Introduction

Bivariate Summations

\[\begin{eqnarray} S_{XY} &=& \sum x_iy_i - \frac{\sum x_i\sum y_i}{n}\\ S_{XX} &=& \sum x_i^2 - \frac{(\sum x_i)^2}{n}\\ S_{YY} &=& \sum y_i^2 - \frac{(\sum y_i)^2}{n}\\ \end{eqnarray}\]

Correlation

Pearson’s correlation coefficient

\[\begin{eqnarray} r = \frac{S_{XY}}{\sqrt{S_{XX} \times S_{YY}}} \end{eqnarray}\]

Linear Regression Estimates

Slope Estimate \[\begin{eqnarray} b_1 = \frac{S_{XY}}{S_{XX}} \end{eqnarray}\]

Intercept Estimate \[\begin{eqnarray} b_0 = \bar{y} -b_1\bar{x} \end{eqnarray}\]

Standard error of the Slope \[\begin{eqnarray*} S.E.(b1) = \sqrt{\frac{s^2}{S_{XX}}} \end{eqnarray*}\]

where \(s^2 = \frac{SSE}{n-2}\)

and SSE \(= S_{YY} - b_1S_{XY}\)