#LIBRARIES

library(foreign)
library(ggplot2)
library(RColorBrewer)
library(tidyr)
library(scales)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readxl)
library(emmeans)
## Warning: package 'emmeans' was built under R version 4.4.1
## Welcome to emmeans.
## Caution: You lose important information if you filter this package's results.
## See '? untidy'
data = read_excel("Current_Dataset_.xlsx")

PLOT BLOCKS

means <- data.frame(
  Variable = c("Mean_Men_Women", "Mean_Women_Men", "Mean_Carry_support", "Mean_Mix_Compatible", "Mean_Mix_Imcompatible"),
  Mean_Value = colMeans(data[c("Mean_Men_Women", "Mean_Women_Men", "Mean_Carry_support", "Mean_Mix_Compatible", "Mean_Mix_Imcompatible")], na.rm = TRUE)
)


means$Variable <- factor(means$Variable, 
                         levels = c("Mean_Men_Women", "Mean_Women_Men", "Mean_Carry_support", "Mean_Mix_Compatible", "Mean_Mix_Imcompatible"))


ggplot(data = means, aes(x = Variable, y = Mean_Value, fill = Variable)) +
  geom_bar(stat = "identity", show.legend = FALSE) +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    text = element_text(size = 14)
  ) +
  labs(
    title = "Mean IAT Times by Variable",
    x = "Variable",
    y = "Mean Time (ms)"
  ) +
  scale_fill_brewer(palette = "Set2")

Analysis on separate Blocks

for every champions in the experiment, participants were asked to express their familiarity

familiarity_columns <- grep("^F_", colnames(data), value = TRUE)
response_time_columns <- grep("^Mean_", colnames(data), value = TRUE)

familiarity_data <- data %>% select(all_of(familiarity_columns))
response_time_data <- data %>% select(all_of(response_time_columns))


correlation_matrix <- cor(familiarity_data, response_time_data, use = "complete.obs")

print("Correlation Matrix: Familiarity vs. Response Times")
## [1] "Correlation Matrix: Familiarity vs. Response Times"
print(correlation_matrix)
##               Mean_Men_Women Mean_Women_Men Mean_Mix_Compatible
## F_Lux           0.0460780090   -0.197285845           0.1288248
## F_Senna         0.0459365640    0.061375920          -0.1833324
## F_Leona         0.2570934417    0.017892421           0.1528739
## F_Thresh        0.4542622140    0.230594644           0.3031184
## F_Pyke          0.3063266907    0.360143030          -0.1257230
## F_BlitzCrank    0.3328314387    0.007589123           0.1248623
## F_MissFortune   0.3527723872    0.118568053           0.2656500
## F_Jinx          0.0007897103   -0.148869489           0.1388304
## F_Kaisa        -0.0697645588   -0.072177261          -0.3050481
## F_Jhin          0.1238841382    0.138252657          -0.3006590
## F_Lucian        0.4132046971    0.112237696           0.3198403
## F_Varus         0.3208019417   -0.041687369           0.1529651
##               Mean_Mix_Imcompatible Mean_Carry_support
## F_Lux                    0.14587833        -0.14394197
## F_Senna                  0.01931727        -0.45284644
## F_Leona                  0.26636606        -0.15508862
## F_Thresh                 0.52372887         0.16391399
## F_Pyke                   0.22125730        -0.34045657
## F_BlitzCrank             0.42580227        -0.05702051
## F_MissFortune            0.29700682         0.01716114
## F_Jinx                  -0.11141389        -0.23385053
## F_Kaisa                 -0.11401275        -0.56235755
## F_Jhin                   0.05645247        -0.52654055
## F_Lucian                 0.40363659         0.06568603
## F_Varus                  0.39677271        -0.09067578

Positive Correlations—>Some characters show moderate positive correlations with response times.This indicates that greater familiarity with these characters might be associated with slower response times in those trials.

LUX, THRESH, LUCIAN = Mean_Men_Woman

THRESH = Mean_Mix_ Incompatible

Negative Correlations—>Some characters exhibit negative correlations with certain response times. This suggests higher familiarity with these characters could be linked to faster responses in those trials.

SENNA, KAISA, JHIN = Mean_Carry_support

Neutral Correlations—>Many characters have low or near-zero correlations with specific response times, indicating no strong relationship

for (familiarity_var in familiarity_columns) {
  for (resp_var in response_time_columns) {
    test <- cor.test(data[[familiarity_var]], data[[resp_var]], method = "spearman", use = "complete.obs")
    print(paste("Spearman Correlation: Familiarity (", familiarity_var, ") vs", resp_var))
    print(test)
  }
}
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 736.77, p-value = 0.7109
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.09709195
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 950.69, p-value = 0.5267
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1650563
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 823.92, p-value = 0.9705
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##          rho 
## -0.009709195
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 689.24, p-value = 0.5516
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1553471
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 1069.5, p-value = 0.2248
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.3106943
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 786.78, p-value = 0.8915
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.03581063
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 828.36, p-value = 0.954
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.01515065
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 782.28, p-value = 0.8749
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.04131996
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 810.38, p-value = 0.9791
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.00688666
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 1097, p-value = 0.1759
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## -0.344333
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 607.35, p-value = 0.3219
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2557033
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 784.95, p-value = 0.8847
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.03805109
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 694.29, p-value = 0.5677
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1491603
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 618.52, p-value = 0.3494
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2420049
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 978.7, p-value = 0.4429
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1993877
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 381.53, p-value = 0.02779
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.5324396
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 520.89, p-value = 0.1538
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3616571
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 472.87, p-value = 0.09283
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.4204981
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 414.32, p-value = 0.04472
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.4922555
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 618.09, p-value = 0.3483
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2425399
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 580.76, p-value = 0.2618
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##     rho 
## 0.28828
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 611.26, p-value = 0.3314
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2509103
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 720.16, p-value = 0.6535
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1174474
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 633.04, p-value = 0.387
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2242177
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 885.7, p-value = 0.7445
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.08541628
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 459.55, p-value = 0.07956
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.4368301
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 662.66, p-value = 0.4701
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1879193
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 707.05, p-value = 0.6094
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1335216
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 462.24, p-value = 0.08212
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.4335332
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 868.46, p-value = 0.8064
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.0642882
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 575.52, p-value = 0.2509
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2947009
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 786.67, p-value = 0.8911
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.03593913
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 671.71, p-value = 0.4972
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1768205
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 576.7, p-value = 0.2533
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2932633
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 906.33, p-value = 0.6723
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1106925
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 816, p-value = 1
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho 
##   0
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 944.51, p-value = 0.5461
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1574852
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 816, p-value = 1
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho 
##   0
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 893.1, p-value = 0.7183
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.09449112
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 1150.1, p-value = 0.1026
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.4094615
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 886.44, p-value = 0.7418
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.08632674
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 952.19, p-value = 0.522
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1668984
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 820.7, p-value = 0.9825
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##          rho 
## -0.005755116
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 905.23, p-value = 0.6761
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1093472
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 1125.9, p-value = 0.1326
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.3798376
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 764.43, p-value = 0.8096
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.06319961
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 824.2, p-value = 0.9694
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.01005448
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 975.4, p-value = 0.4524
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1953442
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 779.67, p-value = 0.8653
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##      rho 
## 0.044527
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 1171.1, p-value = 0.08081
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.4352155
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 511.42, p-value = 0.14
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##      rho 
## 0.373257
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 762.05, p-value = 0.801
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.06611194
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 583.35, p-value = 0.2673
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2851077
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 495.69, p-value = 0.1191
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3925396
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 859.83, p-value = 0.8378
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.05371595
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 541.98, p-value = 0.1876
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3358092
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 816, p-value = 1
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho 
##   0
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 638.56, p-value = 0.4018
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2174502
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 490.32, p-value = 0.1125
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3991175
## Warning in cor.test.default(data[[familiarity_var]], data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data[[resp_var]]
## S = 914.83, p-value = 0.6433
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.1211115
# Gender and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Gender), data = data)
  print(paste("ANOVA: Gender vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Gender vs Mean_Men_Women"
##                        Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Gender)  2  40594   20297    0.86  0.444
## Residuals              14 330409   23601               
## [1] "ANOVA: Gender vs Mean_Women_Men"
##                        Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Gender)  2  51648   25824   1.379  0.284
## Residuals              14 262232   18731               
## [1] "ANOVA: Gender vs Mean_Mix_Compatible"
##                        Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Gender)  2 213610  106805   3.489  0.059 .
## Residuals              14 428542   30610                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Gender vs Mean_Mix_Imcompatible"
##                        Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Gender)  2 122499   61250   1.607  0.235
## Residuals              14 533726   38123               
## [1] "ANOVA: Gender vs Mean_Carry_support"
##                        Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Gender)  2  72280   36140   1.859  0.192
## Residuals              14 272169   19441

The p-value is slightly above 0.05 but close to being significant. This result suggests a potential trend where gender might influence Mean_Mix_Compatible response times.

# Race and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Race), data = data)
  print(paste("ANOVA: Race vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Race vs Mean_Men_Women"
##                      Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Race)  3 195467   65156   4.825  0.018 *
## Residuals            13 175536   13503                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Race vs Mean_Women_Men"
##                      Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Race)  3 103289   34430   2.125  0.146
## Residuals            13 210591   16199               
## [1] "ANOVA: Race vs Mean_Mix_Compatible"
##                      Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Race)  3  35196   11732   0.251  0.859
## Residuals            13 606955   46689               
## [1] "ANOVA: Race vs Mean_Mix_Imcompatible"
##                      Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Race)  3  77380   25793   0.579  0.639
## Residuals            13 578845   44527               
## [1] "ANOVA: Race vs Mean_Carry_support"
##                      Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Race)  3   6557    2186   0.084  0.968
## Residuals            13 337892   25992

The p-value is less than 0.05, indicating a statistically significant difference in Mean_Men_Women response times across race groups. NOT ENOUGH VARIATION

# Employment and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Employment), data = data)
  print(paste("ANOVA: Employment vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Employment vs Mean_Men_Women"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Employment)  2  23773   11887   0.479  0.629
## Residuals                  14 347230   24802               
## [1] "ANOVA: Employment vs Mean_Women_Men"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Employment)  2   3594    1797   0.081  0.923
## Residuals                  14 310286   22163               
## [1] "ANOVA: Employment vs Mean_Mix_Compatible"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Employment)  2 117821   58911   1.573  0.242
## Residuals                  14 524330   37452               
## [1] "ANOVA: Employment vs Mean_Mix_Imcompatible"
##                            Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Employment)  2 125756   62878   1.659  0.226
## Residuals                  14 530470   37891               
## [1] "ANOVA: Employment vs Mean_Carry_support"
##                            Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Employment)  2 122064   61032   3.842 0.0468 *
## Residuals                  14 222384   15885                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is slightly below 0.05, indicating a statistically significant difference in Mean_Carry_support response times across employment groups. This result suggests that Employment influences Mean_Carry_support

# Marital status and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Marital_status), data = data)
  print(paste("ANOVA: Marital Status vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Marital Status vs Mean_Men_Women"
##                                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Marital_status)  1   2040    2040   0.083  0.777
## Residuals                      15 368963   24598               
## [1] "ANOVA: Marital Status vs Mean_Women_Men"
##                                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Marital_status)  1   4181    4181   0.203  0.659
## Residuals                      15 309698   20647               
## [1] "ANOVA: Marital Status vs Mean_Mix_Compatible"
##                                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Marital_status)  1  28295   28295   0.691  0.419
## Residuals                      15 613856   40924               
## [1] "ANOVA: Marital Status vs Mean_Mix_Imcompatible"
##                                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Marital_status)  1   8132    8132   0.188  0.671
## Residuals                      15 648094   43206               
## [1] "ANOVA: Marital Status vs Mean_Carry_support"
##                                Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Marital_status)  1  76073   76073   4.252  0.057 .
## Residuals                      15 268375   17892                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is slightly above 0.05 but close enough to suggest a potential trend in the data where marital status might influence Mean_Carry_support response times.

# Political Orientation and response times (Spearman Correlation)
for (resp_var in response_time_columns) {
  test <- cor.test(data$Pol_Ori, data[[resp_var]], method = "spearman")
  print(paste("Spearman Correlation: Political Orientation vs", resp_var))
  print(test)
}
## Warning in cor.test.default(data$Pol_Ori, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Political Orientation vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data[[resp_var]]
## S = 712.81, p-value = 0.6286
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1264568
## Warning in cor.test.default(data$Pol_Ori, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Political Orientation vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data[[resp_var]]
## S = 525.39, p-value = 0.1606
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3561436
## Warning in cor.test.default(data$Pol_Ori, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Political Orientation vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data[[resp_var]]
## S = 664.38, p-value = 0.4752
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##      rho 
## 0.185814
## Warning in cor.test.default(data$Pol_Ori, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Political Orientation vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data[[resp_var]]
## S = 596.99, p-value = 0.2976
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##      rho 
## 0.268398
## Warning in cor.test.default(data$Pol_Ori, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Political Orientation vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data[[resp_var]]
## S = 607.52, p-value = 0.3223
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2554943

Political Orientation does not show a significant correlation

# Education and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Education), data = data)
  print(paste("ANOVA: Education vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Education vs Mean_Men_Women"
##                           Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Education)  3  47508   15836   0.636  0.605
## Residuals                 13 323495   24884               
## [1] "ANOVA: Education vs Mean_Women_Men"
##                           Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Education)  3  26619    8873   0.402  0.754
## Residuals                 13 287261   22097               
## [1] "ANOVA: Education vs Mean_Mix_Compatible"
##                           Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Education)  3 100132   33377   0.801  0.515
## Residuals                 13 542020   41694               
## [1] "ANOVA: Education vs Mean_Mix_Imcompatible"
##                           Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Education)  3 149542   49847   1.279  0.323
## Residuals                 13 506683   38976               
## [1] "ANOVA: Education vs Mean_Carry_support"
##                           Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Education)  3  40900   13633   0.584  0.636
## Residuals                 13 303549   23350

Education does not significantly influence response times

# Religion and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Religion), data = data)
  print(paste("ANOVA: Religion vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Religion vs Mean_Men_Women"
##                          Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Religion)  2 104363   52182    2.74  0.099 .
## Residuals                14 266640   19046                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Religion vs Mean_Women_Men"
##                          Df Sum Sq Mean Sq F value Pr(>F)   
## as.factor(data$Religion)  2 158166   79083    7.11 0.0074 **
## Residuals                14 155714   11122                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Religion vs Mean_Mix_Compatible"
##                          Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Religion)  2  75403   37702   0.931  0.417
## Residuals                14 566748   40482               
## [1] "ANOVA: Religion vs Mean_Mix_Imcompatible"
##                          Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Religion)  2  24096   12048   0.267   0.77
## Residuals                14 632129   45152               
## [1] "ANOVA: Religion vs Mean_Carry_support"
##                          Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Religion)  2  37051   18525   0.844  0.451
## Residuals                14 307398   21957

Religion has no significant effect.

data$Ide_Religious <- as.numeric(data$Ide_Religious)

# Ideology of Religiousness and response times (Spearman Correlation)
for (resp_var in response_time_columns) {
  test <- cor.test(data$Ide_Religious, data[[resp_var]], method = "spearman")
  print(paste("Spearman Correlation: Ideology of Religiousness vs", resp_var))
  print(test)
}
## Warning in cor.test.default(data$Ide_Religious, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Ideology of Religiousness vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data[[resp_var]]
## S = 749.19, p-value = 0.7548
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.08187222
## Warning in cor.test.default(data$Ide_Religious, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Ideology of Religiousness vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data[[resp_var]]
## S = 643.71, p-value = 0.4159
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2111441
## Warning in cor.test.default(data$Ide_Religious, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Ideology of Religiousness vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data[[resp_var]]
## S = 615.58, p-value = 0.342
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2456167
## Warning in cor.test.default(data$Ide_Religious, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Ideology of Religiousness vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data[[resp_var]]
## S = 840.61, p-value = 0.9085
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.03016345
## Warning in cor.test.default(data$Ide_Religious, data[[resp_var]], method =
## "spearman"): Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Ideology of Religiousness vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data[[resp_var]]
## S = 745.68, p-value = 0.7422
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.08618128

There is no significant correlation between Ide_Religious (Ideology of Religiousness) and any of the response time variables

# Ensure 'RolePreference' is numeric
data$RolePreference <- as.numeric(data$Role_Preference)

# Role Preference and response times (ANOVA)
for (resp_var in response_time_columns) {
  test <- aov(data[[resp_var]] ~ as.factor(data$Role_Preference), data = data)
  print(paste("ANOVA: Role Preference vs", resp_var))
  print(summary(test))
}
## [1] "ANOVA: Role Preference vs Mean_Men_Women"
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4 130796   32699   1.634  0.229
## Residuals                       12 240207   20017               
## [1] "ANOVA: Role Preference vs Mean_Women_Men"
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4 100876   25219   1.421  0.286
## Residuals                       12 213004   17750               
## [1] "ANOVA: Role Preference vs Mean_Mix_Compatible"
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4 154166   38542   0.948   0.47
## Residuals                       12 487985   40665               
## [1] "ANOVA: Role Preference vs Mean_Mix_Imcompatible"
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4 169850   42463   1.048  0.423
## Residuals                       12 486375   40531               
## [1] "ANOVA: Role Preference vs Mean_Carry_support"
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4  71075   17769    0.78  0.559
## Residuals                       12 273374   22781

No significant effects of Role Preference on response times were found in this dataset.

# Ensure 'Familiarity_Champ' is numeric
data$Familiarity_Champ <- as.numeric(data$Familiarity_Champ)

# Familiarity with Champions and Response Times (Spearman Correlation)
if ("Familiarity_Champ" %in% colnames(data)) {
  for (resp_var in response_time_columns) {
    test <- cor.test(data$Familiarity_Champ, data[[resp_var]], method = "spearman", use = "complete.obs")
    print(paste("Spearman Correlation: Familiarity with Champions vs", resp_var))
    print(test)
  }
} 
## Warning in cor.test.default(data$Familiarity_Champ, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity with Champions vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data[[resp_var]]
## S = 792.29, p-value = 0.9118
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.02905924
## Warning in cor.test.default(data$Familiarity_Champ, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity with Champions vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data[[resp_var]]
## S = 915.37, p-value = 0.6415
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## -0.121772
## Warning in cor.test.default(data$Familiarity_Champ, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity with Champions vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data[[resp_var]]
## S = 981.99, p-value = 0.4336
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.2034147
## Warning in cor.test.default(data$Familiarity_Champ, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity with Champions vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data[[resp_var]]
## S = 1120.9, p-value = 0.1396
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.3736188
## Warning in cor.test.default(data$Familiarity_Champ, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity with Champions vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data[[resp_var]]
## S = 1013.6, p-value = 0.349
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.2421603

There is no statistically significant correlation between Familiarity with Champions and any of the response time variables (Mean_)

# Highest Rank and Response Times (ANOVA)
if ("Highest_Rank" %in% colnames(data)) {
  for (resp_var in response_time_columns) {
    test <- aov(data[[resp_var]] ~ as.factor(data$Highest_Rank), data = data)
    print(paste("ANOVA: Highest Rank vs", resp_var))
    print(summary(test))
  }
}
## [1] "ANOVA: Highest Rank vs Mean_Men_Women"
##                              Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Highest_Rank)  4 132326   33081   1.663  0.223
## Residuals                    12 238677   19890               
## [1] "ANOVA: Highest Rank vs Mean_Women_Men"
##                              Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Highest_Rank)  4 158104   39526   3.045 0.0601 .
## Residuals                    12 155776   12981                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Highest Rank vs Mean_Mix_Compatible"
##                              Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Highest_Rank)  4 314194   78549   2.874 0.0698 .
## Residuals                    12 327957   27330                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "ANOVA: Highest Rank vs Mean_Mix_Imcompatible"
##                              Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Highest_Rank)  4 248247   62062   1.825  0.189
## Residuals                    12 407979   33998               
## [1] "ANOVA: Highest Rank vs Mean_Carry_support"
##                              Df Sum Sq Mean Sq F value Pr(>F)  
## as.factor(data$Highest_Rank)  4 178435   44609   3.224 0.0515 .
## Residuals                    12 166014   13834                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is slightly above 0.05, suggesting a potential trend where rank might influence Mean_Women_Men response times.

The p-value is slightly above 0.05, indicating a potential trend where rank might influence Mean_Mix_Compatible response times.

The p-value is just above 0.05, suggesting a potential trend where rank might influence Mean_Carry_support response times.

ANALYSIS WITH THE IAT COLUMN

# Daily Play and Response Times (Spearman Correlation) ### IAT ANALYSIS
if ("Daily_Play" %in% colnames(data)) {
  for (resp_var in response_time_columns) {
    test <- cor.test(data$Daily_Play, data[[resp_var]], method = "spearman", use = "complete.obs")
    print(paste("Spearman Correlation: Daily Play vs", resp_var))
    print(test)
  }
}
## Warning in cor.test.default(data$Daily_Play, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Daily Play vs Mean_Men_Women"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data[[resp_var]]
## S = 571.93, p-value = 0.2435
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2991077
## Warning in cor.test.default(data$Daily_Play, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Daily Play vs Mean_Women_Men"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data[[resp_var]]
## S = 420.4, p-value = 0.04857
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.4848038
## Warning in cor.test.default(data$Daily_Play, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Daily Play vs Mean_Mix_Compatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data[[resp_var]]
## S = 808.88, p-value = 0.9735
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## 0.008723976
## Warning in cor.test.default(data$Daily_Play, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Daily Play vs Mean_Mix_Imcompatible"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data[[resp_var]]
## S = 828.2, p-value = 0.9546
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.01495539
## Warning in cor.test.default(data$Daily_Play, data[[resp_var]], method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Daily Play vs Mean_Carry_support"
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data[[resp_var]]
## S = 787.52, p-value = 0.8942
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.0348959
# Plot
plot_dailyplay <- ggplot(data, aes(x = Daily_Play, y = Mean_Women_Men)) +
  geom_point(alpha = 0.6, color = "orange", size = 3) +
  geom_smooth(method = "lm", color = "chocolate3", se = TRUE, linewidth = 1) +
  ylab("Daily Play") +
  xlab("Response Time (ms) (Mean Women Men)") +
  ggtitle("Daily Play vs. Mean_Women_Men") +
  theme_classic() +
  theme(
    text = element_text(size = 14),
    plot.title = element_text(size = 12, hjust = 0.5)
  )

# Print the plot
print(plot_dailyplay)
## `geom_smooth()` using formula = 'y ~ x'

# Familiarity with Champions and IAT_Effect (Spearman Correlation) ##IAT ANALYSIS
familiarity_columns <- grep("^F_", colnames(data), value = TRUE)

for (familiarity_var in familiarity_columns) {
  test <- cor.test(data[[familiarity_var]], data$IAT_Effect, method = "spearman", use = "complete.obs")
  print(paste("Spearman Correlation: Familiarity (", familiarity_var, ") vs IAT_Effect"))
  print(test)
}
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lux ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 760.54, p-value = 0.7955
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.06796437
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Senna ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 697.99, p-value = 0.5797
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1446199
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Leona ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 720.37, p-value = 0.6542
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1171974
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Thresh ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 688.35, p-value = 0.5488
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##      rho 
## 0.156431
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Pyke ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 515.42, p-value = 0.1457
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3683577
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_BlitzCrank ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 491.83, p-value = 0.1143
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3972681
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_MissFortune ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 791.37, p-value = 0.9084
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.03018887
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jinx ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 1021.6, p-value = 0.3292
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## -0.2519763
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Kaisa ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 745.56, p-value = 0.7418
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.08632674
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Jhin ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 527.67, p-value = 0.1641
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.3533433
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Lucian ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 695.74, p-value = 0.5724
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1473745
## Warning in cor.test.default(data[[familiarity_var]], data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## [1] "Spearman Correlation: Familiarity ( F_Varus ) vs IAT_Effect"
## 
##  Spearman's rank correlation rho
## 
## data:  data[[familiarity_var]] and data$IAT_Effect
## S = 692.47, p-value = 0.5619
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.1513894

Familiarity with Champions does not significantly correlate with the IAT_Effect in this dataset, as all p-values are greater than 0.05.

MODELS

filtered_data <- data[data$Gender != 5, ] ##filtered the 5 out

# Gender and IAT Effect (ANOVA)
modelg<-aov(filtered_data$IAT_Effect ~ as.factor(filtered_data$Gender), data = filtered_data)

summary(modelg)
##                                 Df Sum Sq Mean Sq F value   Pr(>F)    
## as.factor(filtered_data$Gender)  1 275735  275735   28.79 9.95e-05 ***
## Residuals                       14 134065    9576                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is a significant effect of gender on the IAT effect

pairwise_results <- pairwise.t.test(
  filtered_data$IAT_Effect, 
  as.factor(filtered_data$Gender), 
  p.adjust.method = "bonferroni"
)
print(pairwise_results)
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  filtered_data$IAT_Effect and as.factor(filtered_data$Gender) 
## 
##   1    
## 2 1e-04
## 
## P value adjustment method: bonferroni
# Race and IAT Effect (ANOVA)
modelr<-aov(data$IAT_Effect ~ as.factor(data$Race), data = data)
summary(modelr)
##                      Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Race)  3   8806    2935   0.095  0.962
## Residuals            13 402204   30939
# Employment and IAT Effect (ANOVA)
modele<-aov(data$IAT_Effect ~ as.factor(data$Employment), data = data)

summary(modele)
##                            Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Employment)  2  10103    5051   0.176   0.84
## Residuals                  14 400907   28636
# Marital status and IAT Effect (ANOVA)
modelm<-aov(data$IAT_Effect ~ as.factor(data$Marital_status), data = data)
summary(modelm)
##                                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Marital_status)  1   6089    6089   0.226  0.642
## Residuals                      15 404920   26995
# Political Orientation and IAT Effect (Spearman Correlation)
cor.test(data$Pol_Ori, data$IAT_Effect, method = "spearman")
## Warning in cor.test.default(data$Pol_Ori, data$IAT_Effect, method =
## "spearman"): Cannot compute exact p-value with ties
## 
##  Spearman's rank correlation rho
## 
## data:  data$Pol_Ori and data$IAT_Effect
## S = 628.58, p-value = 0.3752
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2296868
# Education and IAT Effect (ANOVA)
modeled<-aov(data$IAT_Effect ~ as.factor(data$Education), data = data)
summary(modeled)
##                           Df Sum Sq Mean Sq F value  Pr(>F)   
## as.factor(data$Education)  3 241167   80389   6.153 0.00779 **
## Residuals                 13 169843   13065                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(modeled, ~ Education)
##  Education   emmean   SE df lower.CL upper.CL
##          4   -0.107 80.8 13     -175    174.5
##          6 -130.732 80.8 13     -305     43.9
##          7  208.359 36.1 13      130    286.4
##          8  193.593 66.0 13       51    336.2
## 
## Confidence level used: 0.95
# Religion and IAT Effect (ANOVA)
modelre<-aov(data$IAT_Effect ~ as.factor(data$Religion), data = data)
summary(modelre)
##                          Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Religion)  2  65959   32980   1.338  0.294
## Residuals                14 345050   24646
# Ideology of Religiousness and IAT Effect (Spearman Correlation)
cor.test(data$Ide_Religious, data$IAT_Effect, method = "spearman")
## Warning in cor.test.default(data$Ide_Religious, data$IAT_Effect, method =
## "spearman"): Cannot compute exact p-value with ties
## 
##  Spearman's rank correlation rho
## 
## data:  data$Ide_Religious and data$IAT_Effect
## S = 925, p-value = 0.6093
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## -0.133581
# Role Preference and IAT Effect (ANOVA)
modelpr<-aov(data$IAT_Effect ~ as.factor(data$Role_Preference), data = data)
summary(modelpr)
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Role_Preference)  4 145478   36369   1.644  0.227
## Residuals                       12 265532   22128
# Familiarity with Champions and IAT Effect (Spearman Correlation)
cor.test(data$Familiarity_Champ, data$IAT_Effect, method = "spearman", use = "complete.obs")
## Warning in cor.test.default(data$Familiarity_Champ, data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## 
##  Spearman's rank correlation rho
## 
## data:  data$Familiarity_Champ and data$IAT_Effect
## S = 876.97, p-value = 0.7756
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##         rho 
## -0.07472376
# Highest Rank and IAT Effect (ANOVA)
modelhr<-aov(data$IAT_Effect ~ as.factor(data$Highest_Rank), data = data)
summary(modelhr)
##                              Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(data$Highest_Rank)  4 119779   29945   1.234  0.348
## Residuals                    12 291231   24269
# Daily Play and IAT Effect (Spearman Correlation)
cor.test(data$Daily_Play, data$IAT_Effect, method = "spearman", use = "complete.obs")
## Warning in cor.test.default(data$Daily_Play, data$IAT_Effect, method =
## "spearman", : Cannot compute exact p-value with ties
## 
##  Spearman's rank correlation rho
## 
## data:  data$Daily_Play and data$IAT_Effect
## S = 751.93, p-value = 0.7645
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##        rho 
## 0.07851578

Plots significant results

 filtered_data$Gender <- factor(filtered_data$Gender, levels = c(1, 2), labels = c("Male", "Female"))
# Gender and Mix Compatible Response Times
ggplot(filtered_data, aes(x = as.factor(Gender), y = Mean_Mix_Compatible, fill = as.factor(Gender))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2") +
  labs(
    title = "Gender and Mean Mix Compatible Response Times",
    x = "Gender",
    y = "Mean Mix Compatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(text = element_text(size = 14))

ggplot(filtered_data, aes(x = Gender, y = Mean_Mix_Compatible, fill = Gender)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2") +
  labs(
    title = "Participant Gender and Mean_Mix_Compatible",
    x = "Participant Gender",
    y = "Mean Mix Compatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(text = element_text(size = 14))

# Gender and Mix Compatible Response Times
ggplot(data, aes(x = as.factor(Gender), y = Mean_Mix_Imcompatible, fill = as.factor(Gender))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2") +
  labs(
    title = "Gender and Mean Mix Imcompatible Response Times",
    x = "Gender",
    y = "Mean Mix Compatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(text = element_text(size = 14))

ggplot(filtered_data, aes(x = Gender, y = Mean_Mix_Imcompatible, fill = Gender)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2") +
  labs(
    title = "Participant Gender and Mean_Mix_Imcompatible",
    x = "Participant Gender",
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(text = element_text(size = 14))

data$Education <- factor(data$Education, 
                                  levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
                                  labels = c(
                                    "Less than Primary",
                                    "Primary",
                                    "Some secondary",
                                    "Secondary",
                                    "Vocational or Similar",
                                    "University but No degree",
                                    "Bachelors Degree",
                                    "Professional degree",
                                    "Prefer not to say"
                                  ))
ggplot(data, aes(x = Education, y = Mean_Mix_Compatible, fill = Education)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set3") +
  labs(
    title = "Education Level and Mean Mix Compatible Response Times",
    x = "Education Level",
    y = "Mean Mix Compatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),  
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(data, aes(x = Education, y = Mean_Mix_Imcompatible, fill = Education)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set3") +
  labs(
    title = "Education Level and Mean Mix Imcompatible Response Times",
    x = "Education Level",
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

filtered_data <- data[data$Gender %in% c(1, 2), ]


ggplot(filtered_data, aes(x = Education, y = Mean_Mix_Imcompatible, fill = Education)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set3") +
  labs(
    title = "Education Level and Mean Mix Imcompatible Response Times by Gender",
    x = "Education Level",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = Education, y = Mean_Mix_Compatible, fill = Education)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set3") +
  labs(
    title = "Education Level and Mean Mix Compatible Response Times by Gender",
    x = "Education Level",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = as.factor(Daily_Play), y = Mean_Mix_Imcompatible, fill = as.factor(Daily_Play))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2", name = "Daily Play (Hours)") + 
  labs(
    title = "Daily Play and Mean Mix Imcompatible Response Times",
    x = "Daily Play (Hours)",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = as.factor(Daily_Play), y = Mean_Mix_Compatible, fill = as.factor(Daily_Play))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2", name = "Daily Play (Hours)") + 
  labs(
    title = "Daily Play and Mean Mix Compatible Response Times",
    x = "Daily Play (Hours)",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = as.factor(Daily_Play), y = Mean_Mix_Imcompatible, fill = as.factor(Daily_Play))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2",  name = "Daily Play in Hour") +
  labs(
    title = "Daily Play and Mean Mix Imcompatible Response Times by Gender",
    x = "Daily Play (Hours)",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = as.factor(Daily_Play), y = Mean_Mix_Compatible, fill = as.factor(Daily_Play))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2",  name = "Daily Play in Hour") +
  labs(
    title = "Daily Play and Mean Mix Compatible Response Times by Gender",
    x = "Daily Play (Hours)",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

filtered_data$Employment <- factor(filtered_data$Employment, 
                                   levels = c(1, 2, 5), 
                                   labels = c("Working full-time", "Working part-time", "Student"))
ggplot(filtered_data, aes(x = Employment, y = Mean_Mix_Imcompatible, fill = Employment)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set1", name = "Employment") +
  labs(
    title = "Employment and Mean Mix Imcompatible Response Times",
    x = "Employment",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = Employment, y = Mean_Mix_Compatible, fill = Employment)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set1", name = "Employment") + 
  labs(
    title = "Employment and Mean Mix Compatible Response Times",
    x = "Employment",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = Employment, y = Mean_Mix_Imcompatible, fill = Employment)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set1", name = "Employment") + 
  labs(
    title = "Employment and Mean Mix Imcompatible Response Times by Gender",
    x = "Employment",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

ggplot(filtered_data, aes(x = Employment, y = Mean_Mix_Compatible, fill = Employment)) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set1", name = "Employment") + 
  labs(
    title = "Employment and Mean Mix Compatible Response Times by Gender",
    x = "Employment",  
    y = "Mean Mix Imcompatible Response Time (ms)"
  ) +
  facet_wrap(~ Gender, labeller = labeller(Gender = c(`1` = "Male", `2` = "Female"))) + 
  theme_minimal() +
  theme(
    text = element_text(size = 10), 
    axis.text.x = element_text(size = 8, angle = 45, hjust = 1), 
    axis.text.y = element_text(size = 8),
    plot.margin = margin(t = 40, r = 30, b = 30, l = 50) 
  )

Error analysis

iat_vars <- c("Mean_Men_Women", "Mean_Women_Men", "Mean_Mix_Compatible", "Mean_Mix_Imcompatible", "Mean_Carry_support")
er_vars <- c("ER_Men_Women", "ER_Women_Men", "ER_Compatible", "ER_Imcompatible", "ER_Carry_support")


cor_results <- data.frame()
for (i in seq_along(iat_vars)) {
  cor_test <- cor.test(data[[iat_vars[i]]], data[[er_vars[i]]], method = "pearson", use = "complete.obs")
  cor_results <- rbind(cor_results, data.frame(
    IAT_Variable = iat_vars[i],
    ER_Variable = er_vars[i],
    Correlation = cor_test$estimate,
    P_Value = cor_test$p.value
  ))
}
print(cor_results)
##               IAT_Variable      ER_Variable Correlation    P_Value
## cor         Mean_Men_Women     ER_Men_Women  -0.3284374 0.19806020
## cor1        Mean_Women_Men     ER_Women_Men  -0.4704333 0.05668667
## cor2   Mean_Mix_Compatible    ER_Compatible   0.2968986 0.24717787
## cor3 Mean_Mix_Imcompatible  ER_Imcompatible  -0.4272521 0.08716206
## cor4    Mean_Carry_support ER_Carry_support  -0.1037928 0.69179117
for (i in seq_along(iat_vars)) {
  plot <- ggplot(data, aes_string(x = iat_vars[i], y = er_vars[i])) +
    geom_point(alpha = 0.6) +
    geom_smooth(method = "lm", color = "blue", se = TRUE) +
    labs(
      title = paste("Relationship Between", iat_vars[i], "and", er_vars[i]),
      x = iat_vars[i],
      y = er_vars[i]
    ) +
    theme_minimal() +
    theme(text = element_text(size = 14))
  print(plot)  # Ensure the ggplot object is printed
}
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

# Regression Analysis
lm_results <- list()
for (i in seq_along(iat_vars)) {
  model <- lm(as.formula(paste(er_vars[i], "~", iat_vars[i])), data = data)
  summary_model <- summary(model)
  lm_results[[iat_vars[i]]] <- summary_model
  print(paste("Regression Results for", iat_vars[i], "and", er_vars[i]))
  print(summary_model)
}
## [1] "Regression Results for Mean_Men_Women and ER_Men_Women"
## 
## Call:
## lm(formula = as.formula(paste(er_vars[i], "~", iat_vars[i])), 
##     data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.609 -3.048 -2.175  1.336 19.279 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    13.12029    6.85432   1.914   0.0749 .
## Mean_Men_Women -0.01381    0.01026  -1.347   0.1981  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.247 on 15 degrees of freedom
## Multiple R-squared:  0.1079, Adjusted R-squared:  0.0484 
## F-statistic: 1.814 on 1 and 15 DF,  p-value: 0.1981
## 
## [1] "Regression Results for Mean_Women_Men and ER_Women_Men"
## 
## Call:
## lm(formula = as.formula(paste(er_vars[i], "~", iat_vars[i])), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7080 -4.6404 -2.4353 -0.0155 13.6049 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    19.92161    7.33893   2.715   0.0160 *
## Mean_Women_Men -0.02312    0.01120  -2.065   0.0567 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.274 on 15 degrees of freedom
## Multiple R-squared:  0.2213, Adjusted R-squared:  0.1694 
## F-statistic: 4.263 on 1 and 15 DF,  p-value: 0.05669
## 
## [1] "Regression Results for Mean_Mix_Compatible and ER_Compatible"
## 
## Call:
## lm(formula = as.formula(paste(er_vars[i], "~", iat_vars[i])), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.8855 -4.2172 -2.3026  0.7931 19.8227 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)         -1.821140   7.227519  -0.252    0.804
## Mean_Mix_Compatible  0.010955   0.009097   1.204    0.247
## 
## Residual standard error: 7.29 on 15 degrees of freedom
## Multiple R-squared:  0.08815,    Adjusted R-squared:  0.02736 
## F-statistic:  1.45 on 1 and 15 DF,  p-value: 0.2472
## 
## [1] "Regression Results for Mean_Mix_Imcompatible and ER_Imcompatible"
## 
## Call:
## lm(formula = as.formula(paste(er_vars[i], "~", iat_vars[i])), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.731  -4.479  -1.659   1.997  14.079 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           30.18723   10.05039   3.004  0.00891 **
## Mean_Mix_Imcompatible -0.01972    0.01078  -1.830  0.08716 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.73 on 15 degrees of freedom
## Multiple R-squared:  0.1825, Adjusted R-squared:  0.128 
## F-statistic:  3.35 on 1 and 15 DF,  p-value: 0.08716
## 
## [1] "Regression Results for Mean_Carry_support and ER_Carry_support"
## 
## Call:
## lm(formula = as.formula(paste(er_vars[i], "~", iat_vars[i])), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2338 -2.9160 -2.3146  0.4553 23.3394 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)         9.484817   9.565489   0.992    0.337
## Mean_Carry_support -0.005055   0.012507  -0.404    0.692
## 
## Residual standard error: 7.34 on 15 degrees of freedom
## Multiple R-squared:  0.01077,    Adjusted R-squared:  -0.05518 
## F-statistic: 0.1634 on 1 and 15 DF,  p-value: 0.6918

Mix Incompatible Trials showed the strongest relationship with a tendency that faster responses might lead to more errors.

# Plot
plot_mix_incompatible <- ggplot(data, aes(x = Mean_Mix_Imcompatible, y = ER_Imcompatible)) +
  geom_point(alpha = 0.6, color = "orange", size = 3) +
  geom_smooth(method = "lm", color = "chocolate3", se = TRUE, linewidth = 1) +
  ylab("Error Count (ER_Imcompatible)") +
  xlab("Response Time (ms) (Mean_Mix_Imcompatible)") +
  ggtitle("Relationship Between Response Time and Error Count (Mix Incompatible)") +
  theme_classic() +
  theme(
    text = element_text(size = 14),
    plot.title = element_text(size = 12, hjust = 0.5)
  )

# Print the plot
print(plot_mix_incompatible)
## `geom_smooth()` using formula = 'y ~ x'

Perception Stereotype Analysis

data$IAT <- as.numeric(as.character(data$IAT_Effect))
data$Asc_carry <- as.numeric(as.character(data$Asc_carry))

cor.test(data$IAT_Effect, data$Asc_carry, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT_Effect and data$Asc_carry
## t = 0.023431, df = 15, p-value = 0.9816
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4759791  0.4852834
## sample estimates:
##         cor 
## 0.006049688
cor.test(data$IAT_Effect, data$Asc_support, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT_Effect and data$Asc_support
## t = -0.62611, df = 15, p-value = 0.5407
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5946230  0.3477283
## sample estimates:
##        cor 
## -0.1595892
data <- data %>%
  mutate(Att_Carry = recode(
    Att_Carry,
    "strongly like" = 1,
    "like" = 2,
    "neither like nor dislike" = 3,
    "dislike" = 4,
    "strongly dislike" = 5
  ))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Att_Carry = recode(...)`.
## Caused by warning in `recode.numeric()`:
## ! NAs introduced by coercion
cor.test(data$IAT_Effect, data$Att_Carry, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT_Effect and data$Att_Carry
## t = 0.22514, df = 15, p-value = 0.8249
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4347389  0.5240593
## sample estimates:
##        cor 
## 0.05803194
data <- data %>%
  mutate(Att_support = recode(
    Att_support,
    "strongly like" = 1,
    "like" = 2,
    "neither like nor dislike" = 3,
    "dislike" = 4,
    "strongly dislike" = 5
  ))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Att_support = recode(...)`.
## Caused by warning in `recode.numeric()`:
## ! NAs introduced by coercion
cor.test(data$IAT, data$Att_support, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Att_support
## t = 0.34494, df = 15, p-value = 0.7349
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4093890  0.5460725
## sample estimates:
##        cor 
## 0.08871157
data <- data %>%
  mutate(Gender_Carry_1 = recode(
    Gender_Carry_1,
    "strongle agree" = 1,
    "agree" = 2,
    "neither nor" = 3,
    "disagree" = 4,
    "strongly disagree" = 5
  ))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Gender_Carry_1 = recode(...)`.
## Caused by warning in `recode.numeric()`:
## ! NAs introduced by coercion
cor.test(data$IAT, data$Gender_Carry_1, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Gender_Carry_1
## t = 0.041299, df = 15, p-value = 0.9676
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4724031  0.4888023
## sample estimates:
##        cor 
## 0.01066267
data <- data %>%
  mutate(Gender_Carry_2 = recode(
    Gender_Carry_2,
    "strongle agree" = 1,
    "agree" = 2,
    "neither nor" = 3,
    "disagree" = 4,
    "strongly disagree" = 5
  ))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Gender_Carry_2 = recode(...)`.
## Caused by warning in `recode.numeric()`:
## ! NAs introduced by coercion
cor.test(data$IAT, data$Gender_Carry_2, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Gender_Carry_2
## t = 0.091487, df = 15, p-value = 0.9283
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4622765  0.4986007
## sample estimates:
##        cor 
## 0.02361533
data <- data %>%
  mutate(Gender_role_1 = recode(
    Gender_role_1,
    "strongle agree" = 1,
    "agree" = 2,
    "neither nor" = 3,
    "disagree" = 4,
    "strongly disagree" = 5
  ))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Gender_role_1 = recode(...)`.
## Caused by warning in `recode.numeric()`:
## ! NAs introduced by coercion
cor.test(data$IAT, data$Gender_role_1, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Gender_role_1
## t = 1.1208, df = 15, p-value = 0.28
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2339238  0.6692086
## sample estimates:
##       cor 
## 0.2779749
data$Gender_role_2 <- recode(
  data$Gender_role_2,
  "strongle agree" = 5,
  "agree" = 4,
  "neither nor" = 3,
  "disagree" = 2,
  "strongly disagree" = 1
)
## Warning in recode.numeric(data$Gender_role_2, `strongle agree` = 5, agree = 4,
## : NAs introduced by coercion
cor.test(data$IAT, data$Gender_role_2, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Gender_role_2
## t = 0.8667, df = 15, p-value = 0.3998
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2930214  0.6326226
## sample estimates:
##       cor 
## 0.2183798
data$Women_carry <- recode(
  data$Women_carry,
  "strongle agree" = 5,
  "agree" = 4,
  "neither nor" = 3,
  "disagree" = 2,
  "strongly disagree" = 1
)
## Warning in recode.numeric(data$Women_carry, `strongle agree` = 5, agree = 4, :
## NAs introduced by coercion
cor.test(data$IAT, data$Women_carry, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Women_carry
## t = -1.0794, df = 15, p-value = 0.2974
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6635006  0.2436053
## sample estimates:
##        cor 
## -0.2684745
data$Men_support <- recode(
  data$Men_support,
  "strongle agree" = 5,
  "agree" = 4,
  "neither nor" = 3,
  "disagree" = 2,
  "strongly disagree" = 1
)
## Warning in recode.numeric(data$Men_support, `strongle agree` = 5, agree = 4, :
## NAs introduced by coercion
cor.test(data$IAT, data$Men_support, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Men_support
## t = 0.40298, df = 15, p-value = 0.6926
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3968965  0.5564562
## sample estimates:
##       cor 
## 0.1034908

data <- data %>%
  rowwise() %>%
  mutate(Average_Collective = mean(
    c(Gender_Carry_1, Gender_Carry_2, Gender_role_1, Gender_role_2, Women_carry, Men_support),
    na.rm = TRUE
  ))
cor.test(data$IAT, data$Average_Collective, method = "pearson", use = "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  data$IAT and data$Average_Collective
## t = 0.4879, df = 15, p-value = 0.6327
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3783879  0.5713117
## sample estimates:
##       cor 
## 0.1249886