Nama: Agnes Damai Arifiana

NIM: 4112322023

UAS METODE MULTIVARIAT Nomor 6

Import Data

library(foreign)
blok43<- read.dbf("C:\\Users\\arifi\\Downloads\\blok43.dbf")

Dimensi Data

dim(blok43)
## [1] 340032     18

Yang berarti dalam data ini memuat 18 kolom dan 340032 baris

Variabel Data Set

names(blok43)
##  [1] "RENUM"      "R101"       "R102"       "R105"       "R203"      
##  [6] "R301"       "FOOD"       "NONFOOD"    "EXPEND"     "KAPITA"    
## [11] "KALORI_KAP" "PROTE_KAP"  "LEMAK_KAP"  "KARBO_KAP"  "WERT"      
## [16] "WEIND"      "WI1"        "WI2"
str(blok43)
## 'data.frame':    340032 obs. of  18 variables:
##  $ RENUM     : int  285340 285346 285337 285334 285331 285319 285322 285325 285343 285328 ...
##  $ R101      : int  11 11 11 11 11 11 11 11 11 11 ...
##  $ R102      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ R105      : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ R203      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ R301      : int  4 4 3 2 2 1 5 4 4 3 ...
##  $ FOOD      : num  1795114 2108331 1810200 1561971 1178940 ...
##  $ NONFOOD   : num  1183000 868198 1074350 790975 778892 ...
##  $ EXPEND    : num  2978114 2976530 2884550 2352946 1957832 ...
##  $ KAPITA    : num  744529 744132 961517 1176473 978916 ...
##  $ KALORI_KAP: num  2436 2451 2496 3385 3555 ...
##  $ PROTE_KAP : num  63.9 78.4 74.5 109.2 105.3 ...
##  $ LEMAK_KAP : num  49.3 48.2 45.3 82.6 59 ...
##  $ KARBO_KAP : num  397 404 419 506 612 ...
##  $ WERT      : num  35.2 36.6 35.5 35 31 ...
##  $ WEIND     : num  140.8 146.6 106.6 70 61.9 ...
##  $ WI1       : int  9976 9976 9976 9976 9976 9976 9976 9976 9976 9976 ...
##  $ WI2       : int  177146 60810 99379 141157 123223 154278 90478 206467 24522 279725 ...
##  - attr(*, "data_types")= chr [1:18] "N" "N" "N" "N" ...

Mengecek Missing Data

sapply(blok43, function(x) sum(is.na(x)))
##      RENUM       R101       R102       R105       R203       R301       FOOD 
##          0          0          0          0          0          0          0 
##    NONFOOD     EXPEND     KAPITA KALORI_KAP  PROTE_KAP  LEMAK_KAP  KARBO_KAP 
##          0          0          0          0          0          0          0 
##       WERT      WEIND        WI1        WI2 
##          0          0          0          0

Untuk lebih memudahkan dalam membaca missing data, dapat ditampilkan dalam visualisasi berikut:

library(heatmaply) #Untuk plot heatmap Missing Data
## Warning: package 'heatmaply' was built under R version 4.4.2
## Loading required package: plotly
## Warning: package 'plotly' was built under R version 4.4.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.2
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
## Loading required package: viridis
## Warning: package 'viridis' was built under R version 4.4.2
## Loading required package: viridisLite
## Warning: package 'viridisLite' was built under R version 4.4.1
## 
## ======================
## Welcome to heatmaply version 1.5.0
## 
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
## 
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags: 
##   https://stackoverflow.com/questions/tagged/heatmaply
## ======================
library(visdat) #Untuk plot Missing Data
## Warning: package 'visdat' was built under R version 4.4.2
library(reshape2) #Modifikasi DataFrame
## Warning: package 'reshape2' was built under R version 4.4.2
library(tidyr) #Modifikasi DataFrame
## Warning: package 'tidyr' was built under R version 4.4.2
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
## 
##     smiths
library(ggplot2) #Plot
library(psych) #Pair Plot
## Warning: package 'psych' was built under R version 4.4.2
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(DataExplorer) #Corelation Plot
## Warning: package 'DataExplorer' was built under R version 4.4.2
library(plotly)
library(httr)
## Warning: package 'httr' was built under R version 4.4.2
## 
## Attaching package: 'httr'
## The following object is masked from 'package:plotly':
## 
##     config
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.4.2
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(rjson)
## Warning: package 'rjson' was built under R version 4.4.1
library(RCurl)
## Warning: package 'RCurl' was built under R version 4.4.1
## 
## Attaching package: 'RCurl'
## The following object is masked from 'package:tidyr':
## 
##     complete
heatmaply_na(
  blok43[1:20,],
  showticklabels = c(TRUE, FALSE)
)

Mengecek Outlier

Outlier adalah data yang berbeda dengan data lainnya. Nilai ini kadang menjadi nilai yang penting untuk diamati, namun kadang juga menjadi gangguan pada penerapan metode Machine Learning

num_cols <- unlist(lapply(blok43, is.numeric)) #Memilih kolom bertipe numerik
blok43_num <- blok43[ , num_cols]  
boxplot(blok43_num)

Titik lingkaran di luar boxplot adalah outlier.

Melihat Korelasi Data

plot_correlation(blok43_num)
## Warning in cor(x = structure(list(RENUM = c(285340L, 285346L, 285337L, 285334L,
## : the standard deviation is zero
## Warning: Removed 34 rows containing missing values or values outside the scale range
## (`geom_text()`).

Melihat Statistik Data

summary(blok43)
##      RENUM             R101            R102            R105            R203  
##  Min.   :     1   Min.   :11.00   Min.   : 1.00   Min.   :1.000   Min.   :1  
##  1st Qu.: 85009   1st Qu.:18.00   1st Qu.: 4.00   1st Qu.:1.000   1st Qu.:1  
##  Median :170017   Median :35.00   Median :10.00   Median :2.000   Median :1  
##  Mean   :170017   Mean   :43.05   Mean   :21.68   Mean   :1.579   Mean   :1  
##  3rd Qu.:255024   3rd Qu.:64.00   3rd Qu.:23.00   3rd Qu.:2.000   3rd Qu.:1  
##  Max.   :340032   Max.   :94.00   Max.   :79.00   Max.   :2.000   Max.   :1  
##       R301             FOOD             NONFOOD              EXPEND         
##  Min.   : 1.000   Min.   :  114857   Min.   :    38208   Min.   :   182190  
##  1st Qu.: 3.000   1st Qu.: 1295486   1st Qu.:   857667   1st Qu.:  2277443  
##  Median : 4.000   Median : 1916079   Median :  1403417   Median :  3429452  
##  Mean   : 3.757   Mean   : 2226646   Mean   :  2142186   Mean   :  4368832  
##  3rd Qu.: 5.000   3rd Qu.: 2785714   3rd Qu.:  2393183   3rd Qu.:  5212515  
##  Max.   :29.000   Max.   :31272857   Max.   :193333898   Max.   :201254112  
##      KAPITA           KALORI_KAP     PROTE_KAP         LEMAK_KAP      
##  Min.   :  114515   Min.   :1000   Min.   :  4.166   Min.   :  2.023  
##  1st Qu.:  656004   1st Qu.:1737   1st Qu.: 47.371   1st Qu.: 38.230  
##  Median :  997299   Median :2116   Median : 59.678   Median : 51.136  
##  Mean   : 1308460   Mean   :2217   Mean   : 64.088   Mean   : 55.374  
##  3rd Qu.: 1543848   3rd Qu.:2580   3rd Qu.: 75.468   3rd Qu.: 67.453  
##  Max.   :94740858   Max.   :4500   Max.   :364.666   Max.   :293.561  
##    KARBO_KAP            WERT              WEIND                WI1       
##  Min.   :  25.66   Min.   :   1.165   Min.   :    1.165   Min.   :    1  
##  1st Qu.: 254.84   1st Qu.:  67.080   1st Qu.:  212.398   1st Qu.: 7180  
##  Median : 312.18   Median : 141.845   Median :  474.874   Median :15780  
##  Mean   : 327.74   Mean   : 222.376   Mean   :  798.704   Mean   :15840  
##  3rd Qu.: 382.61   3rd Qu.: 296.702   3rd Qu.: 1011.605   3rd Qu.:24378  
##  Max.   :1042.51   Max.   :2082.520   Max.   :22907.723   Max.   :32974  
##       WI2        
##  Min.   :     1  
##  1st Qu.: 71016  
##  Median :156026  
##  Mean   :156601  
##  3rd Qu.:241034  
##  Max.   :326043

Analisis Deksripsi

blok43_1 = subset(blok43, select = -c(WI1, WI2, R203) )
head(blok43_1)
##    RENUM R101 R102 R105 R301      FOOD   NONFOOD    EXPEND    KAPITA KALORI_KAP
## 1 285340   11    1    2    4 1795114.3 1183000.0 2978114.3  744528.6   2435.711
## 2 285346   11    1    2    4 2108331.4  868198.3 2976529.8  744132.4   2451.215
## 3 285337   11    1    2    3 1810200.0 1074350.0 2884550.0  961516.7   2495.909
## 4 285334   11    1    2    2 1561971.4  790975.0 2352946.4 1176473.2   3384.523
## 5 285331   11    1    2    2 1178940.0  778891.7 1957831.7  978915.8   3554.871
## 6 285319   11    1    2    1  411428.6  347100.0  758528.6  758528.6   2751.892
##   PROTE_KAP LEMAK_KAP KARBO_KAP     WERT     WEIND
## 1  63.90107  49.25109  396.8879 35.18946 140.75786
## 2  78.39737  48.24964  404.1182 36.64960 146.59842
## 3  74.53511  45.31679  419.1078 35.52082 106.56246
## 4 109.18344  82.58239  506.0941 35.02336  70.04672
## 5 105.33573  58.97906  611.9319 30.97004  61.94007
## 6  77.70753  51.27606  451.6912 37.98458  37.98458
sapply(blok43_1, function(x) sum(is.na(x)))
##      RENUM       R101       R102       R105       R301       FOOD    NONFOOD 
##          0          0          0          0          0          0          0 
##     EXPEND     KAPITA KALORI_KAP  PROTE_KAP  LEMAK_KAP  KARBO_KAP       WERT 
##          0          0          0          0          0          0          0 
##      WEIND 
##          0

Karena sudah tidak ada data yang kosong maka dilanjutkan dengan analisis deksripsi

Analisis Deksripsi

nrow(blok43_1)
## [1] 340032
nrow(blok43_1)/2
## [1] 170016

Dari hasil yang diperoleh dapat dilihat bahwa median terletak pada antara baris 170016-170017 karena jumlah observasi data adalah genap.

summary(blok43_1)
##      RENUM             R101            R102            R105      
##  Min.   :     1   Min.   :11.00   Min.   : 1.00   Min.   :1.000  
##  1st Qu.: 85009   1st Qu.:18.00   1st Qu.: 4.00   1st Qu.:1.000  
##  Median :170017   Median :35.00   Median :10.00   Median :2.000  
##  Mean   :170017   Mean   :43.05   Mean   :21.68   Mean   :1.579  
##  3rd Qu.:255024   3rd Qu.:64.00   3rd Qu.:23.00   3rd Qu.:2.000  
##  Max.   :340032   Max.   :94.00   Max.   :79.00   Max.   :2.000  
##       R301             FOOD             NONFOOD              EXPEND         
##  Min.   : 1.000   Min.   :  114857   Min.   :    38208   Min.   :   182190  
##  1st Qu.: 3.000   1st Qu.: 1295486   1st Qu.:   857667   1st Qu.:  2277443  
##  Median : 4.000   Median : 1916079   Median :  1403417   Median :  3429452  
##  Mean   : 3.757   Mean   : 2226646   Mean   :  2142186   Mean   :  4368832  
##  3rd Qu.: 5.000   3rd Qu.: 2785714   3rd Qu.:  2393183   3rd Qu.:  5212515  
##  Max.   :29.000   Max.   :31272857   Max.   :193333898   Max.   :201254112  
##      KAPITA           KALORI_KAP     PROTE_KAP         LEMAK_KAP      
##  Min.   :  114515   Min.   :1000   Min.   :  4.166   Min.   :  2.023  
##  1st Qu.:  656004   1st Qu.:1737   1st Qu.: 47.371   1st Qu.: 38.230  
##  Median :  997299   Median :2116   Median : 59.678   Median : 51.136  
##  Mean   : 1308460   Mean   :2217   Mean   : 64.088   Mean   : 55.374  
##  3rd Qu.: 1543848   3rd Qu.:2580   3rd Qu.: 75.468   3rd Qu.: 67.453  
##  Max.   :94740858   Max.   :4500   Max.   :364.666   Max.   :293.561  
##    KARBO_KAP            WERT              WEIND          
##  Min.   :  25.66   Min.   :   1.165   Min.   :    1.165  
##  1st Qu.: 254.84   1st Qu.:  67.080   1st Qu.:  212.398  
##  Median : 312.18   Median : 141.845   Median :  474.874  
##  Mean   : 327.74   Mean   : 222.376   Mean   :  798.704  
##  3rd Qu.: 382.61   3rd Qu.: 296.702   3rd Qu.: 1011.605  
##  Max.   :1042.51   Max.   :2082.520   Max.   :22907.723

Analisis Faktor

1. Menghitung nilai korelasi dan eigen value dari data

#korelasi

R<- cor(blok43_1)
R
##                   RENUM         R101         R102        R105         R301
## RENUM       1.000000000 -0.131172522 -0.004322758 -0.01271710  0.003432496
## R101       -0.131172522  1.000000000 -0.111925308  0.13191750  0.071714547
## R102       -0.004322758 -0.111925308  1.000000000 -0.48087120 -0.014220599
## R105       -0.012717099  0.131917499 -0.480871203  1.00000000  0.026889185
## R301        0.003432496  0.071714547 -0.014220599  0.02688919  1.000000000
## FOOD       -0.016186655  0.019557399  0.160726752 -0.13738115  0.421535448
## NONFOOD     0.001533413  0.006070046  0.202484764 -0.20341902  0.126547664
## EXPEND     -0.004519106  0.011569772  0.212759122 -0.20525631  0.246067993
## KAPITA     -0.012535841  0.004265206  0.220822797 -0.21382055 -0.257009700
## KALORI_KAP  0.016946523 -0.091473595 -0.021920445  0.01032131 -0.411937605
## PROTE_KAP   0.031988453 -0.099869642  0.068378323 -0.10564134 -0.381026908
## LEMAK_KAP   0.022730402 -0.170248975  0.096538855 -0.14571966 -0.354398295
## KARBO_KAP   0.006704155  0.010369114 -0.111787599  0.13637966 -0.340078446
## WERT        0.037013774 -0.249764952  0.081004930 -0.27774817 -0.090429051
## WEIND       0.035557143 -0.213874105  0.071911669 -0.24421839  0.248850128
##                    FOOD      NONFOOD       EXPEND       KAPITA  KALORI_KAP
## RENUM      -0.016186655  0.001533413 -0.004519106 -0.012535841  0.01694652
## R101        0.019557399  0.006070046  0.011569772  0.004265206 -0.09147359
## R102        0.160726752  0.202484764  0.212759122  0.220822797 -0.02192045
## R105       -0.137381151 -0.203419020 -0.205256313 -0.213820549  0.01032131
## R301        0.421535448  0.126547664  0.246067993 -0.257009700 -0.41193760
## FOOD        1.000000000  0.517740911  0.751492312  0.418066099  0.22673045
## NONFOOD     0.517740911  1.000000000  0.953512180  0.772343875  0.09027526
## EXPEND      0.751492312  0.953512180  1.000000000  0.742847268  0.14947867
## KAPITA      0.418066099  0.772343875  0.742847268  1.000000000  0.36941869
## KALORI_KAP  0.226730451  0.090275256  0.149478669  0.369418693  1.00000000
## PROTE_KAP   0.280159588  0.167384463  0.227760783  0.437974787  0.83481312
## LEMAK_KAP   0.288545449  0.180906755  0.241142241  0.424440809  0.78922621
## KARBO_KAP   0.118899224 -0.011625832  0.032915877  0.221677506  0.89088568
## WERT        0.006898129  0.049251759  0.040409953  0.067676337  0.04950710
## WEIND       0.162117768  0.099195877  0.133598577 -0.028682382 -0.09035877
##              PROTE_KAP   LEMAK_KAP    KARBO_KAP         WERT       WEIND
## RENUM       0.03198845  0.02273040  0.006704155  0.037013774  0.03555714
## R101       -0.09986964 -0.17024898  0.010369114 -0.249764952 -0.21387410
## R102        0.06837832  0.09653885 -0.111787599  0.081004930  0.07191167
## R105       -0.10564134 -0.14571966  0.136379657 -0.277748172 -0.24421839
## R301       -0.38102691 -0.35439830 -0.340078446 -0.090429051  0.24885013
## FOOD        0.28015959  0.28854545  0.118899224  0.006898129  0.16211777
## NONFOOD     0.16738446  0.18090675 -0.011625832  0.049251759  0.09919588
## EXPEND      0.22776078  0.24114224  0.032915877  0.040409953  0.13359858
## KAPITA      0.43797479  0.42444081  0.221677506  0.067676337 -0.02868238
## KALORI_KAP  0.83481312  0.78922621  0.890885682  0.049507095 -0.09035877
## PROTE_KAP   1.00000000  0.74300231  0.647398523  0.074086053 -0.05995368
## LEMAK_KAP   0.74300231  1.00000000  0.471675642  0.143053645  0.01260213
## KARBO_KAP   0.64739852  0.47167564  1.000000000 -0.019489270 -0.13283894
## WERT        0.07408605  0.14305364 -0.019489270  1.000000000  0.86173512
## WEIND      -0.05995368  0.01260213 -0.132838939  0.861735121  1.00000000

Nilai korelasi berkisar antara -1 sampai dengan 1. Nilai -1 artinya korelasi antar variabel sangat lemah, sedangkan nilai 1 menyatakan korelasi antar variabel sangat kuat.

Membuat fungsi untuk uji Barlett dan uji KMO

kmo <- function(x)
{
  x <- subset(x, complete.cases(x))       # menghilangkan data kosong (NA)
  r <- cor(x)                             # Membuat matrix korelasi
  r2 <- r^2                               # nilai koefisien untuk r squared
  i <- solve(r)                           # Inverse matrix dari matrix korelasi
  d <- diag(i)                            # element diagonal dari inverse matrix
  p2 <- (-i/sqrt(outer(d, d)))^2          # koefisien korelasi Parsial kuadrat
  diag(r2) <- diag(p2) <- 0               # menghapus element diagonal 
  KMO <- sum(r2)/(sum(r2)+sum(p2))
  MSA <- colSums(r2)/(colSums(r2)+colSums(p2))
  return(list(KMO=KMO, MSA=MSA))
}
uji_bart <- function(x)
{
  method <- "Bartlett's test of sphericity"
  data.name <- deparse(substitute(x))
  x <- subset(x, complete.cases(x)) 
  n <- nrow(x)
  p <- ncol(x)
  chisq <- (1-n+(2*p+5)/6)*log(det(cor(x)))
  df <- p*(p-1)/2
  p.value <- pchisq(chisq, df, lower.tail=FALSE)
  names(chisq) <- "Khi-squared"
  names(df) <- "df"
  return(structure(list(statistic=chisq, parameter=df, p.value=p.value,
                        method=method, data.name=data.name), class="htest"))
}
uji_bart(blok43_1) 
## Warning in log(det(cor(x))): NaNs produced
## 
##  Bartlett's test of sphericity
## 
## data:  blok43_1
## Khi-squared = NaN, df = 105, p-value = NA

Dengan menggunakan tingkat kepercayaan 95%, data yang ada menolak H0, artinya minimal ada 1 variabel yang berkorelasi.

Uji KMO yaitu untuk mengetahui komponen atau faktor mana saja yang akan dianalisis lanjut dan yang tidak dianalisis lanjut. Hal tersebut dapat dilihat dari nilai KMO yang lebih dari 0,5. Berdasarkan uji KMO, didapatkan nilai pada setiap variabel yaitu lebih dari 0,5. Oleh sebab itu, semua variabel layak untuk dianalisis ke tahapan selanjutnya.

#eigen value
eigen<- eigen(R)
eigen$values
##  [1]  4.178806e+00  2.903675e+00  2.069316e+00  1.354485e+00  1.051033e+00
##  [6]  9.696010e-01  8.060418e-01  5.103826e-01  4.437062e-01  2.547504e-01
## [11]  2.210493e-01  1.471592e-01  7.518061e-02  1.481450e-02 -8.326673e-17
pcadata<- principal(blok43_1,nfactor=14,rotate="varimax", scores=T)
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## the model inverse times the r matrix is singular, replaced with Identity matrix
## which means fits are wrong
## Warning in principal(blok43_1, nfactor = 14, rotate = "varimax", scores = T):
## The matrix is not positive semi-definite, scores found from Structure loadings
pcadata
## Principal Components Analysis
## Call: principal(r = blok43_1, nfactors = 14, rotate = "varimax", scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##              RC2   RC1   RC3   RC6   RC4   RC7   RC5   RC8   RC9  RC10  RC11
## RENUM       0.00  0.01  0.02  0.00  0.00 -0.06  1.00  0.00  0.01 -0.01  0.00
## R101        0.02 -0.03 -0.15  0.03 -0.05  0.98 -0.07  0.05 -0.06  0.01 -0.01
## R102        0.13 -0.04  0.03 -0.02  0.96 -0.05  0.00 -0.23  0.03  0.04  0.01
## R105       -0.13  0.05 -0.17  0.02 -0.25  0.05  0.00  0.94 -0.05 -0.03 -0.02
## R301        0.07 -0.27  0.05  0.93 -0.02  0.03  0.01  0.03 -0.12  0.19 -0.05
## FOOD        0.48  0.15  0.04  0.32  0.07  0.02 -0.01 -0.04  0.11  0.79  0.05
## NONFOOD     0.99  0.00  0.03  0.06  0.06  0.00  0.00 -0.06  0.02  0.02  0.01
## EXPEND      0.93  0.05  0.04  0.15  0.07  0.01  0.00 -0.06  0.05  0.29  0.02
## KAPITA      0.82  0.21 -0.01 -0.25  0.09  0.02 -0.01 -0.08  0.14  0.05  0.08
## KALORI_KAP  0.10  0.91 -0.01 -0.15 -0.01 -0.05  0.01  0.00  0.33  0.06  0.08
## PROTE_KAP   0.17  0.69  0.00 -0.16  0.04 -0.05  0.02 -0.07  0.31  0.10  0.59
## LEMAK_KAP   0.17  0.51  0.06 -0.15  0.04 -0.10  0.01 -0.08  0.80  0.10  0.11
## KARBO_KAP   0.01  0.98 -0.04 -0.09 -0.05  0.03  0.00  0.08 -0.04  0.01 -0.06
## WERT        0.02  0.02  0.96 -0.12  0.02 -0.10  0.01 -0.11  0.05 -0.02  0.01
## WEIND       0.05 -0.07  0.95  0.18  0.02 -0.08  0.01 -0.08 -0.01  0.06 -0.01
##             RC12  RC13  RC14 h2       u2 com
## RENUM       0.00  0.00  0.00  1  1.1e-15 1.0
## R101        0.00  0.00  0.00  1 -4.4e-16 1.1
## R102        0.01  0.00  0.00  1  1.6e-15 1.2
## R105       -0.01  0.00  0.00  1 -1.1e-15 1.3
## R301       -0.03  0.01  0.00  1  4.4e-16 1.3
## FOOD        0.01  0.00  0.00  1 -4.4e-16 2.2
## NONFOOD    -0.08  0.00  0.00  1 -2.2e-16 1.0
## EXPEND     -0.06  0.00  0.00  1 -2.2e-16 1.3
## KAPITA      0.43 -0.01  0.00  1 -2.2e-16 2.1
## KALORI_KAP  0.02  0.00  0.10  1  3.3e-16 1.4
## PROTE_KAP   0.03  0.00  0.00  1 -4.4e-16 2.8
## LEMAK_KAP   0.02  0.00  0.00  1  4.4e-16 2.1
## KARBO_KAP   0.01 -0.01 -0.08  1  7.8e-16 1.1
## WERT        0.02 -0.20  0.00  1  5.6e-16 1.2
## WEIND      -0.02  0.21  0.00  1  0.0e+00 1.2
## 
##                        RC2  RC1  RC3  RC6  RC4  RC7  RC5  RC8  RC9 RC10 RC11
## SS loadings           2.86 2.70 1.88 1.18 1.01 1.01 1.00 0.99 0.91 0.77 0.38
## Proportion Var        0.19 0.18 0.13 0.08 0.07 0.07 0.07 0.07 0.06 0.05 0.03
## Cumulative Var        0.19 0.37 0.50 0.58 0.64 0.71 0.78 0.84 0.90 0.95 0.98
## Proportion Explained  0.19 0.18 0.13 0.08 0.07 0.07 0.07 0.07 0.06 0.05 0.03
## Cumulative Proportion 0.19 0.37 0.50 0.58 0.64 0.71 0.78 0.84 0.90 0.95 0.98
##                       RC12 RC13 RC14
## SS loadings           0.20 0.08 0.02
## Proportion Var        0.01 0.01 0.00
## Cumulative Var        0.99 1.00 1.00
## Proportion Explained  0.01 0.01 0.00
## Cumulative Proportion 0.99 1.00 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 14 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1

Berdasarkan output, komponen hanya dibentuk 14 komponen, karena nilai eigen value yang lebih dari 0,5 hanya ada 14 faktor. Dapat dilihat bahwa terdapat angka tertinggi dari setiap variabel. Angka-angka tersebut menunjukkan kedudukan variabel didalam 14 faktor yang telah ditentukan.