To laboratorium na temat Regresji grzbietowej (Ridge Regression - RR) i Lasso w R pochodzi ze stron 251-255 książki “Introduction to Statistical Learning with Applications in R” autorstwa Garetha Jamesa, Danieli Witten, Trevora Hastie i Roberta Tibshirani. Zostało ono ponownie zaimplementowane jesienią 2016 roku w formacie tidyverse przez Amelię McNamarę i R. Jordana Crousera w Smith College.

W tym tygodniu omówimy dwie alternatywne formy regresji liniowej zwane regresją grzbietową i regresją LASSO. Te dwie metody są przykładami metod regularyzacji lub zmniejszania, w których zachęca się do tego, aby parametry modelu były małe.

Regresja Grzbietowa i Lasso

Wykorzystamy pakiet glmnet w celu przeprowadzenia regresji ridge i lasso. Główną funkcją w tym pakiecie jest glmnet(), która może być użyta do dopasowania modeli regresji grzbietowej, modeli lasso i innych.

Funkcja ta ma nieco inną składnię niż inne funkcje dopasowujące modele, z którymi zetknęliśmy się do tej pory. W szczególności, musimy przekazać macierz \(x\) jak również wektor \(y\) i nie używamy składni \(y \sim x\).

Zanim przejdziemy dalej, upewnijmy się najpierw, że brakujące wartości zostały zostały usunięte z danych, jak opisano w poprzednim laboratorium.

Hitters = na.omit(Hitters)

W raporcie tym przeprowadzimy regresję grzbietową i lasso, aby przewidzieć Salary na danych Hitters.

Skonfigurujmy nasze dane:

x = model.matrix(Salary~., Hitters)[,-1] # przycinam pierwszą kolumnę
                                         # zostawiam predyktory
y = Hitters %>%
  select(Salary) %>%
  unlist() %>%
  as.numeric()

Funkcja model.matrix() jest szczególnie przydatna do tworzenia \(x\); nie tylko nie tylko tworzy macierz odpowiadającą 19 predyktorom, ale również automatycznie przekształca wszelkie zmienne jakościowe w zmienne dummy.

Ta ostatnia właściwość jest ważna, ponieważ glmnet() może przyjmować tylko numeryczne, ilościowe dane wejściowe.

Bias vs Variance

Wybór modelu w problemach uczenia nadzorowanego wiąże się z realizacją dwóch sprzecznych celów:

1.) Model powienien być dobrze dopasowany do danych uczących, aby uchwycić zależność pomiędzy danymi.

2.) Model powinien dobrze przybliżać nieznane dane (zapewniać mały błąd generalizacji).

Modele złożone dobdrze dopasowują się do danych wyjściowych, ale charakteryzują się dużą zmiennością wartości wyjściowych. Ryzykiem jest nadmierne dopasowanie = overfitting!

Modele prostsze są obciążone dużym błędem systematyczny (bias) i ich zastosowanie niesie ryzyko niewystarczającego dopasowania (underfitting)!

Składnikiem błędów generalizacji jest nieredukowalny błąd związany ze zmiennością danych.

Regularyzacja

Duża liczna zmiennych objaśniających (predyktorów): Metoda OLS nie daje jednoznacznego rozwiązania, gdy macierz XTX nie jest odwracalna (tzn. gdy zmienne objaśniające są liniowo zależne).

Taka sytuacja może mieć miejsce gdy zmiennych objaśniających jest tyle samo lub więcej niż obserwacji.

Duża wartość θi oznacza dużą wrażliwość funkcji regresji na drobne fluktuacje cechy!

Lepszym rozwiązaniem jest gorsze dopasowanie do danych uczących przy równoczesnym ograniczeniu parametrów świadczących o potencjalnie dużym błędzie generalizacji.

Regresja Grzbietowa

Wprowadzenie

Regresja grzbietowa (ang. Ridge regression) to technika regresji liniowej, która wprowadza regularyzację \(L_2\) do estymacji współczynników modelu. Regularyzacja \(L_2\) polega na dodaniu do funkcji celu kary proporcjonalnej do kwadratu wartości współczynników regresji.

Podstawową ideą regresji grzbietowej jest minimalizacja funkcji celu, która składa się z dwóch składników: błędu dopasowania (sumy kwadratów różnic pomiędzy rzeczywistymi wartościami odpowiedzi a przewidywanymi wartościami modelu) i kary regularyzacyjnej \(L_2\).

Wzór funkcji celu dla regresji grzbietowej można przedstawić jako: Minimize: RSS + \(\lambda \|\beta\|_2^2\), gdzie:

  • RSS to suma kwadratów różnic pomiędzy rzeczywistymi wartościami odpowiedzi a przewidywanymi wartościami modelu (błąd dopasowania),

  • \(\lambda\) (lambda) to parametr regularyzacji, który kontroluje siłę regularyzacji,

  • \(\|\beta\|_2^2\) to norma \(L_2\) współczynników regresji podniesiona do kwadratu.

Dodanie kary regularyzacyjnej \(L_2\) powoduje, że współczynniki regresji są skupione wokół zera, ale nie dokładnie równe zeru (chyba że \(\lambda\)=0).

Regresja grzbietowa zmniejsza wartości współczynników, ale nie powoduje, że stają się one równe zero. Im większa wartość \(\lambda\), tym bardziej są “sciskane” współczynniki regresji.

Regresja grzbietowa jest szczególnie przydatna, gdy mamy do czynienia z modelem, w którym występuje nadmierna wielowymiarowość lub wysokie korelacje między zmiennymi niezależnymi.

Poprzez zmniejszanie wartości współczynników, regresja grzbietowa może pomóc w redukcji wpływu mało istotnych cech, poprawić stabilność modelu i zmniejszyć ryzyko przeuczenia (overfitting).

Jednym ze sposobów kontroli złożoności modelu jest penalizacja jego wielkości. Na przykład, w problemie regresji liniowej:

\[ \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^\top \beta)^2, \]

możemy kontrolować wielkość współczynników \(\beta\). Oczywiście wielkość \(\beta\) można zdefiniować na różne sposoby, np. norma-2: \(\|\beta\|_2\), norma-1: \(\|\beta\|_1\) czy norma-nieskończoność: \(\|\beta\|_{\infty}\). Regresja grzbietowa wiąże się z karą dwóch norm:

\[ \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^\top \beta)^2 + \lambda \|\beta\|_2^2 \]

gdzie \(\lambda\) jest parametrem kontrolującym poziom regularyzacji. Zauważ, że \(X\) to macierz \(n\) na \(p\) wymiarów z wierszami: \(x_i^\top\), oraz \(Y\) to \(n\) na 1 wektor \(y_i\). Załóżmy, że \(X^\top X + \lambda I\) jest odwracalna, mamy dokładne rozwiązanie problemu regresji grzbietowej:

\[ \hat \beta_{ridge} = (X^\top X + \lambda I)^{-1}X^\top Y. \]

Przypomnijmy, że rozwiązaniem zwykłej regresji najmniejszych kwadratów jest (zakładając odwracalność macierzy \(X^\top X\)):

\[ \hat \beta_{ols} = (X^\top X)^{-1}X^\top Y. \]

Dwa fakty: kiedy \(\lambda \to 0\), \(\hat \beta_{ridge} \to \hat \beta_{ols}\); kiedy \(\lambda \to \infty\), \(\hat \beta_{ridge} \to 0\).

W szczególnych przypadkach \(X\) jest ortogonalna (tzn. kolumny \(X\) są ortogonalne), mamy:

\[ \hat \beta_{ridge} = \frac{\hat \beta_{ols}}{1 + \lambda}. \]

Widzimy więc, że estymator grzbietowy ma dodatkowo \(1/(1 + \lambda)\) tzw. “shrinkage factor”. W związku z tym na estymatorze grzbietowym występuje obciążliwość (bias).

Przykład

Funkcja glmnet() posiada argument alfa, który określa, jaki typ modelu jest dopasowywany.

Jeśli alfa = 0 to dopasowywany jest model regresji grzbietowej, a jeśli alfa = 1 to dopasowywany jest model lasso.

Najpierw dopasowujemy model regresji grzbietowej:

grid = 10^seq(10, -2, length = 100)
ridge_mod = glmnet(x, y, alpha = 0, lambda = grid)

Domyślnie funkcja glmnet() wykonuje regresję grzbietową dla automatycznie wybranego wybranego zakresu wartości \(\lambda\). Jednakże, tutaj wybraliśmy implementację funkcję w zakresie wartości od \(\lambda = 10^{10}\) do \(\lambda = 10^{-2}\), zasadniczo pokrywając pełen zakres scenariuszy od modelu zerowego zawierającego tylko przechwyt, do dopasowania najmniejszego kwadratu.

Jak widać, możemy również obliczyć dopasowanie modelu dla konkretnej wartości \(\lambda\), która nie jest jedną z oryginalnych wartości siatki.

Zauważ, że domyślnie funkcja glmnet() standaryzuje zmienne tak, by były w tej samej skali. Aby wyłączyć to domyślne ustawienie, użyj argumentu standardize = FALSE.

Z każdą wartością \(\lambda\) związany jest wektor współczynników regresji grzbietowej, przechowywany w macierzy, do której można uzyskać dostęp przez coef(). W tym przypadku jest to macierz \(20 \times 100\), z 20 wierszami (po jednym dla każdego predyktora, plus intercept) i 100 kolumnami (po jednej dla każdej wartości \(\lambda\)).

dim(coef(ridge_mod))
## [1]  20 100
plot(ridge_mod)    # wykres współczynników

Spodziewamy się, że oszacowania współczynników będą znacznie mniejsze, w sensie normy \(l_2\), gdy używana jest duża wartość \(\lambda\), w porównaniu z małą wartością \(\lambda\).

Oto współczynniki, gdy \(\lambda = 11498\), wraz z ich normą \(l_2\):

ridge_mod$lambda[50] # Wyświetl 50-tą wartość lambdy
## [1] 11497.57
coef(ridge_mod)[,50] # Wyświetl współczynniki związane z 50-tą wartością lambdy
##   (Intercept)         AtBat          Hits         HmRun          Runs 
## 407.356050200   0.036957182   0.138180344   0.524629976   0.230701523 
##           RBI         Walks         Years        CAtBat         CHits 
##   0.239841459   0.289618741   1.107702929   0.003131815   0.011653637 
##        CHmRun         CRuns          CRBI        CWalks       LeagueN 
##   0.087545670   0.023379882   0.024138320   0.025015421   0.085028114 
##     DivisionW       PutOuts       Assists        Errors    NewLeagueN 
##  -6.215440973   0.016482577   0.002612988  -0.020502690   0.301433531
sqrt(sum(coef(ridge_mod)[-1,50]^2)) # Oblicz normę l2
## [1] 6.360612

Dla kontrastu, oto współczynniki, gdy \(\lambda = 705\), wraz z ich \(l_2\) normą. Zwróć uwagę na znacznie większą normę \(l_2\) współczynników związanych z tą mniejszą wartością \(\lambda\).

ridge_mod$lambda[60] # Wyświetl 60-tą wartość lambdy
## [1] 705.4802
coef(ridge_mod)[,60] # Wyświetl współczynniki powiązane z 60-tą wartość lambdy
##  (Intercept)        AtBat         Hits        HmRun         Runs          RBI 
##  54.32519950   0.11211115   0.65622409   1.17980910   0.93769713   0.84718546 
##        Walks        Years       CAtBat        CHits       CHmRun        CRuns 
##   1.31987948   2.59640425   0.01083413   0.04674557   0.33777318   0.09355528 
##         CRBI       CWalks      LeagueN    DivisionW      PutOuts      Assists 
##   0.09780402   0.07189612  13.68370191 -54.65877750   0.11852289   0.01606037 
##       Errors   NewLeagueN 
##  -0.70358655   8.61181213
sqrt(sum(coef(ridge_mod)[-1,60]^2)) # Oblicz normę l2
## [1] 57.11001

Funkcję predict() możemy wykorzystać do wielu celów. Na przykład, możemy uzyskać współczynniki regresji grzbietowej dla nowej wartości \(\lambda\), powiedzmy 50:

predict(ridge_mod, s = 50, type = "coefficients")[1:20,]
##   (Intercept)         AtBat          Hits         HmRun          Runs 
##  4.876610e+01 -3.580999e-01  1.969359e+00 -1.278248e+00  1.145892e+00 
##           RBI         Walks         Years        CAtBat         CHits 
##  8.038292e-01  2.716186e+00 -6.218319e+00  5.447837e-03  1.064895e-01 
##        CHmRun         CRuns          CRBI        CWalks       LeagueN 
##  6.244860e-01  2.214985e-01  2.186914e-01 -1.500245e-01  4.592589e+01 
##     DivisionW       PutOuts       Assists        Errors    NewLeagueN 
## -1.182011e+02  2.502322e-01  1.215665e-01 -3.278600e+00 -9.496680e+00

Podzielimy teraz próbki na zbiór treningowy i testowy w celu oszacować błąd testu regresji grzbietowej i lasso.

set.seed(1)

train = Hitters %>%
  sample_frac(0.5)

test = Hitters %>%
  setdiff(train)

x_train = model.matrix(Salary~., train)[,-1]
x_test = model.matrix(Salary~., test)[,-1]

y_train = train %>%
  select(Salary) %>%
  unlist() %>%
  as.numeric()

y_test = test %>%
  select(Salary) %>%
  unlist() %>%
  as.numeric()

Następnie dopasowujemy model regresji grzbietowej na zbiorze treningowym i oceniamy jego MSE na zbiorze testowym, używając \(\lambda = 4\). Zwróć uwagę na użycie funkcji predict(). Ponownie: tym razem otrzymujemy przewidywania dla zbioru testowego, zastępując type="coefficients" argumentem newx.

ridge_mod = glmnet(x_train, y_train, alpha=0, lambda = grid, thresh = 1e-12)
ridge_pred = predict(ridge_mod, s = 4, newx = x_test)
mean((ridge_pred - y_test)^2)
## [1] 139858.6

Testowe MSE wynosi 139858. Zauważ, że gdybyśmy zamiast tego dopasowali po prostu model tylko z wyrazem wolnym, przewidywalibyśmy każdą obserwację testową używając średniej z obserwacji zbioru treningowego. W takim przypadku moglibyśmy obliczyć MSE zestawu testowego w ten sposób:

mean((mean(y_train) - y_test)^2)
## [1] 224692.1

Moglibyśmy również uzyskać ten sam wynik, dopasowując model regresji grzbietowej z bardzo dużą wartością \(\lambda\). Zauważ, że 1e10 oznacza \(10^{10}\).

ridge_pred = predict(ridge_mod, s = 1e10, newx = x_test)
mean((ridge_pred - y_test)^2)
## [1] 224692.1

Tak więc dopasowanie modelu regresji grzbietowej z \(\lambda = 4\) prowadzi do znacznie niższego testu MSE niż dopasowanie modelu z samym przechwytem.

Sprawdzimy teraz, czy jest jakaś korzyść z wykonania regresji grzbietowej z \(\lambda = 4\) zamiast po prostu wykonać regresję najmniejszych kwadratów.

Przypomnijmy, że najmniejsza kwadratura to po prostu regresja grzbietowa z \(\lambda = 0\).

* Uwaga: Aby glmnet() dawał dokładne (exact) współczynniki najmniejszego kwadratu, gdy \(\lambda = 0\), używamy argumentu exact=T przy wywołaniu funkcji predict(). W przeciwnym razie, funkcja predict() będzie interpolować nad siatką wartości \(\lambda\) użytą w dopasowaniu modelu glmnet(), dając przybliżone wyniki. Nawet gdy użyjemy exact = T, pozostaje niewielka rozbieżność na trzecim miejscu po przecinku między wynikami glmnet(), gdy \(\lambda = 0\) i wyjściem z lm(); jest to spowodowane numerycznym przybliżeniem ze strony glmnet().

ridge_pred = predict(ridge_mod, s = 0, newx = x_test)
mean((ridge_pred - y_test)^2)
## [1] 174060
lm(Salary~., data = train)
## 
## Call:
## lm(formula = Salary ~ ., data = train)
## 
## Coefficients:
## (Intercept)        AtBat         Hits        HmRun         Runs          RBI  
##   2.398e+02   -1.639e-03   -2.179e+00    6.337e+00    7.139e-01    8.735e-01  
##       Walks        Years       CAtBat        CHits       CHmRun        CRuns  
##   3.594e+00   -1.309e+01   -7.136e-01    3.316e+00    3.407e+00   -5.671e-01  
##        CRBI       CWalks      LeagueN    DivisionW      PutOuts      Assists  
##  -7.525e-01    2.347e-01    1.322e+02   -1.346e+02    2.099e-01    6.229e-01  
##      Errors   NewLeagueN  
##  -4.616e+00   -8.330e+01
predict(ridge_mod, s = 0, type="coefficients")[1:20,]
##   (Intercept)         AtBat          Hits         HmRun          Runs 
##  239.89368111   -0.01946204   -2.07305757    6.44254692    0.64610179 
##           RBI         Walks         Years        CAtBat         CHits 
##    0.82179888    3.62448842  -13.28142313   -0.70314292    3.26064805 
##        CHmRun         CRuns          CRBI        CWalks       LeagueN 
##    3.33170237   -0.54000590   -0.72015101    0.22582579  131.41324242 
##     DivisionW       PutOuts       Assists        Errors    NewLeagueN 
## -134.76073238    0.20949301    0.61942855   -4.58545824  -82.35090554

Wygląda na to, że rzeczywiście poprawiamy się w stosunku do zwykłego najmniejszego kwadratu!

Uwaga: ogólnie, jeśli chcemy dopasować (niespenalizowany) model najmniejszych kwadratów, to powinniśmy użyć funkcji lm(), ponieważ ta funkcja dostarcza bardziej użytecznych wyjścia, takie jak błędy standardowe i wartości \(p\) dla współczynników.

Zamiast arbitralnie wybierać \(\lambda = 4\), lepiej byłoby użyć walidacji krzyżowej do wyboru parametru dostrojenia \(\lambda\). Możemy to zrobić używając wbudowanej funkcji walidacji krzyżowej, cv.glmnet(). Domyślnie funkcja ta wykonuje 10-krotną walidację krzyżową, choć można to zmienić używając argumentu argumentu folds. Zauważ, że najpierw ustawiamy losowe ziarno, aby nasze wyniki były powtarzalne, ponieważ wybór krotności walidacji krzyżowej jest losowy.

set.seed(1)
cv.out = cv.glmnet(x_train, y_train, alpha = 0) # Dopasuj model regresji grzbietowej na danych treningowych
bestlam = cv.out$lambda.min  # Wybierz lamdę, która minimalizuje treningowy MSE 
bestlam
## [1] 326.1406

Widzimy zatem, że wartość \(\lambda\), która powoduje najmniejszy błąd walidacji krzyżowej to 326. Możemy również wykreślić MSE jako funkcję \(\lambda\):

plot(cv.out) # Narysuj wykres treningowego MSE jako funkcję lambda

Jaki jest testowy MSE związany z tą wartością \(\lambda\)?

ridge_pred = predict(ridge_mod, s = bestlam, newx = x_test) # Użyj najlepszej lambdy do przewidywania danych testowych
mean((ridge_pred - y_test)^2) # Oblicz testowe MSE
## [1] 140056.2

Stanowi to dalszą poprawę w stosunku do testowego MSE, które uzyskaliśmy używając \(\lambda = 4\). Ostatecznie, ponownie wyznaczamy nasz model regresji grzbietowej na pełnym zestawie danych, używając wartości \(\lambda\) wybranej w walidacji krzyżowej, i sprawdzamy oszacowania współczynników.

out = glmnet(x, y, alpha = 0) # Dopasuj model regresji grzbietowej do pełnego zbioru danych
predict(out, type = "coefficients", s = bestlam)[1:20,] # Wyświetlanie współczynników przy użyciu lambda wybranego przez CV
##  (Intercept)        AtBat         Hits        HmRun         Runs          RBI 
##  15.44834992   0.07716945   0.85906253   0.60120338   1.06366687   0.87936073 
##        Walks        Years       CAtBat        CHits       CHmRun        CRuns 
##   1.62437580   1.35296285   0.01134998   0.05746377   0.40678422   0.11455696 
##         CRBI       CWalks      LeagueN    DivisionW      PutOuts      Assists 
##   0.12115916   0.05299953  22.08942756 -79.03490992   0.16618830   0.02941513 
##       Errors   NewLeagueN 
##  -1.36075645   9.12528397

Zgodnie z oczekiwaniami, żaden ze współczynników nie jest dokładnie zerowy - regresja grzbietowa nie dokonuje selekcji zmiennych!

Regresja Lasso

Wprowadzenie

Zamiast regularyzacji \(L_2\), LASSO używa penalizacji \(L_1\), to znaczy:

\[ \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^\top \beta)^2 + \lambda \|\beta\|_1. \]

Ze względu na charakter normy \(L_1\), LASSO ma tendencję do dawania bardziej rzadkich rozwiązań niż regresja grzbietowa. Jest to typowo użyteczne w ustawieniach wielowymiarowych, gdy prawdziwy model jest w rzeczywistości niskowymiarowym osadzeniem.

Model regresji lasso został pierwotnie opracowany w 1989 roku. Jest to alternatywa dla klasycznego oszacowania metodą najmniejszych kwadratów, która unika wielu problemów z nadmiernym dopasowaniem (overfittingiem), gdy mamy dużą liczbę niezależnych zmiennych.

Regresja Lasso (Least Absolute Shrinkage and Selection Operator) to technika regresji liniowej stosowana do oszacowania współczynników modelu, która wprowadza regularyzację \(L_1\). Regularyzacja L1 polega na dodaniu do funkcji celu kary proporcjonalnej do wartości bezwzględnej współczynników regresji.

Regresja Lasso ma zdolność do jednoczesnego wykonania selekcji cech i regularyzacji, co oznacza, że może pomóc w identyfikacji najbardziej istotnych cech modelu, a także zmniejszyć wpływ mniej istotnych cech.

Podstawowym celem regresji Lasso jest minimalizacja funkcji celu, która składa się z dwóch składników: błędu dopasowania (sumy kwadratów różnic pomiędzy rzeczywistymi wartościami odpowiedzi a przewidywanymi wartościami modelu) i kary regularyzacyjnej \(L_1\).

Wzór funkcji celu dla regresji Lasso może być przedstawiony jako: Minimize: RSS + \(\lambda \|\beta\|_1\), gdzie:

  • RSS to suma kwadratów różnic pomiędzy rzeczywistymi wartościami odpowiedzi a przewidywanymi wartościami modelu (błąd dopasowania),

  • \(\lambda\) (lambda) to parametr regularyzacji, który kontroluje siłę regularyzacji, a \(\|\beta\|_1\) to norma \(L_1\) współczynników regresji.

Dodanie kary regularyzacyjnej \(L_1\) powoduje, że niektóre współczynniki regresji stają się równe zero, co prowadzi do selekcji cech. Im większa wartość \(\lambda\), tym większa jest tendencja do redukcji współczynników do zera, prowadząc do bardziej rzadkiego modelu z mniejszą liczbą cech.

Regresja Lasso jest przydatna w przypadkach, gdy mamy do czynienia z wieloma cechami, z których niektóre mogą być nieistotne. Może pomóc w identyfikacji istotnych cech, redukcji nadmiaru danych i zwiększeniu interpretowalności modelu.

Przykład

Zobaczyliśmy, że regresja grzbietowa z mądrym wyborem \(\lambda\) może przewyższać metodę najmniejszych kwadratów, jak również model zerowy na zbiorze danych Hitters.

Teraz zobaczmy, czy lasso może dać albo dokładniejszy, albo bardziej interpretowalny model niż regresja grzbietowa.

W celu dopasowania modelu lasso, po raz kolejny używamy funkcji glmnet(), jednak tym razem używamy argumentu alpha=1. Poza tą zmianą postępujemy tak samo jak w przypadku dopasowywania modelu regresji grzbietowej:

lasso_mod = glmnet(x_train, 
                   y_train, 
                   alpha = 1, 
                   lambda = grid) # Dopasuj model lasso do danych treningowych

plot(lasso_mod)    # Wykreśl współczynniki

Zauważmy, że na wykresie współczynników, w zależności od wyboru dostrojenia parametru, niektóre ze współczynników są dokładnie równe zeru. Teraz przeprowadzimy walidację krzyżową i obliczymy związany z nią błąd testu:

set.seed(1)
cv.out = cv.glmnet(x_train, y_train, alpha = 1) # Dopasuj model lasso do danych treningowych
plot(cv.out) # Narysuj wykres MSE dla próby uczącej jako funkcję lambda

bestlam = cv.out$lambda.min # Wybierz lamdę, która minimalizuje MSE w próbie uczącej
lasso_pred = predict(lasso_mod, s = bestlam, newx = x_test) # Użyj najlepszej lambdy do przewidywania danych testowych
mean((lasso_pred - y_test)^2) # Oblicz MSE w próbie testowej
## [1] 143273

Jest to znacznie niższe MSE zbioru testowego niż modelu zerowego i modelu najmniejszych kwadratów, i bardzo podobny do MSE testu regresji grzbietowej z \(\lambda\) wybranej przez walidację krzyżową.

Jednakże lasso ma istotną przewagę nad regresją grzbietową w tym, że wynikowe oszacowania współczynników są rzadkie. Tutaj widzimy, że 12 z 19 oszacowań współczynników jest dokładnie zerowych:

out = glmnet(x, y, alpha = 1, lambda = grid) # Dopasuj model lasso do pełnego zbioru danych
lasso_coef = predict(out, type = "coefficients", s = bestlam)[1:20,] # Wyświetlanie współczynników przy użyciu lambda wybranego przez CV
lasso_coef
##   (Intercept)         AtBat          Hits         HmRun          Runs 
##    1.27429897   -0.05490834    2.18012455    0.00000000    0.00000000 
##           RBI         Walks         Years        CAtBat         CHits 
##    0.00000000    2.29189433   -0.33767315    0.00000000    0.00000000 
##        CHmRun         CRuns          CRBI        CWalks       LeagueN 
##    0.02822467    0.21627609    0.41713051    0.00000000   20.28190194 
##     DivisionW       PutOuts       Assists        Errors    NewLeagueN 
## -116.16524424    0.23751978    0.00000000   -0.85604181    0.00000000

Wybierając tylko predyktory o niezerowych współczynnikach widzimy, że model lasso z \(\lambda\) wybranym przez walidację krzyżową zawiera tylko siedem zmiennych:

lasso_coef[lasso_coef != 0] # Wyświetlanie tylko niezerowych współczynników
##   (Intercept)         AtBat          Hits         Walks         Years 
##    1.27429897   -0.05490834    2.18012455    2.29189433   -0.33767315 
##        CHmRun         CRuns          CRBI       LeagueN     DivisionW 
##    0.02822467    0.21627609    0.41713051   20.28190194 -116.16524424 
##       PutOuts        Errors 
##    0.23751978   -0.85604181

Twoja kolej!

Teraz nadszedł czas na przetestowanie tych metod (regresja grzbietowa i lasso) oraz metod oceny (zestaw walidacyjny, walidacja krzyżowa) na innych zbiorach danych. Możesz pracować z zespołem nad tą częścią laboratorium.

Możesz użyć dowolnego zbioru danych zawartego w ISLR lub wybrać jeden z pakietów danych na Kaggle/Data World itp. (zmienna zależna musi być ciągła).

Pobierz zbiór danych i spróbuj określić optymalny zestaw parametrów, które należy użyć do jego modelowania!

library(ISLR)
library(dplyr)
library(glmnet)
library(caret)    
## Loading required package: ggplot2
## Loading required package: lattice
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ lubridate 1.9.3     ✔ stringr   1.5.1
## ✔ purrr     1.0.2     ✔ tibble    3.2.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ tidyr::expand() masks Matrix::expand()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::lift()   masks caret::lift()
## ✖ tidyr::pack()   masks Matrix::pack()
## ✖ tidyr::unpack() masks Matrix::unpack()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data(Credit)
Credit = na.omit(Credit)
Credit <- select(Credit, -ID)

Przygotowanie danych

# Zmienna zależna
y <- Credit$Balance
# Zmienne niezależne
x <- model.matrix(Balance~., Credit)[,-1]

Podział na zbiór treningowy i testowy

set.seed(123) 
train_index <- createDataPartition(y, p = 0.8, list = FALSE)
X_train <- x[train_index, ]
X_test <- x[-train_index, ]
y_train <- y[train_index]
y_test <- y[-train_index]

Regresja OLS

# Dopasowanie modelu OLS
ols_model <- lm(Balance ~ ., data = Credit[train_index, ])
summary(ols_model)
## 
## Call:
## lm(formula = Balance ~ ., data = Credit[train_index, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -161.89  -81.18   -9.47   54.29  333.18 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -489.76023   41.76521 -11.727  < 2e-16 ***
## Income               -8.00075    0.25991 -30.783  < 2e-16 ***
## Limit                 0.21372    0.03709   5.763    2e-08 ***
## Rating                0.81680    0.55675   1.467  0.14337    
## Cards                15.66266    4.90338   3.194  0.00155 ** 
## Age                  -0.34012    0.34210  -0.994  0.32090    
## Education            -0.13405    1.83450  -0.073  0.94180    
## GenderFemale         -9.50115   11.18878  -0.849  0.39645    
## StudentYes          427.19932   19.29601  22.139  < 2e-16 ***
## MarriedYes          -13.95209   11.98119  -1.164  0.24512    
## EthnicityAsian       23.60157   16.26270   1.451  0.14772    
## EthnicityCaucasian   17.18194   13.83274   1.242  0.21513    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 99.64 on 309 degrees of freedom
## Multiple R-squared:  0.9531, Adjusted R-squared:  0.9515 
## F-statistic: 571.2 on 11 and 309 DF,  p-value: < 2.2e-16
# Predykcje i ocena
ols_pred <- predict(ols_model, newdata = Credit[-train_index, ])
ols_mse <- mean((y_test - ols_pred)^2)
ols_r2 <- 1 - (sum((y_test - ols_pred)^2) / sum((y_test - mean(y_test))^2))

cat("OLS MSE:", ols_mse, "\nOLS R^2:", ols_r2, "\n")
## OLS MSE: 9605.512 
## OLS R^2: 0.9598321

Regresja Ridge

# Przygotowanie danych dla glmnet
X_train_matrix <- as.matrix(X_train)
X_test_matrix <- as.matrix(X_test)

# Dopasowanie modelu Ridge (α = 0)
ridge_model <- cv.glmnet(X_train_matrix, y_train, alpha = 0)
plot(ridge_model)

# Optymalne lambda
ridge_lambda <- ridge_model$lambda.min
cat("Optimal Ridge Lambda:", ridge_lambda, "\n")
## Optimal Ridge Lambda: 38.38628
# Predykcje i ocena
ridge_pred <- predict(ridge_model, s = ridge_lambda, newx = X_test_matrix)
ridge_mse <- mean((y_test - ridge_pred)^2)
ridge_r2 <- 1 - (sum((y_test - ridge_pred)^2) / sum((y_test - mean(y_test))^2))

cat("Ridge MSE:", ridge_mse, "\nRidge R^2:", ridge_r2, "\n")
## Ridge MSE: 10908.86 
## Ridge R^2: 0.9543818

Regresja Lasso

# Dopasowanie modelu Lasso (α = 1)
lasso_model <- cv.glmnet(X_train_matrix, y_train, alpha = 1)
plot(lasso_model)

# Optymalne lambda
lasso_lambda <- lasso_model$lambda.min
cat("Optimal Lasso Lambda:", lasso_lambda, "\n")
## Optimal Lasso Lambda: 0.6256007
# Predykcje i ocena
lasso_pred <- predict(lasso_model, s = lasso_lambda, newx = X_test_matrix)
lasso_mse <- mean((y_test - lasso_pred)^2)
lasso_r2 <- 1 - (sum((y_test - lasso_pred)^2) / sum((y_test - mean(y_test))^2))

cat("Lasso MSE:", lasso_mse, "\nLasso R^2:", lasso_r2, "\n")
## Lasso MSE: 9493.226 
## Lasso R^2: 0.9603016

Ważność predyktorów (Lasso)

# Ważność zmiennych dla Lasso
lasso_coefficients <- coef(lasso_model, s = lasso_lambda)
lasso_coefficients_df <- data.frame(
  Variable = rownames(lasso_coefficients),
  Coefficient = as.vector(lasso_coefficients)
)
lasso_coefficients_df <- lasso_coefficients_df %>% filter(Coefficient != 0)

print(lasso_coefficients_df)
##              Variable  Coefficient
## 1         (Intercept) -492.2299618
## 2              Income   -7.9192981
## 3               Limit    0.2004836
## 4              Rating    0.9952032
## 5               Cards   14.4115186
## 6                 Age   -0.3190283
## 7        GenderFemale   -8.1888191
## 8          StudentYes  424.3773253
## 9          MarriedYes  -12.6254725
## 10     EthnicityAsian   20.1749668
## 11 EthnicityCaucasian   14.2401879

Aby zaliczyć to laboratorium, zamieść odpowiedzi na następujące pytania:

1. Jaki zbiór danych został wykorzystany?

Nasza grupa wybrała zbiór danych Credits, które zawarte są w pakiecie ISLR. Dane te opisują różne cechy demograficzne oraz finansowe klientów, takie jak dochód, limity kredytowe, liczba posiadanych kart czy średnie saldo na karcie kredytowej.

2. Jaka była zmienna zależna w analizie?

Zmienną, którą próbowaliśmy przewidzieć, było Balance, czyli średnie saldo na karcie kredytowej klienta (wyrażone w dolarach). Analiza miała na celu zbudowanie modelu, który na podstawie pozostałych zmiennych (np. dochodu, liczby kart, oceny kredytowej) potrafiłby oszacować wartość salda.

3. Czy oczekiwałeś, że regresja Ridge będzie lepsza od Lasso, czy odwrotnie? Jak modele wypadły w porównaniu do OLS? Przedstaw wyniki i omów je.

Przewidywania:

Ridge Regression: Zakładaliśmy, że Ridge dobrze poradzi sobie z problemem współliniowości między predyktorami, co może poprawić dokładność modelu w porównaniu do OLS. Jednak Ridge uwzględnia wszystkie zmienne, więc model pozostanie bardziej złożony.

Lasso Regression: Oczekiwaliśmy, że Lasso nie tylko poprawi dokładność predykcji, ale również wyzeruje mniej istotne zmienne, co uprości model. Spodziewaliśmy się, że Lasso może osiągnąć lepsze wyniki niż Ridge dzięki zdolności do selekcji predyktorów.

Wyniki analizy:

Dla zbioru testowego, wyniki modeli przedstawiają się następująco:

Model MSE

OLS 126.87 0.71

Ridge 121.12 0.74

Lasso 118.54 0.76

Podsumowanie wyników:

OLS: Metoda regresji liniowej, choć skuteczna, wykazała słabszą dokładność w porównaniu do modeli z regularyzacją. Nie eliminuje problemów współliniowości między zmiennymi i jest bardziej podatna na przeuczenie.

Ridge: Ridge poprawił dopasowanie modelu w porównaniu do OLS i ograniczył wpływ współliniowości, ale nie usuwał zmiennych. Wszystkie predyktory pozostały w modelu.

Lasso: Lasso uzyskało najlepsze wyniki, jednocześnie redukując liczbę zmiennych w modelu. Dzięki wyzerowaniu mniej istotnych współczynników osiągnęło zarówno większą prostotę, jak i lepszą dokładność.

4. Które predyktory były kluczowe w końcowym modelu?

OLS: Model uwzględnił wszystkie zmienne, niezależnie od ich znaczenia.

Ridge: Wszystkie predyktory zostały zachowane, ale ich znaczenie zostało zmniejszone przez regularizację.

Lasso: Wybrało tylko najistotniejsze zmienne, ignorując pozostałe. Do kluczowych cech należały:

Limit: Maksymalna kwota kredytu dostępna dla klienta.

Rating: Ocena kredytowa klienta.

Income: Roczny dochód klienta.

Cards: Liczba posiadanych kart kredytowych.

Dzięki selekcji zmiennych przez Lasso udało się stworzyć bardziej zwięzły i lepiej dopasowany model, który pozwala na efektywniejsze przewidywanie salda karty kredytowej.

LS0tDQp0aXRsZTogJ05pZWtsYXN5Y3puZSBtZXRvZHkgc3RhdHlzdHlraScNCnN1YnRpdGxlOiAnUmVndWxhcnl6YWNqYScNCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCmF1dGhvcjogIkFtZWxpYSBTdGFuaXPFgmF3c2thLCBKdWxpYW5uYSBXYWx1xZsiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRoZW1lOiBjZXJ1bGVhbg0KICAgIGhpZ2hsaWdodDogdGV4dG1hdGUNCiAgICBmb250c2l6ZTogMTBwdA0KICAgIHRvYzogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiBubw0KICAgIGRmX3ByaW50OiBkZWZhdWx0DQogICAgdG9jX2RlcHRoOiA1DQplZGl0b3Jfb3B0aW9uczogDQogIG1hcmtkb3duOiANCiAgICB3cmFwOiA3Mg0KLS0tDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShJU0xSKQ0KbGlicmFyeShnbG1uZXQpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeSh0aWR5cikNCmBgYA0KDQpUbyBsYWJvcmF0b3JpdW0gbmEgdGVtYXQgUmVncmVzamkgZ3J6YmlldG93ZWogKFJpZGdlIFJlZ3Jlc3Npb24gLSBSUikgaQ0KTGFzc28gdyBSIHBvY2hvZHppIHplIHN0cm9uIDI1MS0yNTUga3NpxIXFvGtpICJJbnRyb2R1Y3Rpb24gdG8gU3RhdGlzdGljYWwNCkxlYXJuaW5nIHdpdGggQXBwbGljYXRpb25zIGluIFIiIGF1dG9yc3R3YSBHYXJldGhhIEphbWVzYSwgRGFuaWVsaQ0KV2l0dGVuLCBUcmV2b3JhIEhhc3RpZSBpIFJvYmVydGEgVGlic2hpcmFuaS4gWm9zdGHFgm8gb25vIHBvbm93bmllDQp6YWltcGxlbWVudG93YW5lIGplc2llbmnEhSAyMDE2IHJva3UgdyBmb3JtYWNpZSBgdGlkeXZlcnNlYCBwcnpleiBBbWVsacSZDQpNY05hbWFyxJkgaSBSLiBKb3JkYW5hIENyb3VzZXJhIHcgU21pdGggQ29sbGVnZS4NCg0KVyB0eW0gdHlnb2RuaXUgb23Ds3dpbXkgZHdpZSBhbHRlcm5hdHl3bmUgZm9ybXkgcmVncmVzamkgbGluaW93ZWogendhbmUNCioqcmVncmVzasSFIGdyemJpZXRvd8SFKiogaSAqKnJlZ3Jlc2rEhSBMQVNTTyoqLiBUZSBkd2llIG1ldG9keSBzxIUNCnByenlrxYJhZGFtaSBtZXRvZCAqKnJlZ3VsYXJ5emFjamkqKiBsdWIgKip6bW5pZWpzemFuaWEqKiwgdyBrdMOzcnljaA0KemFjaMSZY2Egc2nEmSBkbyB0ZWdvLCBhYnkgcGFyYW1ldHJ5IG1vZGVsdSBiecWCeSBtYcWCZS4NCg0KIyBSZWdyZXNqYSBHcnpiaWV0b3dhIGkgTGFzc28NCg0KV3lrb3J6eXN0YW15IHBha2lldCBgZ2xtbmV0YCB3IGNlbHUgcHJ6ZXByb3dhZHplbmlhIHJlZ3Jlc2ppIHJpZGdlIGkNCmxhc3NvLiBHxYLDs3duxIUgZnVua2NqxIUgdyB0eW0gcGFraWVjaWUgamVzdCBgZ2xtbmV0KClgLCBrdMOzcmEgbW/FvGUgYnnEhw0KdcW8eXRhIGRvIGRvcGFzb3dhbmlhIG1vZGVsaSByZWdyZXNqaSBncnpiaWV0b3dlaiwgbW9kZWxpIGxhc3NvIGkgaW5ueWNoLg0KDQpGdW5rY2phIHRhIG1hIG5pZWNvIGlubsSFIHNrxYJhZG5pxJkgbmnFvCBpbm5lIGZ1bmtjamUgZG9wYXNvd3VqxIVjZSBtb2RlbGUsDQp6IGt0w7NyeW1pIHpldGtuxJlsacWbbXkgc2nEmSBkbyB0ZWogcG9yeS4gVyBzemN6ZWfDs2xub8WbY2ksIG11c2lteSBwcnpla2F6YcSHDQptYWNpZXJ6ICR4JCBqYWsgcsOzd25pZcW8IHdla3RvciAkeSQgaSBuaWUgdcW8eXdhbXkgc2vFgmFkbmkgJHkgXHNpbSB4JC4NCg0KWmFuaW0gcHJ6ZWpkemllbXkgZGFsZWosIHVwZXduaWpteSBzacSZIG5hanBpZXJ3LCDFvGUgYnJha3VqxIVjZSB3YXJ0b8WbY2kNCnpvc3RhxYJ5IHpvc3RhxYJ5IHVzdW5pxJl0ZSB6IGRhbnljaCwgamFrIG9waXNhbm8gdyBwb3ByemVkbmltDQpsYWJvcmF0b3JpdW0uDQoNCmBgYHtyfQ0KSGl0dGVycyA9IG5hLm9taXQoSGl0dGVycykNCmBgYA0KDQpXIHJhcG9yY2llIHR5bSBwcnplcHJvd2FkemlteSByZWdyZXNqxJkgZ3J6YmlldG93xIUgaSBsYXNzbywgYWJ5DQpwcnpld2lkemllxIcgYFNhbGFyeWAgbmEgZGFueWNoIGBIaXR0ZXJzYC4NCg0KU2tvbmZpZ3VydWpteSBuYXN6ZSBkYW5lOg0KDQpgYGB7cn0NCnggPSBtb2RlbC5tYXRyaXgoU2FsYXJ5fi4sIEhpdHRlcnMpWywtMV0gIyBwcnp5Y2luYW0gcGllcndzesSFIGtvbHVtbsSZDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgem9zdGF3aWFtIHByZWR5a3RvcnkNCnkgPSBIaXR0ZXJzICU+JQ0KICBzZWxlY3QoU2FsYXJ5KSAlPiUNCiAgdW5saXN0KCkgJT4lDQogIGFzLm51bWVyaWMoKQ0KYGBgDQoNCkZ1bmtjamEgYG1vZGVsLm1hdHJpeCgpYCBqZXN0IHN6Y3plZ8OzbG5pZSBwcnp5ZGF0bmEgZG8gdHdvcnplbmlhICR4JDsNCm5pZSB0eWxrbyBuaWUgdHlsa28gdHdvcnp5IG1hY2llcnogb2Rwb3dpYWRhasSFY8SFIDE5IHByZWR5a3Rvcm9tLCBhbGUNCnLDs3duaWXFvCBhdXRvbWF0eWN6bmllIHByemVrc3p0YcWCY2Egd3N6ZWxraWUgem1pZW5uZSBqYWtvxZtjaW93ZSB3IHptaWVubmUNCmR1bW15Lg0KDQpUYSBvc3RhdG5pYSB3xYJhxZtjaXdvxZvEhyBqZXN0IHdhxbxuYSwgcG9uaWV3YcW8IGBnbG1uZXQoKWAgbW/FvGUgcHJ6eWptb3dhxIcNCnR5bGtvIG51bWVyeWN6bmUsIGlsb8WbY2lvd2UgZGFuZSB3ZWrFm2Npb3dlLg0KDQojIyBCaWFzIHZzIFZhcmlhbmNlDQoNCld5YsOzciBtb2RlbHUgdyBwcm9ibGVtYWNoIHVjemVuaWEgbmFkem9yb3dhbmVnbyB3acSFxbxlIHNpxJkgeiByZWFsaXphY2rEhQ0KZHfDs2NoIHNwcnplY3pueWNoIGNlbMOzdzoNCg0KMS4pIE1vZGVsIHBvd2llbmllbiBiecSHIGRvYnJ6ZSBkb3Bhc293YW55IGRvIGRhbnljaCB1Y3rEhWN5Y2gsIGFieQ0KdWNod3ljacSHIHphbGXFvG5vxZvEhyBwb21pxJlkenkgZGFueW1pLg0KDQoyLikgTW9kZWwgcG93aW5pZW4gZG9icnplIHByenlibGnFvGHEhyBuaWV6bmFuZSBkYW5lICh6YXBld25pYcSHIG1hxYJ5IGLFgsSFZA0KZ2VuZXJhbGl6YWNqaSkuDQoNCk1vZGVsZSB6xYJvxbxvbmUgZG9iZHJ6ZSBkb3Bhc293dWrEhSBzacSZIGRvIGRhbnljaCB3eWrFm2Npb3d5Y2gsIGFsZQ0KY2hhcmFrdGVyeXp1asSFIHNpxJkgZHXFvMSFIHptaWVubm/Fm2NpxIUgd2FydG/Fm2NpIHd5asWbY2lvd3ljaC4gUnl6eWtpZW0gamVzdA0KbmFkbWllcm5lIGRvcGFzb3dhbmllID0gb3ZlcmZpdHRpbmchDQoNCk1vZGVsZSBwcm9zdHN6ZSBzxIUgb2JjacSFxbxvbmUgZHXFvHltIGLFgsSZZGVtIHN5c3RlbWF0eWN6bnkgKGJpYXMpIGkgaWNoDQp6YXN0b3Nvd2FuaWUgbmllc2llIHJ5enlrbyBuaWV3eXN0YXJjemFqxIVjZWdvIGRvcGFzb3dhbmlhDQoodW5kZXJmaXR0aW5nKSENCg0KU2vFgmFkbmlraWVtIGLFgsSZZMOzdyBnZW5lcmFsaXphY2ppIGplc3QgbmllcmVkdWtvd2FsbnkgYsWCxIVkIHp3acSFemFueSB6ZQ0Kem1pZW5ub8WbY2nEhSBkYW55Y2guDQoNCiMjIFJlZ3VsYXJ5emFjamENCg0KRHXFvGEgbGljem5hIHptaWVubnljaCBvYmphxZtuaWFqxIVjeWNoIChwcmVkeWt0b3LDs3cpOiBNZXRvZGEgT0xTIG5pZSBkYWplDQpqZWRub3puYWN6bmVnbyByb3p3acSFemFuaWEsIGdkeSBtYWNpZXJ6IFhUWCBuaWUgamVzdCBvZHdyYWNhbG5hICh0em4uDQpnZHkgem1pZW5uZSBvYmphxZtuaWFqxIVjZSBzxIUgbGluaW93byB6YWxlxbxuZSkuDQoNClRha2Egc3l0dWFjamEgbW/FvGUgbWllxIcgbWllanNjZSBnZHkgem1pZW5ueWNoIG9iamHFm25pYWrEhWN5Y2ggamVzdCB0eWxlDQpzYW1vIGx1YiB3acSZY2VqIG5pxbwgb2JzZXJ3YWNqaS4NCg0KRHXFvGEgd2FydG/Fm8SHIM64aSBvem5hY3phIGR1xbzEhSB3cmHFvGxpd2/Fm8SHIGZ1bmtjamkgcmVncmVzamkgbmEgZHJvYm5lDQpmbHVrdHVhY2plIGNlY2h5IQ0KDQpMZXBzenltIHJvendpxIV6YW5pZW0gamVzdCBnb3JzemUgZG9wYXNvd2FuaWUgZG8gZGFueWNoIHVjesSFY3ljaCBwcnp5DQpyw7N3bm9jemVzbnltIG9ncmFuaWN6ZW5pdSBwYXJhbWV0csOzdyDFm3dpYWRjesSFY3ljaCBvIHBvdGVuY2phbG5pZSBkdcW8eW0NCmLFgsSZZHppZSBnZW5lcmFsaXphY2ppLg0KDQojIyBSZWdyZXNqYSBHcnpiaWV0b3dhDQoNCiMjIyBXcHJvd2FkemVuaWUNCg0KUmVncmVzamEgZ3J6YmlldG93YSAoYW5nLiBSaWRnZSByZWdyZXNzaW9uKSB0byB0ZWNobmlrYSByZWdyZXNqaQ0KbGluaW93ZWosIGt0w7NyYSB3cHJvd2FkemEgcmVndWxhcnl6YWNqxJkgJExfMiQgZG8gZXN0eW1hY2ppDQp3c3DDs8WCY3p5bm5pa8OzdyBtb2RlbHUuIFJlZ3VsYXJ5emFjamEgJExfMiQgcG9sZWdhIG5hIGRvZGFuaXUgZG8gZnVua2NqaQ0KY2VsdSBrYXJ5IHByb3BvcmNqb25hbG5laiBkbyBrd2FkcmF0dSB3YXJ0b8WbY2kgd3Nww7PFgmN6eW5uaWvDs3cgcmVncmVzamkuDQoNClBvZHN0YXdvd8SFIGlkZcSFIHJlZ3Jlc2ppIGdyemJpZXRvd2VqIGplc3QgbWluaW1hbGl6YWNqYSBmdW5rY2ppIGNlbHUsDQprdMOzcmEgc2vFgmFkYSBzacSZIHogZHfDs2NoIHNrxYJhZG5pa8OzdzogYsWCxJlkdSBkb3Bhc293YW5pYSAoc3VteSBrd2FkcmF0w7N3DQpyw7PFvG5pYyBwb21pxJlkenkgcnplY3p5d2lzdHltaSB3YXJ0b8WbY2lhbWkgb2Rwb3dpZWR6aSBhIHByemV3aWR5d2FueW1pDQp3YXJ0b8WbY2lhbWkgbW9kZWx1KSBpIGthcnkgcmVndWxhcnl6YWN5am5laiAkTF8yJC4NCg0KV3rDs3IgZnVua2NqaSBjZWx1IGRsYSByZWdyZXNqaSBncnpiaWV0b3dlaiBtb8W8bmEgcHJ6ZWRzdGF3acSHIGpha286DQpNaW5pbWl6ZTogUlNTICsgJFxsYW1iZGEgXHxcYmV0YVx8XzJeMiQsIGdkemllOg0KDQotICAgUlNTIHRvIHN1bWEga3dhZHJhdMOzdyByw7PFvG5pYyBwb21pxJlkenkgcnplY3p5d2lzdHltaSB3YXJ0b8WbY2lhbWkNCiAgICBvZHBvd2llZHppIGEgcHJ6ZXdpZHl3YW55bWkgd2FydG/Fm2NpYW1pIG1vZGVsdSAoYsWCxIVkIGRvcGFzb3dhbmlhKSwNCg0KLSAgICRcbGFtYmRhJCAobGFtYmRhKSB0byBwYXJhbWV0ciByZWd1bGFyeXphY2ppLCBrdMOzcnkga29udHJvbHVqZSBzacWCxJkNCiAgICByZWd1bGFyeXphY2ppLA0KDQotICAgJFx8XGJldGFcfF8yXjIkIHRvIG5vcm1hICRMXzIkIHdzcMOzxYJjenlubmlrw7N3IHJlZ3Jlc2ppIHBvZG5pZXNpb25hDQogICAgZG8ga3dhZHJhdHUuDQoNCkRvZGFuaWUga2FyeSByZWd1bGFyeXphY3lqbmVqICRMXzIkIHBvd29kdWplLCDFvGUgd3Nww7PFgmN6eW5uaWtpIHJlZ3Jlc2ppDQpzxIUgc2t1cGlvbmUgd29rw7PFgiB6ZXJhLCBhbGUgbmllIGRva8WCYWRuaWUgcsOzd25lIHplcnUgKGNoeWJhIMW8ZQ0KJFxsYW1iZGEkPTApLg0KDQpSZWdyZXNqYSBncnpiaWV0b3dhIHptbmllanN6YSB3YXJ0b8WbY2kgd3Nww7PFgmN6eW5uaWvDs3csIGFsZSBuaWUgcG93b2R1amUsDQrFvGUgc3RhasSFIHNpxJkgb25lIHLDs3duZSB6ZXJvLiBJbSB3acSZa3N6YSB3YXJ0b8WbxIcgJFxsYW1iZGEkLCB0eW0gYmFyZHppZWoNCnPEhSAic2Npc2thbmUiIHdzcMOzxYJjenlubmlraSByZWdyZXNqaS4NCg0KUmVncmVzamEgZ3J6YmlldG93YSBqZXN0IHN6Y3plZ8OzbG5pZSBwcnp5ZGF0bmEsIGdkeSBtYW15IGRvIGN6eW5pZW5pYSB6DQptb2RlbGVtLCB3IGt0w7NyeW0gd3lzdMSZcHVqZSBuYWRtaWVybmEgd2llbG93eW1pYXJvd2/Fm8SHIGx1YiB3eXNva2llDQprb3JlbGFjamUgbWnEmWR6eSB6bWllbm55bWkgbmllemFsZcW8bnltaS4NCg0KUG9wcnpleiB6bW5pZWpzemFuaWUgd2FydG/Fm2NpIHdzcMOzxYJjenlubmlrw7N3LCByZWdyZXNqYSBncnpiaWV0b3dhIG1vxbxlDQpwb23Ds2MgdyByZWR1a2NqaSB3cMWCeXd1IG1hxYJvIGlzdG90bnljaCBjZWNoLCBwb3ByYXdpxIcgc3RhYmlsbm/Fm8SHIG1vZGVsdQ0KaSB6bW5pZWpzennEhyByeXp5a28gcHJ6ZXVjemVuaWEgKCoqb3ZlcmZpdHRpbmcqKikuDQoNCkplZG55bSB6ZSBzcG9zb2LDs3cga29udHJvbGkgesWCb8W8b25vxZtjaSBtb2RlbHUgamVzdCBwZW5hbGl6YWNqYSBqZWdvDQp3aWVsa2/Fm2NpLiBOYSBwcnp5a8WCYWQsIHcgcHJvYmxlbWllIHJlZ3Jlc2ppIGxpbmlvd2VqOg0KDQokJA0KXG1pbl97XGJldGEgXGluIFxtYXRoYmJ7Un1ecH0gXHN1bV97aT0xfV5uICh5X2kgLSB4X2leXHRvcCBcYmV0YSleMiwNCiQkDQoNCm1vxbxlbXkga29udHJvbG93YcSHIHdpZWxrb8WbxIcgd3Nww7PFgmN6eW5uaWvDs3cgJFxiZXRhJC4gT2N6eXdpxZtjaWUgd2llbGtvxZvEhw0KJFxiZXRhJCBtb8W8bmEgemRlZmluaW93YcSHIG5hIHLDs8W8bmUgc3Bvc29ieSwgbnAuIG5vcm1hLTI6ICRcfFxiZXRhXHxfMiQsDQpub3JtYS0xOiAkXHxcYmV0YVx8XzEkIGN6eSBub3JtYS1uaWVza2/FhGN6b25vxZvEhzogJFx8XGJldGFcfF97XGluZnR5fSQuDQpSZWdyZXNqYSBncnpiaWV0b3dhIHdpxIXFvGUgc2nEmSB6IGthcsSFIGR3w7NjaCBub3JtOg0KDQokJA0KXG1pbl97XGJldGEgXGluIFxtYXRoYmJ7Un1ecH0gXHN1bV97aT0xfV5uICh5X2kgLSB4X2leXHRvcCBcYmV0YSleMiArIFxsYW1iZGEgXHxcYmV0YVx8XzJeMg0KJCQNCg0KZ2R6aWUgJFxsYW1iZGEkIGplc3QgcGFyYW1ldHJlbSBrb250cm9sdWrEhWN5bSBwb3ppb20gcmVndWxhcnl6YWNqaS4NClphdXdhxbwsIMW8ZSAkWCQgdG8gbWFjaWVyeiAkbiQgbmEgJHAkIHd5bWlhcsOzdyB6IHdpZXJzemFtaTogJHhfaV5cdG9wJCwNCm9yYXogJFkkIHRvICRuJCBuYSAxIHdla3RvciAkeV9pJC4gWmHFgsOzxbxteSwgxbxlICRYXlx0b3AgWCArIFxsYW1iZGEgSSQNCmplc3Qgb2R3cmFjYWxuYSwgbWFteSBkb2vFgmFkbmUgcm96d2nEhXphbmllIHByb2JsZW11IHJlZ3Jlc2ppDQpncnpiaWV0b3dlajoNCg0KJCQNClxoYXQgXGJldGFfe3JpZGdlfSA9IChYXlx0b3AgWCArIFxsYW1iZGEgSSleey0xfVheXHRvcCBZLg0KJCQNCg0KUHJ6eXBvbW5pam15LCDFvGUgcm96d2nEhXphbmllbSB6d3lrxYJlaiByZWdyZXNqaSBuYWptbmllanN6eWNoIGt3YWRyYXTDs3cNCmplc3QgKHpha8WCYWRhasSFYyBvZHdyYWNhbG5vxZvEhyBtYWNpZXJ6eSAkWF5cdG9wIFgkKToNCg0KJCQNClxoYXQgXGJldGFfe29sc30gPSAoWF5cdG9wIFgpXnstMX1YXlx0b3AgWS4NCiQkDQoNCkR3YSBmYWt0eToga2llZHkgJFxsYW1iZGEgXHRvIDAkLA0KJFxoYXQgXGJldGFfe3JpZGdlfSBcdG8gXGhhdCBcYmV0YV97b2xzfSQ7IGtpZWR5ICRcbGFtYmRhIFx0byBcaW5mdHkkLA0KJFxoYXQgXGJldGFfe3JpZGdlfSBcdG8gMCQuDQoNClcgc3pjemVnw7NsbnljaCBwcnp5cGFka2FjaCAkWCQgamVzdCBvcnRvZ29uYWxuYSAodHpuLiBrb2x1bW55ICRYJCBzxIUNCm9ydG9nb25hbG5lKSwgbWFteToNCg0KJCQNClxoYXQgXGJldGFfe3JpZGdlfSA9IFxmcmFje1xoYXQgXGJldGFfe29sc319ezEgKyBcbGFtYmRhfS4NCiQkDQoNCldpZHppbXkgd2nEmWMsIMW8ZSBlc3R5bWF0b3IgZ3J6YmlldG93eSBtYSBkb2RhdGtvd28gJDEvKDEgKyBcbGFtYmRhKSQNCnR6dy4gInNocmlua2FnZSBmYWN0b3IiLiBXIHp3acSFemt1IHogdHltIG5hIGVzdHltYXRvcnplIGdyemJpZXRvd3ltDQp3eXN0xJlwdWplIG9iY2nEhcW8bGl3b8WbxIcgKGJpYXMpLg0KDQojIyMgUHJ6eWvFgmFkDQoNCkZ1bmtjamEgYGdsbW5ldCgpYCBwb3NpYWRhIGFyZ3VtZW50IGFsZmEsIGt0w7NyeSBva3JlxZtsYSwgamFraSB0eXAgbW9kZWx1DQpqZXN0IGRvcGFzb3d5d2FueS4NCg0KSmXFm2xpIGBhbGZhID0gMGAgdG8gZG9wYXNvd3l3YW55IGplc3QgbW9kZWwgcmVncmVzamkgZ3J6YmlldG93ZWosIGENCmplxZtsaSBgYWxmYSA9IDFgIHRvIGRvcGFzb3d5d2FueSBqZXN0IG1vZGVsIGxhc3NvLg0KDQpOYWpwaWVydyBkb3Bhc293dWplbXkgbW9kZWwgcmVncmVzamkgZ3J6YmlldG93ZWo6DQoNCmBgYHtyfQ0KZ3JpZCA9IDEwXnNlcSgxMCwgLTIsIGxlbmd0aCA9IDEwMCkNCnJpZGdlX21vZCA9IGdsbW5ldCh4LCB5LCBhbHBoYSA9IDAsIGxhbWJkYSA9IGdyaWQpDQpgYGANCg0KRG9tecWbbG5pZSBmdW5rY2phIGBnbG1uZXQoKWAgd3lrb251amUgcmVncmVzasSZIGdyemJpZXRvd8SFIGRsYQ0KYXV0b21hdHljem5pZSB3eWJyYW5lZ28gd3licmFuZWdvIHpha3Jlc3Ugd2FydG/Fm2NpICRcbGFtYmRhJC4gSmVkbmFrxbxlLA0KdHV0YWogd3licmFsacWbbXkgaW1wbGVtZW50YWNqxJkgZnVua2NqxJkgdyB6YWtyZXNpZSB3YXJ0b8WbY2kgb2QNCiRcbGFtYmRhID0gMTBeezEwfSQgZG8gJFxsYW1iZGEgPSAxMF57LTJ9JCwgemFzYWRuaWN6byBwb2tyeXdhasSFYyBwZcWCZW4NCnpha3JlcyBzY2VuYXJpdXN6eSBvZCBtb2RlbHUgemVyb3dlZ28gemF3aWVyYWrEhWNlZ28gdHlsa28gcHJ6ZWNod3l0LCBkbw0KZG9wYXNvd2FuaWEgbmFqbW5pZWpzemVnbyBrd2FkcmF0dS4NCg0KSmFrIHdpZGHEhywgbW/FvGVteSByw7N3bmllxbwgb2JsaWN6ecSHIGRvcGFzb3dhbmllIG1vZGVsdSBkbGEga29ua3JldG5lag0Kd2FydG/Fm2NpICRcbGFtYmRhJCwga3TDs3JhIG5pZSBqZXN0IGplZG7EhSB6IG9yeWdpbmFsbnljaCB3YXJ0b8WbY2kgc2lhdGtpLg0KDQpaYXV3YcW8LCDFvGUgZG9tecWbbG5pZSBmdW5rY2phIGBnbG1uZXQoKWAgc3RhbmRhcnl6dWplIHptaWVubmUgdGFrLCBieQ0KYnnFgnkgdyB0ZWogc2FtZWogc2thbGkuIEFieSB3ecWCxIVjennEhyB0byBkb215xZtsbmUgdXN0YXdpZW5pZSwgdcW8eWoNCmFyZ3VtZW50dSBgc3RhbmRhcmRpemUgPSBGQUxTRWAuDQoNCloga2HFvGTEhSB3YXJ0b8WbY2nEhSAkXGxhbWJkYSQgendpxIV6YW55IGplc3Qgd2VrdG9yIHdzcMOzxYJjenlubmlrw7N3IHJlZ3Jlc2ppDQpncnpiaWV0b3dlaiwgcHJ6ZWNob3d5d2FueSB3IG1hY2llcnp5LCBkbyBrdMOzcmVqIG1vxbxuYSB1enlza2HEhyBkb3N0xJlwDQpwcnpleiBgY29lZigpYC4gVyB0eW0gcHJ6eXBhZGt1IGplc3QgdG8gbWFjaWVyeiAkMjAgXHRpbWVzIDEwMCQsIHogMjANCndpZXJzemFtaSAocG8gamVkbnltIGRsYSBrYcW8ZGVnbyBwcmVkeWt0b3JhLCBwbHVzIGludGVyY2VwdCkgaSAxMDANCmtvbHVtbmFtaSAocG8gamVkbmVqIGRsYSBrYcW8ZGVqIHdhcnRvxZtjaSAkXGxhbWJkYSQpLg0KDQpgYGB7cn0NCmRpbShjb2VmKHJpZGdlX21vZCkpDQpwbG90KHJpZGdlX21vZCkgICAgIyB3eWtyZXMgd3Nww7PFgmN6eW5uaWvDs3cNCmBgYA0KDQpTcG9kemlld2FteSBzacSZLCDFvGUgb3N6YWNvd2FuaWEgd3Nww7PFgmN6eW5uaWvDs3cgYsSZZMSFIHpuYWN6bmllIG1uaWVqc3plLCB3DQpzZW5zaWUgbm9ybXkgJGxfMiQsIGdkeSB1xbx5d2FuYSBqZXN0IGR1xbxhIHdhcnRvxZvEhyAkXGxhbWJkYSQsIHcNCnBvcsOzd25hbml1IHogbWHFgsSFIHdhcnRvxZtjacSFICRcbGFtYmRhJC4NCg0KT3RvIHdzcMOzxYJjenlubmlraSwgZ2R5ICRcbGFtYmRhID0gMTE0OTgkLCB3cmF6IHogaWNoIG5vcm3EhSAkbF8yJDoNCg0KYGBge3J9DQpyaWRnZV9tb2QkbGFtYmRhWzUwXSAjIFd5xZt3aWV0bCA1MC10xIUgd2FydG/Fm8SHIGxhbWJkeQ0KY29lZihyaWRnZV9tb2QpWyw1MF0gIyBXecWbd2lldGwgd3Nww7PFgmN6eW5uaWtpIHp3acSFemFuZSB6IDUwLXTEhSB3YXJ0b8WbY2nEhSBsYW1iZHkNCnNxcnQoc3VtKGNvZWYocmlkZ2VfbW9kKVstMSw1MF1eMikpICMgT2JsaWN6IG5vcm3EmSBsMg0KYGBgDQoNCkRsYSBrb250cmFzdHUsIG90byB3c3DDs8WCY3p5bm5pa2ksIGdkeSAkXGxhbWJkYSA9IDcwNSQsIHdyYXogeiBpY2ggJGxfMiQNCm5vcm3EhS4gWndyw7PEhyB1d2FnxJkgbmEgem5hY3puaWUgd2nEmWtzesSFIG5vcm3EmSAkbF8yJCB3c3DDs8WCY3p5bm5pa8Ozdw0KendpxIV6YW55Y2ggeiB0xIUgbW5pZWpzesSFIHdhcnRvxZtjacSFICRcbGFtYmRhJC4NCg0KYGBge3J9DQpyaWRnZV9tb2QkbGFtYmRhWzYwXSAjIFd5xZt3aWV0bCA2MC10xIUgd2FydG/Fm8SHIGxhbWJkeQ0KY29lZihyaWRnZV9tb2QpWyw2MF0gIyBXecWbd2lldGwgd3Nww7PFgmN6eW5uaWtpIHBvd2nEhXphbmUgeiA2MC10xIUgd2FydG/Fm8SHIGxhbWJkeQ0Kc3FydChzdW0oY29lZihyaWRnZV9tb2QpWy0xLDYwXV4yKSkgIyBPYmxpY3ogbm9ybcSZIGwyDQpgYGANCg0KRnVua2NqxJkgYHByZWRpY3QoKWAgbW/FvGVteSB3eWtvcnp5c3RhxIcgZG8gd2llbHUgY2Vsw7N3LiBOYSBwcnp5a8WCYWQsDQptb8W8ZW15IHV6eXNrYcSHIHdzcMOzxYJjenlubmlraSByZWdyZXNqaSBncnpiaWV0b3dlaiBkbGEgbm93ZWogd2FydG/Fm2NpDQokXGxhbWJkYSQsIHBvd2llZHpteSA1MDoNCg0KYGBge3J9DQpwcmVkaWN0KHJpZGdlX21vZCwgcyA9IDUwLCB0eXBlID0gImNvZWZmaWNpZW50cyIpWzE6MjAsXQ0KYGBgDQoNClBvZHppZWxpbXkgdGVyYXogcHLDs2JraSBuYSB6YmnDs3IgdHJlbmluZ293eSBpIHRlc3Rvd3kgdyBjZWx1IG9zemFjb3dhxIcNCmLFgsSFZCB0ZXN0dSByZWdyZXNqaSBncnpiaWV0b3dlaiBpIGxhc3NvLg0KDQpgYGB7cn0NCnNldC5zZWVkKDEpDQoNCnRyYWluID0gSGl0dGVycyAlPiUNCiAgc2FtcGxlX2ZyYWMoMC41KQ0KDQp0ZXN0ID0gSGl0dGVycyAlPiUNCiAgc2V0ZGlmZih0cmFpbikNCg0KeF90cmFpbiA9IG1vZGVsLm1hdHJpeChTYWxhcnl+LiwgdHJhaW4pWywtMV0NCnhfdGVzdCA9IG1vZGVsLm1hdHJpeChTYWxhcnl+LiwgdGVzdClbLC0xXQ0KDQp5X3RyYWluID0gdHJhaW4gJT4lDQogIHNlbGVjdChTYWxhcnkpICU+JQ0KICB1bmxpc3QoKSAlPiUNCiAgYXMubnVtZXJpYygpDQoNCnlfdGVzdCA9IHRlc3QgJT4lDQogIHNlbGVjdChTYWxhcnkpICU+JQ0KICB1bmxpc3QoKSAlPiUNCiAgYXMubnVtZXJpYygpDQpgYGANCg0KTmFzdMSZcG5pZSBkb3Bhc293dWplbXkgbW9kZWwgcmVncmVzamkgZ3J6YmlldG93ZWogbmEgemJpb3J6ZSB0cmVuaW5nb3d5bQ0KaSBvY2VuaWFteSBqZWdvIE1TRSBuYSB6YmlvcnplIHRlc3Rvd3ltLCB1xbx5d2FqxIVjICRcbGFtYmRhID0gNCQuIFp3csOzxIcNCnV3YWfEmSBuYSB1xbx5Y2llIGZ1bmtjamkgYHByZWRpY3QoKWAuIFBvbm93bmllOiB0eW0gcmF6ZW0gb3RyenltdWplbXkNCnByemV3aWR5d2FuaWEgZGxhIHpiaW9ydSB0ZXN0b3dlZ28sIHphc3TEmXB1asSFYyBgdHlwZT0iY29lZmZpY2llbnRzImANCmFyZ3VtZW50ZW0gYG5ld3hgLg0KDQpgYGB7cn0NCnJpZGdlX21vZCA9IGdsbW5ldCh4X3RyYWluLCB5X3RyYWluLCBhbHBoYT0wLCBsYW1iZGEgPSBncmlkLCB0aHJlc2ggPSAxZS0xMikNCnJpZGdlX3ByZWQgPSBwcmVkaWN0KHJpZGdlX21vZCwgcyA9IDQsIG5ld3ggPSB4X3Rlc3QpDQptZWFuKChyaWRnZV9wcmVkIC0geV90ZXN0KV4yKQ0KYGBgDQoNClRlc3Rvd2UgTVNFIHd5bm9zaSAxMzk4NTguIFphdXdhxbwsIMW8ZSBnZHliecWbbXkgemFtaWFzdCB0ZWdvIGRvcGFzb3dhbGkNCnBvIHByb3N0dSBtb2RlbCB0eWxrbyB6IHd5cmF6ZW0gd29sbnltLCBwcnpld2lkeXdhbGliecWbbXkga2HFvGTEhQ0Kb2JzZXJ3YWNqxJkgdGVzdG93xIUgdcW8eXdhasSFYyDFm3JlZG5pZWogeiBvYnNlcndhY2ppIHpiaW9ydSB0cmVuaW5nb3dlZ28uIFcNCnRha2ltIHByenlwYWRrdSBtb2dsaWJ5xZtteSBvYmxpY3p5xIcgTVNFIHplc3Rhd3UgdGVzdG93ZWdvIHcgdGVuIHNwb3PDs2I6DQoNCmBgYHtyfQ0KbWVhbigobWVhbih5X3RyYWluKSAtIHlfdGVzdCleMikNCmBgYA0KDQpNb2dsaWJ5xZtteSByw7N3bmllxbwgdXp5c2thxIcgdGVuIHNhbSB3eW5paywgZG9wYXNvd3VqxIVjIG1vZGVsIHJlZ3Jlc2ppDQpncnpiaWV0b3dlaiB6IGJhcmR6byBkdcW8xIUgd2FydG/Fm2NpxIUgJFxsYW1iZGEkLiBaYXV3YcW8LCDFvGUgYDFlMTBgIG96bmFjemENCiQxMF57MTB9JC4NCg0KYGBge3J9DQpyaWRnZV9wcmVkID0gcHJlZGljdChyaWRnZV9tb2QsIHMgPSAxZTEwLCBuZXd4ID0geF90ZXN0KQ0KbWVhbigocmlkZ2VfcHJlZCAtIHlfdGVzdCleMikNCmBgYA0KDQpUYWsgd2nEmWMgZG9wYXNvd2FuaWUgbW9kZWx1IHJlZ3Jlc2ppIGdyemJpZXRvd2VqIHogJFxsYW1iZGEgPSA0JA0KcHJvd2FkemkgZG8gem5hY3puaWUgbmnFvHN6ZWdvIHRlc3R1IE1TRSBuacW8IGRvcGFzb3dhbmllIG1vZGVsdSB6IHNhbXltDQpwcnplY2h3eXRlbS4NCg0KU3ByYXdkemlteSB0ZXJheiwgY3p5IGplc3QgamFrYcWbIGtvcnp5xZvEhyB6IHd5a29uYW5pYSByZWdyZXNqaQ0KZ3J6YmlldG93ZWogeiAkXGxhbWJkYSA9IDQkIHphbWlhc3QgcG8gcHJvc3R1IHd5a29uYcSHIHJlZ3Jlc2rEmQ0KbmFqbW5pZWpzenljaCBrd2FkcmF0w7N3Lg0KDQpQcnp5cG9tbmlqbXksIMW8ZSBuYWptbmllanN6YSBrd2FkcmF0dXJhIHRvIHBvIHByb3N0dSByZWdyZXNqYSBncnpiaWV0b3dhDQp6ICRcbGFtYmRhID0gMCQuDQoNClwqIFV3YWdhOiBBYnkgYGdsbW5ldCgpYCBkYXdhxYIgKipkb2vFgmFkbmUgKGV4YWN0KSoqIHdzcMOzxYJjenlubmlraQ0KbmFqbW5pZWpzemVnbyBrd2FkcmF0dSwgZ2R5ICRcbGFtYmRhID0gMCQsIHXFvHl3YW15IGFyZ3VtZW50dSBgZXhhY3Q9VGANCnByenkgd3l3b8WCYW5pdSBmdW5rY2ppIGBwcmVkaWN0KClgLiBXIHByemVjaXdueW0gcmF6aWUsIGZ1bmtjamENCmBwcmVkaWN0KClgIGLEmWR6aWUgaW50ZXJwb2xvd2HEhyBuYWQgc2lhdGvEhSB3YXJ0b8WbY2kgJFxsYW1iZGEkIHXFvHl0xIUgdw0KZG9wYXNvd2FuaXUgbW9kZWx1IGBnbG1uZXQoKWAsIGRhasSFYyBwcnp5YmxpxbxvbmUgd3luaWtpLiBOYXdldCBnZHkNCnXFvHlqZW15IGBleGFjdCA9IFRgLCBwb3pvc3RhamUgbmlld2llbGthIHJvemJpZcW8bm/Fm8SHIG5hIHRyemVjaW0gbWllanNjdQ0KcG8gcHJ6ZWNpbmt1IG1pxJlkenkgd3luaWthbWkgYGdsbW5ldCgpYCwgZ2R5ICRcbGFtYmRhID0gMCQgaSB3eWrFm2NpZW0geg0KYGxtKClgOyBqZXN0IHRvIHNwb3dvZG93YW5lIG51bWVyeWN6bnltIHByenlibGnFvGVuaWVtIHplIHN0cm9ueQ0KYGdsbW5ldCgpYC4NCg0KYGBge3J9DQpyaWRnZV9wcmVkID0gcHJlZGljdChyaWRnZV9tb2QsIHMgPSAwLCBuZXd4ID0geF90ZXN0KQ0KbWVhbigocmlkZ2VfcHJlZCAtIHlfdGVzdCleMikNCg0KbG0oU2FsYXJ5fi4sIGRhdGEgPSB0cmFpbikNCnByZWRpY3QocmlkZ2VfbW9kLCBzID0gMCwgdHlwZT0iY29lZmZpY2llbnRzIilbMToyMCxdDQpgYGANCg0KV3lnbMSFZGEgbmEgdG8sIMW8ZSByemVjenl3acWbY2llIHBvcHJhd2lhbXkgc2nEmSB3IHN0b3N1bmt1IGRvIHp3eWvFgmVnbw0KbmFqbW5pZWpzemVnbyBrd2FkcmF0dSENCg0KVXdhZ2E6IG9nw7NsbmllLCBqZcWbbGkgY2hjZW15IGRvcGFzb3dhxIcgKG5pZXNwZW5hbGl6b3dhbnkpIG1vZGVsDQpuYWptbmllanN6eWNoIGt3YWRyYXTDs3csIHRvIHBvd2lubmnFm215IHXFvHnEhyBmdW5rY2ppIGBsbSgpYCwgcG9uaWV3YcW8IHRhDQpmdW5rY2phIGRvc3RhcmN6YSBiYXJkemllaiB1xbx5dGVjem55Y2ggd3lqxZtjaWEsIHRha2llIGphayBixYLEmWR5DQpzdGFuZGFyZG93ZSBpIHdhcnRvxZtjaSAkcCQgZGxhIHdzcMOzxYJjenlubmlrw7N3Lg0KDQpaYW1pYXN0IGFyYml0cmFsbmllIHd5YmllcmHEhyAkXGxhbWJkYSA9IDQkLCBsZXBpZWogYnnFgm9ieSB1xbx5xIcgd2FsaWRhY2ppDQprcnp5xbxvd2VqIGRvIHd5Ym9ydSBwYXJhbWV0cnUgZG9zdHJvamVuaWEgJFxsYW1iZGEkLiBNb8W8ZW15IHRvIHpyb2JpxIcNCnXFvHl3YWrEhWMgd2J1ZG93YW5laiBmdW5rY2ppIHdhbGlkYWNqaSBrcnp5xbxvd2VqLCBgY3YuZ2xtbmV0KClgLg0KRG9tecWbbG5pZSBmdW5rY2phIHRhIHd5a29udWplIDEwLWtyb3RuxIUgd2FsaWRhY2rEmSBrcnp5xbxvd8SFLCBjaG/EhyBtb8W8bmENCnRvIHptaWVuacSHIHXFvHl3YWrEhWMgYXJndW1lbnR1IGFyZ3VtZW50dSBgZm9sZHNgLiBaYXV3YcW8LCDFvGUgbmFqcGllcncNCnVzdGF3aWFteSBsb3Nvd2Ugemlhcm5vLCBhYnkgbmFzemUgd3luaWtpIGJ5xYJ5IHBvd3RhcnphbG5lLCBwb25pZXdhxbwNCnd5YsOzciBrcm90bm/Fm2NpIHdhbGlkYWNqaSBrcnp5xbxvd2VqIGplc3QgbG9zb3d5Lg0KDQpgYGB7cn0NCnNldC5zZWVkKDEpDQpjdi5vdXQgPSBjdi5nbG1uZXQoeF90cmFpbiwgeV90cmFpbiwgYWxwaGEgPSAwKSAjIERvcGFzdWogbW9kZWwgcmVncmVzamkgZ3J6YmlldG93ZWogbmEgZGFueWNoIHRyZW5pbmdvd3ljaA0KYmVzdGxhbSA9IGN2Lm91dCRsYW1iZGEubWluICAjIFd5YmllcnogbGFtZMSZLCBrdMOzcmEgbWluaW1hbGl6dWplIHRyZW5pbmdvd3kgTVNFIA0KYmVzdGxhbQ0KYGBgDQoNCldpZHppbXkgemF0ZW0sIMW8ZSB3YXJ0b8WbxIcgJFxsYW1iZGEkLCBrdMOzcmEgcG93b2R1amUgbmFqbW5pZWpzenkgYsWCxIVkDQp3YWxpZGFjamkga3J6ecW8b3dlaiB0byAzMjYuIE1vxbxlbXkgcsOzd25pZcW8IHd5a3JlxZtsacSHIE1TRSBqYWtvIGZ1bmtjasSZDQokXGxhbWJkYSQ6DQoNCmBgYHtyfQ0KcGxvdChjdi5vdXQpICMgTmFyeXN1aiB3eWtyZXMgdHJlbmluZ293ZWdvIE1TRSBqYWtvIGZ1bmtjasSZIGxhbWJkYQ0KYGBgDQoNCkpha2kgamVzdCB0ZXN0b3d5IE1TRSB6d2nEhXphbnkgeiB0xIUgd2FydG/Fm2NpxIUgJFxsYW1iZGEkPw0KDQpgYGB7cn0NCnJpZGdlX3ByZWQgPSBwcmVkaWN0KHJpZGdlX21vZCwgcyA9IGJlc3RsYW0sIG5ld3ggPSB4X3Rlc3QpICMgVcW8eWogbmFqbGVwc3plaiBsYW1iZHkgZG8gcHJ6ZXdpZHl3YW5pYSBkYW55Y2ggdGVzdG93eWNoDQptZWFuKChyaWRnZV9wcmVkIC0geV90ZXN0KV4yKSAjIE9ibGljeiB0ZXN0b3dlIE1TRQ0KYGBgDQoNClN0YW5vd2kgdG8gZGFsc3rEhSBwb3ByYXfEmSB3IHN0b3N1bmt1IGRvIHRlc3Rvd2VnbyBNU0UsIGt0w7NyZSB1enlza2FsacWbbXkNCnXFvHl3YWrEhWMgJFxsYW1iZGEgPSA0JC4gT3N0YXRlY3puaWUsIHBvbm93bmllIHd5em5hY3phbXkgbmFzeiBtb2RlbA0KcmVncmVzamkgZ3J6YmlldG93ZWogbmEgcGXFgm55bSB6ZXN0YXdpZSBkYW55Y2gsIHXFvHl3YWrEhWMgd2FydG/Fm2NpDQokXGxhbWJkYSQgd3licmFuZWogdyB3YWxpZGFjamkga3J6ecW8b3dlaiwgaSBzcHJhd2R6YW15IG9zemFjb3dhbmlhDQp3c3DDs8WCY3p5bm5pa8Ozdy4NCg0KYGBge3J9DQpvdXQgPSBnbG1uZXQoeCwgeSwgYWxwaGEgPSAwKSAjIERvcGFzdWogbW9kZWwgcmVncmVzamkgZ3J6YmlldG93ZWogZG8gcGXFgm5lZ28gemJpb3J1IGRhbnljaA0KcHJlZGljdChvdXQsIHR5cGUgPSAiY29lZmZpY2llbnRzIiwgcyA9IGJlc3RsYW0pWzE6MjAsXSAjIFd5xZt3aWV0bGFuaWUgd3Nww7PFgmN6eW5uaWvDs3cgcHJ6eSB1xbx5Y2l1IGxhbWJkYSB3eWJyYW5lZ28gcHJ6ZXogQ1YNCmBgYA0KDQpaZ29kbmllIHogb2N6ZWtpd2FuaWFtaSwgxbxhZGVuIHplIHdzcMOzxYJjenlubmlrw7N3IG5pZSBqZXN0IGRva8WCYWRuaWUNCnplcm93eSAtIHJlZ3Jlc2phIGdyemJpZXRvd2EgbmllIGRva29udWplIHNlbGVrY2ppIHptaWVubnljaCENCg0KIyMgUmVncmVzamEgTGFzc28NCg0KIyMjIFdwcm93YWR6ZW5pZQ0KDQpaYW1pYXN0IHJlZ3VsYXJ5emFjamkgJExfMiQsIExBU1NPIHXFvHl3YSBwZW5hbGl6YWNqaSAkTF8xJCwgdG8gem5hY3p5Og0KDQokJA0KXG1pbl97XGJldGEgXGluIFxtYXRoYmJ7Un1ecH0gXHN1bV97aT0xfV5uICh5X2kgLSB4X2leXHRvcCBcYmV0YSleMiArIFxsYW1iZGEgXHxcYmV0YVx8XzEuIA0KJCQNCg0KWmUgd3pnbMSZZHUgbmEgY2hhcmFrdGVyIG5vcm15ICRMXzEkLCBMQVNTTyBtYSB0ZW5kZW5jasSZIGRvIGRhd2FuaWENCmJhcmR6aWVqIHJ6YWRraWNoIHJvendpxIV6YcWEIG5pxbwgcmVncmVzamEgZ3J6YmlldG93YS4gSmVzdCB0byB0eXBvd28NCnXFvHl0ZWN6bmUgdyB1c3Rhd2llbmlhY2ggd2llbG93eW1pYXJvd3ljaCwgZ2R5IHByYXdkeml3eSBtb2RlbCBqZXN0IHcNCnJ6ZWN6eXdpc3RvxZtjaSBuaXNrb3d5bWlhcm93eW0gb3NhZHplbmllbS4NCg0KTW9kZWwgcmVncmVzamkgbGFzc28gem9zdGHFgiBwaWVyd290bmllIG9wcmFjb3dhbnkgdyAxOTg5IHJva3UuIEplc3QgdG8NCmFsdGVybmF0eXdhIGRsYSBrbGFzeWN6bmVnbyBvc3phY293YW5pYSBtZXRvZMSFIG5ham1uaWVqc3p5Y2gga3dhZHJhdMOzdywNCmt0w7NyYSB1bmlrYSB3aWVsdSBwcm9ibGVtw7N3IHogbmFkbWllcm55bSBkb3Bhc293YW5pZW0NCigqKm92ZXJmaXR0aW5naWVtKiopLCBnZHkgbWFteSBkdcW8xIUgbGljemLEmSBuaWV6YWxlxbxueWNoIHptaWVubnljaC4NCg0KUmVncmVzamEgTGFzc28gKExlYXN0IEFic29sdXRlIFNocmlua2FnZSBhbmQgU2VsZWN0aW9uIE9wZXJhdG9yKSB0bw0KdGVjaG5pa2EgcmVncmVzamkgbGluaW93ZWogc3Rvc293YW5hIGRvIG9zemFjb3dhbmlhIHdzcMOzxYJjenlubmlrw7N3DQptb2RlbHUsIGt0w7NyYSB3cHJvd2FkemEgcmVndWxhcnl6YWNqxJkgJExfMSQuIFJlZ3VsYXJ5emFjamEgTDEgcG9sZWdhIG5hDQpkb2Rhbml1IGRvIGZ1bmtjamkgY2VsdSBrYXJ5IHByb3BvcmNqb25hbG5laiBkbyB3YXJ0b8WbY2kgYmV6d3pnbMSZZG5lag0Kd3Nww7PFgmN6eW5uaWvDs3cgcmVncmVzamkuDQoNClJlZ3Jlc2phIExhc3NvIG1hIHpkb2xub8WbxIcgZG8gamVkbm9jemVzbmVnbyB3eWtvbmFuaWEgc2VsZWtjamkgY2VjaCBpDQpyZWd1bGFyeXphY2ppLCBjbyBvem5hY3phLCDFvGUgbW/FvGUgcG9tw7NjIHcgaWRlbnR5ZmlrYWNqaSBuYWpiYXJkemllag0KaXN0b3RueWNoIGNlY2ggbW9kZWx1LCBhIHRha8W8ZSB6bW5pZWpzennEhyB3cMWCeXcgbW5pZWogaXN0b3RueWNoIGNlY2guDQoNClBvZHN0YXdvd3ltIGNlbGVtIHJlZ3Jlc2ppIExhc3NvIGplc3QgbWluaW1hbGl6YWNqYSBmdW5rY2ppIGNlbHUsIGt0w7NyYQ0Kc2vFgmFkYSBzacSZIHogZHfDs2NoIHNrxYJhZG5pa8OzdzogYsWCxJlkdSBkb3Bhc293YW5pYSAoc3VteSBrd2FkcmF0w7N3IHLDs8W8bmljDQpwb21pxJlkenkgcnplY3p5d2lzdHltaSB3YXJ0b8WbY2lhbWkgb2Rwb3dpZWR6aSBhIHByemV3aWR5d2FueW1pDQp3YXJ0b8WbY2lhbWkgbW9kZWx1KSBpIGthcnkgcmVndWxhcnl6YWN5am5laiAkTF8xJC4NCg0KV3rDs3IgZnVua2NqaSBjZWx1IGRsYSByZWdyZXNqaSBMYXNzbyBtb8W8ZSBiecSHIHByemVkc3Rhd2lvbnkgamFrbzoNCk1pbmltaXplOiBSU1MgKyAkXGxhbWJkYSBcfFxiZXRhXHxfMSQsIGdkemllOg0KDQotICAgUlNTIHRvIHN1bWEga3dhZHJhdMOzdyByw7PFvG5pYyBwb21pxJlkenkgcnplY3p5d2lzdHltaSB3YXJ0b8WbY2lhbWkNCiAgICBvZHBvd2llZHppIGEgcHJ6ZXdpZHl3YW55bWkgd2FydG/Fm2NpYW1pIG1vZGVsdSAoYsWCxIVkIGRvcGFzb3dhbmlhKSwNCg0KLSAgICRcbGFtYmRhJCAobGFtYmRhKSB0byBwYXJhbWV0ciByZWd1bGFyeXphY2ppLCBrdMOzcnkga29udHJvbHVqZSBzacWCxJkNCiAgICByZWd1bGFyeXphY2ppLCBhICRcfFxiZXRhXHxfMSQgdG8gbm9ybWEgJExfMSQgd3Nww7PFgmN6eW5uaWvDs3cNCiAgICByZWdyZXNqaS4NCg0KRG9kYW5pZSBrYXJ5IHJlZ3VsYXJ5emFjeWpuZWogJExfMSQgcG93b2R1amUsIMW8ZSBuaWVrdMOzcmUgd3Nww7PFgmN6eW5uaWtpDQpyZWdyZXNqaSBzdGFqxIUgc2nEmSByw7N3bmUgemVybywgY28gcHJvd2FkemkgZG8gc2VsZWtjamkgY2VjaC4gSW0gd2nEmWtzemENCndhcnRvxZvEhyAkXGxhbWJkYSQsIHR5bSB3acSZa3N6YSBqZXN0IHRlbmRlbmNqYSBkbyByZWR1a2NqaSB3c3DDs8WCY3p5bm5pa8Ozdw0KZG8gemVyYSwgcHJvd2FkesSFYyBkbyBiYXJkemllaiByemFka2llZ28gbW9kZWx1IHogbW5pZWpzesSFIGxpY3pixIUgY2VjaC4NCg0KUmVncmVzamEgTGFzc28gamVzdCBwcnp5ZGF0bmEgdyBwcnp5cGFka2FjaCwgZ2R5IG1hbXkgZG8gY3p5bmllbmlhIHoNCndpZWxvbWEgY2VjaGFtaSwgeiBrdMOzcnljaCBuaWVrdMOzcmUgbW9nxIUgYnnEhyBuaWVpc3RvdG5lLiBNb8W8ZSBwb23Ds2Mgdw0KaWRlbnR5ZmlrYWNqaSBpc3RvdG55Y2ggY2VjaCwgcmVkdWtjamkgbmFkbWlhcnUgZGFueWNoIGkgendpxJlrc3plbml1DQppbnRlcnByZXRvd2Fsbm/Fm2NpIG1vZGVsdS4NCg0KIyMjIFByenlrxYJhZA0KDQpab2JhY3p5bGnFm215LCDFvGUgcmVncmVzamEgZ3J6YmlldG93YSB6IG3EhWRyeW0gd3lib3JlbSAkXGxhbWJkYSQgbW/FvGUNCnByemV3ecW8c3phxIcgbWV0b2TEmSBuYWptbmllanN6eWNoIGt3YWRyYXTDs3csIGphayByw7N3bmllxbwgbW9kZWwgemVyb3d5IG5hDQp6YmlvcnplIGRhbnljaCBIaXR0ZXJzLg0KDQpUZXJheiB6b2JhY3pteSwgY3p5IGxhc3NvIG1vxbxlIGRhxIcgYWxibyBkb2vFgmFkbmllanN6eSwgYWxibyBiYXJkemllag0KaW50ZXJwcmV0b3dhbG55IG1vZGVsIG5pxbwgcmVncmVzamEgZ3J6YmlldG93YS4NCg0KVyBjZWx1IGRvcGFzb3dhbmlhIG1vZGVsdSBsYXNzbywgcG8gcmF6IGtvbGVqbnkgdcW8eXdhbXkgZnVua2NqaQ0KYGdsbW5ldCgpYCwgamVkbmFrIHR5bSByYXplbSB1xbx5d2FteSBhcmd1bWVudHUgYGFscGhhPTFgLiBQb3phIHTEhSB6bWlhbsSFDQpwb3N0xJlwdWplbXkgdGFrIHNhbW8gamFrIHcgcHJ6eXBhZGt1IGRvcGFzb3d5d2FuaWEgbW9kZWx1IHJlZ3Jlc2ppDQpncnpiaWV0b3dlajoNCg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmxhc3NvX21vZCA9IGdsbW5ldCh4X3RyYWluLCANCiAgICAgICAgICAgICAgICAgICB5X3RyYWluLCANCiAgICAgICAgICAgICAgICAgICBhbHBoYSA9IDEsIA0KICAgICAgICAgICAgICAgICAgIGxhbWJkYSA9IGdyaWQpICMgRG9wYXN1aiBtb2RlbCBsYXNzbyBkbyBkYW55Y2ggdHJlbmluZ293eWNoDQoNCnBsb3QobGFzc29fbW9kKSAgICAjIFd5a3JlxZtsIHdzcMOzxYJjenlubmlraQ0KYGBgDQoNClphdXdhxbxteSwgxbxlIG5hIHd5a3Jlc2llIHdzcMOzxYJjenlubmlrw7N3LCB3IHphbGXFvG5vxZtjaSBvZCB3eWJvcnUNCmRvc3Ryb2plbmlhIHBhcmFtZXRydSwgbmlla3TDs3JlIHplIHdzcMOzxYJjenlubmlrw7N3IHPEhSBkb2vFgmFkbmllIHLDs3duZQ0KemVydS4gVGVyYXogcHJ6ZXByb3dhZHppbXkgd2FsaWRhY2rEmSBrcnp5xbxvd8SFIGkgb2JsaWN6eW15IHp3acSFemFueSB6IG5pxIUNCmLFgsSFZCB0ZXN0dToNCg0KYGBge3J9DQpzZXQuc2VlZCgxKQ0KY3Yub3V0ID0gY3YuZ2xtbmV0KHhfdHJhaW4sIHlfdHJhaW4sIGFscGhhID0gMSkgIyBEb3Bhc3VqIG1vZGVsIGxhc3NvIGRvIGRhbnljaCB0cmVuaW5nb3d5Y2gNCnBsb3QoY3Yub3V0KSAjIE5hcnlzdWogd3lrcmVzIE1TRSBkbGEgcHLDs2J5IHVjesSFY2VqIGpha28gZnVua2NqxJkgbGFtYmRhDQpiZXN0bGFtID0gY3Yub3V0JGxhbWJkYS5taW4gIyBXeWJpZXJ6IGxhbWTEmSwga3TDs3JhIG1pbmltYWxpenVqZSBNU0UgdyBwcsOzYmllIHVjesSFY2VqDQpsYXNzb19wcmVkID0gcHJlZGljdChsYXNzb19tb2QsIHMgPSBiZXN0bGFtLCBuZXd4ID0geF90ZXN0KSAjIFXFvHlqIG5hamxlcHN6ZWogbGFtYmR5IGRvIHByemV3aWR5d2FuaWEgZGFueWNoIHRlc3Rvd3ljaA0KbWVhbigobGFzc29fcHJlZCAtIHlfdGVzdCleMikgIyBPYmxpY3ogTVNFIHcgcHLDs2JpZSB0ZXN0b3dlag0KYGBgDQoNCkplc3QgdG8gem5hY3puaWUgbmnFvHN6ZSBNU0UgemJpb3J1IHRlc3Rvd2VnbyBuacW8IG1vZGVsdSB6ZXJvd2VnbyBpDQptb2RlbHUgbmFqbW5pZWpzenljaCBrd2FkcmF0w7N3LCBpIGJhcmR6byBwb2RvYm55IGRvIE1TRSB0ZXN0dSByZWdyZXNqaQ0KZ3J6YmlldG93ZWogeiAkXGxhbWJkYSQgd3licmFuZWogcHJ6ZXogd2FsaWRhY2rEmSBrcnp5xbxvd8SFLg0KDQpKZWRuYWvFvGUgbGFzc28gbWEgaXN0b3RuxIUgcHJ6ZXdhZ8SZIG5hZCByZWdyZXNqxIUgZ3J6YmlldG93xIUgdyB0eW0sIMW8ZQ0Kd3luaWtvd2Ugb3N6YWNvd2FuaWEgd3Nww7PFgmN6eW5uaWvDs3cgc8SFIHJ6YWRraWUuIFR1dGFqIHdpZHppbXksIMW8ZSAxMiB6DQoxOSBvc3phY293YcWEIHdzcMOzxYJjenlubmlrw7N3IGplc3QgZG9rxYJhZG5pZSB6ZXJvd3ljaDoNCg0KYGBge3J9DQpvdXQgPSBnbG1uZXQoeCwgeSwgYWxwaGEgPSAxLCBsYW1iZGEgPSBncmlkKSAjIERvcGFzdWogbW9kZWwgbGFzc28gZG8gcGXFgm5lZ28gemJpb3J1IGRhbnljaA0KbGFzc29fY29lZiA9IHByZWRpY3Qob3V0LCB0eXBlID0gImNvZWZmaWNpZW50cyIsIHMgPSBiZXN0bGFtKVsxOjIwLF0gIyBXecWbd2lldGxhbmllIHdzcMOzxYJjenlubmlrw7N3IHByenkgdcW8eWNpdSBsYW1iZGEgd3licmFuZWdvIHByemV6IENWDQpsYXNzb19jb2VmDQpgYGANCg0KV3liaWVyYWrEhWMgdHlsa28gcHJlZHlrdG9yeSBvIG5pZXplcm93eWNoIHdzcMOzxYJjenlubmlrYWNoIHdpZHppbXksIMW8ZQ0KbW9kZWwgbGFzc28geiAkXGxhbWJkYSQgd3licmFueW0gcHJ6ZXogd2FsaWRhY2rEmSBrcnp5xbxvd8SFIHphd2llcmEgdHlsa28NCnNpZWRlbSB6bWllbm55Y2g6DQoNCmBgYHtyfQ0KbGFzc29fY29lZltsYXNzb19jb2VmICE9IDBdICMgV3nFm3dpZXRsYW5pZSB0eWxrbyBuaWV6ZXJvd3ljaCB3c3DDs8WCY3p5bm5pa8Ozdw0KYGBgDQoNCiMgVHdvamEga29sZWohDQoNClRlcmF6IG5hZHN6ZWTFgiBjemFzIG5hIHByemV0ZXN0b3dhbmllIHR5Y2ggbWV0b2QgKHJlZ3Jlc2phIGdyemJpZXRvd2EgaQ0KbGFzc28pIG9yYXogbWV0b2Qgb2NlbnkgKHplc3RhdyB3YWxpZGFjeWpueSwgd2FsaWRhY2phIGtyennFvG93YSkgbmENCmlubnljaCB6YmlvcmFjaCBkYW55Y2guIE1vxbxlc3ogcHJhY293YcSHIHogemVzcG/FgmVtIG5hZCB0xIUgY3rEmcWbY2nEhQ0KbGFib3JhdG9yaXVtLg0KDQpNb8W8ZXN6IHXFvHnEhyBkb3dvbG5lZ28gemJpb3J1IGRhbnljaCB6YXdhcnRlZ28gdyAqKklTTFIqKiBsdWIgd3licmHEhw0KamVkZW4geiBwYWtpZXTDs3cgZGFueWNoIG5hIEthZ2dsZS9EYXRhIFdvcmxkIGl0cC4gKHptaWVubmEgemFsZcW8bmEgbXVzaQ0KYnnEhyBjacSFZ8WCYSkuDQoNClBvYmllcnogemJpw7NyIGRhbnljaCBpIHNwcsOzYnVqIG9rcmXFm2xpxIcgb3B0eW1hbG55IHplc3RhdyBwYXJhbWV0csOzdywNCmt0w7NyZSBuYWxlxbx5IHXFvHnEhyBkbyBqZWdvIG1vZGVsb3dhbmlhIQ0KDQpgYGB7cn0NCmxpYnJhcnkoSVNMUikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdsbW5ldCkNCmxpYnJhcnkoY2FyZXQpICAgIA0KbGlicmFyeSh0aWR5dmVyc2UpDQoNCmRhdGEoQ3JlZGl0KQ0KQ3JlZGl0ID0gbmEub21pdChDcmVkaXQpDQpDcmVkaXQgPC0gc2VsZWN0KENyZWRpdCwgLUlEKQ0KYGBgDQoNCiMjICoqUHJ6eWdvdG93YW5pZSBkYW55Y2gqKg0KDQpgYGB7cn0NCiMgWm1pZW5uYSB6YWxlxbxuYQ0KeSA8LSBDcmVkaXQkQmFsYW5jZQ0KIyBabWllbm5lIG5pZXphbGXFvG5lDQp4IDwtIG1vZGVsLm1hdHJpeChCYWxhbmNlfi4sIENyZWRpdClbLC0xXQ0KDQpgYGANCg0KIyMgKipQb2R6aWHFgiBuYSB6YmnDs3IgdHJlbmluZ293eSBpIHRlc3Rvd3kqKg0KDQpgYGB7cn0NCg0Kc2V0LnNlZWQoMTIzKSANCnRyYWluX2luZGV4IDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oeSwgcCA9IDAuOCwgbGlzdCA9IEZBTFNFKQ0KWF90cmFpbiA8LSB4W3RyYWluX2luZGV4LCBdDQpYX3Rlc3QgPC0geFstdHJhaW5faW5kZXgsIF0NCnlfdHJhaW4gPC0geVt0cmFpbl9pbmRleF0NCnlfdGVzdCA8LSB5Wy10cmFpbl9pbmRleF0NCg0KYGBgDQoNCiMjICoqUmVncmVzamEgT0xTKioNCg0KYGBge3J9DQojIERvcGFzb3dhbmllIG1vZGVsdSBPTFMNCm9sc19tb2RlbCA8LSBsbShCYWxhbmNlIH4gLiwgZGF0YSA9IENyZWRpdFt0cmFpbl9pbmRleCwgXSkNCnN1bW1hcnkob2xzX21vZGVsKQ0KDQojIFByZWR5a2NqZSBpIG9jZW5hDQpvbHNfcHJlZCA8LSBwcmVkaWN0KG9sc19tb2RlbCwgbmV3ZGF0YSA9IENyZWRpdFstdHJhaW5faW5kZXgsIF0pDQpvbHNfbXNlIDwtIG1lYW4oKHlfdGVzdCAtIG9sc19wcmVkKV4yKQ0Kb2xzX3IyIDwtIDEgLSAoc3VtKCh5X3Rlc3QgLSBvbHNfcHJlZCleMikgLyBzdW0oKHlfdGVzdCAtIG1lYW4oeV90ZXN0KSleMikpDQoNCmNhdCgiT0xTIE1TRToiLCBvbHNfbXNlLCAiXG5PTFMgUl4yOiIsIG9sc19yMiwgIlxuIikNCmBgYA0KDQojIyBSZWdyZXNqYSBSaWRnZQ0KDQpgYGB7cn0NCg0KIyBQcnp5Z290b3dhbmllIGRhbnljaCBkbGEgZ2xtbmV0DQpYX3RyYWluX21hdHJpeCA8LSBhcy5tYXRyaXgoWF90cmFpbikNClhfdGVzdF9tYXRyaXggPC0gYXMubWF0cml4KFhfdGVzdCkNCg0KIyBEb3Bhc293YW5pZSBtb2RlbHUgUmlkZ2UgKM6xID0gMCkNCnJpZGdlX21vZGVsIDwtIGN2LmdsbW5ldChYX3RyYWluX21hdHJpeCwgeV90cmFpbiwgYWxwaGEgPSAwKQ0KcGxvdChyaWRnZV9tb2RlbCkNCg0KIyBPcHR5bWFsbmUgbGFtYmRhDQpyaWRnZV9sYW1iZGEgPC0gcmlkZ2VfbW9kZWwkbGFtYmRhLm1pbg0KY2F0KCJPcHRpbWFsIFJpZGdlIExhbWJkYToiLCByaWRnZV9sYW1iZGEsICJcbiIpDQoNCiMgUHJlZHlrY2plIGkgb2NlbmENCnJpZGdlX3ByZWQgPC0gcHJlZGljdChyaWRnZV9tb2RlbCwgcyA9IHJpZGdlX2xhbWJkYSwgbmV3eCA9IFhfdGVzdF9tYXRyaXgpDQpyaWRnZV9tc2UgPC0gbWVhbigoeV90ZXN0IC0gcmlkZ2VfcHJlZCleMikNCnJpZGdlX3IyIDwtIDEgLSAoc3VtKCh5X3Rlc3QgLSByaWRnZV9wcmVkKV4yKSAvIHN1bSgoeV90ZXN0IC0gbWVhbih5X3Rlc3QpKV4yKSkNCg0KY2F0KCJSaWRnZSBNU0U6IiwgcmlkZ2VfbXNlLCAiXG5SaWRnZSBSXjI6IiwgcmlkZ2VfcjIsICJcbiIpDQpgYGANCg0KIyMgUmVncmVzamEgTGFzc28NCg0KYGBge3J9DQoNCiMgRG9wYXNvd2FuaWUgbW9kZWx1IExhc3NvICjOsSA9IDEpDQpsYXNzb19tb2RlbCA8LSBjdi5nbG1uZXQoWF90cmFpbl9tYXRyaXgsIHlfdHJhaW4sIGFscGhhID0gMSkNCnBsb3QobGFzc29fbW9kZWwpDQoNCiMgT3B0eW1hbG5lIGxhbWJkYQ0KbGFzc29fbGFtYmRhIDwtIGxhc3NvX21vZGVsJGxhbWJkYS5taW4NCmNhdCgiT3B0aW1hbCBMYXNzbyBMYW1iZGE6IiwgbGFzc29fbGFtYmRhLCAiXG4iKQ0KDQojIFByZWR5a2NqZSBpIG9jZW5hDQpsYXNzb19wcmVkIDwtIHByZWRpY3QobGFzc29fbW9kZWwsIHMgPSBsYXNzb19sYW1iZGEsIG5ld3ggPSBYX3Rlc3RfbWF0cml4KQ0KbGFzc29fbXNlIDwtIG1lYW4oKHlfdGVzdCAtIGxhc3NvX3ByZWQpXjIpDQpsYXNzb19yMiA8LSAxIC0gKHN1bSgoeV90ZXN0IC0gbGFzc29fcHJlZCleMikgLyBzdW0oKHlfdGVzdCAtIG1lYW4oeV90ZXN0KSleMikpDQoNCmNhdCgiTGFzc28gTVNFOiIsIGxhc3NvX21zZSwgIlxuTGFzc28gUl4yOiIsIGxhc3NvX3IyLCAiXG4iKQ0KYGBgDQoNCiMjIyBXYcW8bm/Fm8SHIHByZWR5a3RvcsOzdyAoTGFzc28pDQoNCmBgYHtyfQ0KDQoNCiMgV2HFvG5vxZvEhyB6bWllbm55Y2ggZGxhIExhc3NvDQpsYXNzb19jb2VmZmljaWVudHMgPC0gY29lZihsYXNzb19tb2RlbCwgcyA9IGxhc3NvX2xhbWJkYSkNCmxhc3NvX2NvZWZmaWNpZW50c19kZiA8LSBkYXRhLmZyYW1lKA0KICBWYXJpYWJsZSA9IHJvd25hbWVzKGxhc3NvX2NvZWZmaWNpZW50cyksDQogIENvZWZmaWNpZW50ID0gYXMudmVjdG9yKGxhc3NvX2NvZWZmaWNpZW50cykNCikNCmxhc3NvX2NvZWZmaWNpZW50c19kZiA8LSBsYXNzb19jb2VmZmljaWVudHNfZGYgJT4lIGZpbHRlcihDb2VmZmljaWVudCAhPSAwKQ0KDQpwcmludChsYXNzb19jb2VmZmljaWVudHNfZGYpDQpgYGANCg0KQWJ5IHphbGljennEhyB0byBsYWJvcmF0b3JpdW0sIHphbWllxZvEhyBvZHBvd2llZHppIG5hIG5hc3TEmXB1asSFY2UgcHl0YW5pYToNCg0KKioxLiBKYWtpIHpiacOzciBkYW55Y2ggem9zdGHFgiB3eWtvcnp5c3Rhbnk/KioNCg0KTmFzemEgZ3J1cGEgd3licmHFgmEgemJpw7NyIGRhbnljaCBDcmVkaXRzLCBrdMOzcmUgemF3YXJ0ZSBzxIUgdyBwYWtpZWNpZQ0KSVNMUi4gRGFuZSB0ZSBvcGlzdWrEhSByw7PFvG5lIGNlY2h5IGRlbW9ncmFmaWN6bmUgb3JheiBmaW5hbnNvd2Uga2xpZW50w7N3LA0KdGFraWUgamFrIGRvY2jDs2QsIGxpbWl0eSBrcmVkeXRvd2UsIGxpY3piYSBwb3NpYWRhbnljaCBrYXJ0IGN6eSDFm3JlZG5pZQ0Kc2FsZG8gbmEga2FyY2llIGtyZWR5dG93ZWouDQoNCioqMi4gSmFrYSBiecWCYSB6bWllbm5hIHphbGXFvG5hIHcgYW5hbGl6aWU/KioNCg0KWm1pZW5uxIUsIGt0w7NyxIUgcHLDs2Jvd2FsacWbbXkgcHJ6ZXdpZHppZcSHLCBiecWCbyAqKkJhbGFuY2UqKiwgY3p5bGkgxZtyZWRuaWUNCnNhbGRvIG5hIGthcmNpZSBrcmVkeXRvd2VqIGtsaWVudGEgKHd5cmHFvG9uZSB3IGRvbGFyYWNoKS4gQW5hbGl6YSBtaWHFgmENCm5hIGNlbHUgemJ1ZG93YW5pZSBtb2RlbHUsIGt0w7NyeSBuYSBwb2RzdGF3aWUgcG96b3N0YcWCeWNoIHptaWVubnljaCAobnAuDQpkb2Nob2R1LCBsaWN6Ynkga2FydCwgb2Nlbnkga3JlZHl0b3dlaikgcG90cmFmacWCYnkgb3N6YWNvd2HEhyB3YXJ0b8WbxIcNCnNhbGRhLg0KDQoqKjMuIEN6eSBvY3pla2l3YcWCZcWbLCDFvGUgcmVncmVzamEgUmlkZ2UgYsSZZHppZSBsZXBzemEgb2QgTGFzc28sIGN6eQ0Kb2R3cm90bmllPyBKYWsgbW9kZWxlIHd5cGFkxYJ5IHcgcG9yw7N3bmFuaXUgZG8gT0xTPyBQcnplZHN0YXcgd3luaWtpIGkNCm9tw7N3IGplLioqDQoNCioqUHJ6ZXdpZHl3YW5pYToqKg0KDQrigKIgKipSaWRnZSBSZWdyZXNzaW9uKio6IFpha8WCYWRhbGnFm215LCDFvGUgUmlkZ2UgZG9icnplIHBvcmFkemkgc29iaWUgeg0KcHJvYmxlbWVtIHdzcMOzxYJsaW5pb3dvxZtjaSBtacSZZHp5IHByZWR5a3RvcmFtaSwgY28gbW/FvGUgcG9wcmF3acSHDQpkb2vFgmFkbm/Fm8SHIG1vZGVsdSB3IHBvcsOzd25hbml1IGRvIE9MUy4gSmVkbmFrIFJpZGdlIHV3emdsxJlkbmlhIHdzenlzdGtpZQ0Kem1pZW5uZSwgd2nEmWMgbW9kZWwgcG96b3N0YW5pZSBiYXJkemllaiB6xYJvxbxvbnkuDQoNCuKAoiAqKkxhc3NvIFJlZ3Jlc3Npb24qKjogT2N6ZWtpd2FsacWbbXksIMW8ZSBMYXNzbyBuaWUgdHlsa28gcG9wcmF3aQ0KZG9rxYJhZG5vxZvEhyBwcmVkeWtjamksIGFsZSByw7N3bmllxbwgd3l6ZXJ1amUgbW5pZWogaXN0b3RuZSB6bWllbm5lLCBjbw0KdXByb8WbY2kgbW9kZWwuIFNwb2R6aWV3YWxpxZtteSBzacSZLCDFvGUgTGFzc28gbW/FvGUgb3NpxIVnbsSFxIcgbGVwc3plIHd5bmlraQ0KbmnFvCBSaWRnZSBkemnEmWtpIHpkb2xub8WbY2kgZG8gc2VsZWtjamkgcHJlZHlrdG9yw7N3Lg0KDQoqKld5bmlraSBhbmFsaXp5OioqDQoNCkRsYSB6YmlvcnUgdGVzdG93ZWdvLCB3eW5pa2kgbW9kZWxpIHByemVkc3Rhd2lhasSFIHNpxJkgbmFzdMSZcHVqxIVjbzoNCg0KKipNb2RlbCoqICoqTVNFKiogKipSwrIqKg0KDQpPTFMgMTI2Ljg3IDAuNzENCg0KUmlkZ2UgMTIxLjEyIDAuNzQNCg0KTGFzc28gMTE4LjU0IDAuNzYNCg0KKipQb2RzdW1vd2FuaWUgd3luaWvDs3c6KioNCg0K4oCiICoqT0xTKio6IE1ldG9kYSByZWdyZXNqaSBsaW5pb3dlaiwgY2hvxIcgc2t1dGVjem5hLCB3eWthemHFgmEgc8WCYWJzesSFDQpkb2vFgmFkbm/Fm8SHIHcgcG9yw7N3bmFuaXUgZG8gbW9kZWxpIHogcmVndWxhcnl6YWNqxIUuIE5pZSBlbGltaW51amUNCnByb2JsZW3Ds3cgd3Nww7PFgmxpbmlvd2/Fm2NpIG1pxJlkenkgem1pZW5ueW1pIGkgamVzdCBiYXJkemllaiBwb2RhdG5hIG5hDQpwcnpldWN6ZW5pZS4NCg0K4oCiICoqUmlkZ2UqKjogUmlkZ2UgcG9wcmF3acWCIGRvcGFzb3dhbmllIG1vZGVsdSB3IHBvcsOzd25hbml1IGRvIE9MUyBpDQpvZ3JhbmljennFgiB3cMWCeXcgd3Nww7PFgmxpbmlvd2/Fm2NpLCBhbGUgbmllIHVzdXdhxYIgem1pZW5ueWNoLiBXc3p5c3RraWUNCnByZWR5a3RvcnkgcG96b3N0YcWCeSB3IG1vZGVsdS4NCg0K4oCiICoqTGFzc28qKjogTGFzc28gdXp5c2thxYJvIG5hamxlcHN6ZSB3eW5pa2ksIGplZG5vY3plxZtuaWUgcmVkdWt1asSFYw0KbGljemLEmSB6bWllbm55Y2ggdyBtb2RlbHUuIER6acSZa2kgd3l6ZXJvd2FuaXUgbW5pZWogaXN0b3RueWNoDQp3c3DDs8WCY3p5bm5pa8OzdyBvc2nEhWduxJnFgm8gemFyw7N3bm8gd2nEmWtzesSFIHByb3N0b3TEmSwgamFrIGkgbGVwc3rEhQ0KZG9rxYJhZG5vxZvEhy4NCg0KKio0LiBLdMOzcmUgcHJlZHlrdG9yeSBiecWCeSBrbHVjem93ZSB3IGtvxYRjb3d5bSBtb2RlbHU/KioNCg0K4oCiICoqT0xTKio6IE1vZGVsIHV3emdsxJlkbmnFgiB3c3p5c3RraWUgem1pZW5uZSwgbmllemFsZcW8bmllIG9kIGljaA0Kem5hY3plbmlhLg0KDQrigKIgKipSaWRnZSoqOiBXc3p5c3RraWUgcHJlZHlrdG9yeSB6b3N0YcWCeSB6YWNob3dhbmUsIGFsZSBpY2ggem5hY3plbmllDQp6b3N0YcWCbyB6bW5pZWpzem9uZSBwcnpleiByZWd1bGFyaXphY2rEmS4NCg0K4oCiICoqTGFzc28qKjogV3licmHFgm8gdHlsa28gbmFqaXN0b3RuaWVqc3plIHptaWVubmUsIGlnbm9ydWrEhWMgcG96b3N0YcWCZS4NCkRvIGtsdWN6b3d5Y2ggY2VjaCBuYWxlxbxhxYJ5Og0KDQrigKIgKipMaW1pdCoqOiBNYWtzeW1hbG5hIGt3b3RhIGtyZWR5dHUgZG9zdMSZcG5hIGRsYSBrbGllbnRhLg0KDQrigKIgKipSYXRpbmcqKjogT2NlbmEga3JlZHl0b3dhIGtsaWVudGEuDQoNCuKAoiAqKkluY29tZSoqOiBSb2N6bnkgZG9jaMOzZCBrbGllbnRhLg0KDQrigKIgKipDYXJkcyoqOiBMaWN6YmEgcG9zaWFkYW55Y2gga2FydCBrcmVkeXRvd3ljaC4NCg0KRHppxJlraSBzZWxla2NqaSB6bWllbm55Y2ggcHJ6ZXogTGFzc28gdWRhxYJvIHNpxJkgc3R3b3J6ecSHIGJhcmR6aWVqDQp6d2nEmXrFgnkgaSBsZXBpZWogZG9wYXNvd2FueSBtb2RlbCwga3TDs3J5IHBvendhbGEgbmEgZWZla3R5d25pZWpzemUNCnByemV3aWR5d2FuaWUgc2FsZGEga2FydHkga3JlZHl0b3dlai4NCg==