvbmc/DQpgYGANCmBgYHtyfQ0KcGxvdCAoY2x1c193YXJkLCBjZXggPSAuNSkgICMgYXJndW1lbnQgY2V4IHJlZHVjZWQgdGhlIHNpemUgb2YgdGhlIGRlbmRyb2dyYW0gbGVhZiBsYWJlbHMgdG8gbWFrZSB0aGVtIHJlYWRhYmxlDQpjbHVzX2luX2RlbmRybyA8LSB1bmlxdWUgKGNsdXNfd2FyZF9jdXRbY2x1c193YXJkJG9yZGVyXSkgIyBtYWtlIHN1cmUgdG8ga25vdyB3aGljaCBib3ggaXMgd2hpY2ggY2x1c3RlciENCnJlY3QuaGNsdXN0IChjbHVzX3dhcmQsIGsgPSAzLCBib3JkZXIgPSBjbHVzX2luX2RlbmRybykNCmxlZ2VuZCAoJ3RvcGxlZnQnLCBsZWdlbmQgPSBwYXN0ZSAoJ0NsdXN0ZXInLCAxOjMpLCBjb2wgPSAxOjMsIHBjaCA9IDIyLCBidHkgPSAnbicpDQpgYGANCg0K