table1(~ ., data=final_cohort_1)
Overall (N=435261) |
|
---|---|
HISPANIC | |
1 | 59315 (13.6%) |
2 | 375946 (86.4%) |
RACE | |
1 | 295314 (67.8%) |
2 | 114642 (26.3%) |
3 | 4031 (0.9%) |
4 | 15297 (3.5%) |
5 | 4828 (1.1%) |
6 | 1149 (0.3%) |
RACE_cate | |
1 | 295314 (67.8%) |
2 | 114642 (26.3%) |
3 | 25305 (5.8%) |
race_cat_4 | |
Asian | 15297 (3.5%) |
Black | 114642 (26.3%) |
Other | 10008 (2.3%) |
White | 295314 (67.8%) |
SEX | |
1 | 250210 (57.5%) |
2 | 185051 (42.5%) |
state_cat | |
FIPSMW | 86558 (19.9%) |
FIPSNE | 70108 (16.1%) |
FIPSS | 188037 (43.2%) |
FIPSW | 84619 (19.4%) |
Missing | 5939 (1.4%) |
age | |
Mean (SD) | 66.9 (13.3) |
Median [Min, Max] | 68.0 [18.0, 165] |
sex_cat | |
Female | 185051 (42.5%) |
Male | 250210 (57.5%) |
COMO_CHF | |
N | 290593 (66.8%) |
Y | 144668 (33.2%) |
COMO_COPD | |
N | 387096 (88.9%) |
Y | 48165 (11.1%) |
COMO_TOBAC | |
N | 407527 (93.6%) |
Y | 27734 (6.4%) |
COMO_CANC | |
N | 400857 (92.1%) |
Y | 34404 (7.9%) |
COMO_ASHD | |
N | 366833 (84.3%) |
Y | 68428 (15.7%) |
COMO_OTHCARD | |
N | 336380 (77.3%) |
Y | 98881 (22.7%) |
COMO_CVATIA | |
N | 393160 (90.3%) |
Y | 42101 (9.7%) |
COMO_PVD | |
N | 385404 (88.5%) |
Y | 49857 (11.5%) |
COMO_HTN | |
N | 51151 (11.8%) |
Y | 384110 (88.2%) |
COMO_AMP | |
N | 419403 (96.4%) |
Y | 15858 (3.6%) |
COMO_DM_INS | |
N | 241192 (55.4%) |
Y | 194069 (44.6%) |
COMO_DM_ORAL | |
N | 382837 (88.0%) |
Y | 52424 (12.0%) |
COMO_DM_NOMEDS | |
N | 403381 (92.7%) |
Y | 31880 (7.3%) |
COMO_ALCHO | |
N | 428882 (98.5%) |
Y | 6379 (1.5%) |
COMO_DRUG | |
N | 430756 (99.0%) |
Y | 4505 (1.0%) |
COMO_INAMB | |
N | 398780 (91.6%) |
Y | 36481 (8.4%) |
COMO_INTRANS | |
N | 415437 (95.4%) |
Y | 19824 (4.6%) |
COMO_NEEDASST | |
N | 366720 (84.3%) |
Y | 68541 (15.7%) |
COMO_INST_OTH | |
N | 432040 (99.3%) |
Y | 3221 (0.7%) |
COMO_INST | |
N | 391483 (89.9%) |
Y | 43778 (10.1%) |
COMO_INST_AL | |
N | 431506 (99.1%) |
Y | 3755 (0.9%) |
COMO_INST_NURS | |
N | 398045 (91.4%) |
Y | 37216 (8.6%) |
PATTXOP_UNSUTAGE | |
N | 417839 (96.0%) |
Y | 17422 (4.0%) |
PATTXOP_PHYSUNFIT | |
N | 433287 (99.5%) |
Y | 1974 (0.5%) |
PATTXOP_MEDUNFIT | |
N | 411632 (94.6%) |
Y | 23629 (5.4%) |
FERRITIN | |
Mean (SD) | 578 (445) |
Median [Min, Max] | 478 [0, 16500] |
Missing | 35743 (8.2%) |
HGB | |
Mean (SD) | 10.5 (1.22) |
Median [Min, Max] | 10.6 [0, 310] |
Missing | 23989 (5.5%) |
IRON_SAT_PERCENT | |
Mean (SD) | 26.9 (9.62) |
Median [Min, Max] | 26.0 [0, 844] |
Missing | 31951 (7.3%) |
ALBUMIN | |
Mean (SD) | 3.51 (0.467) |
Median [Min, Max] | 3.58 [0, 70.2] |
Missing | 27382 (6.3%) |
CALCIUM_CORRECTED | |
Mean (SD) | 9.23 (0.653) |
Median [Min, Max] | 9.22 [0.100, 75.7] |
Missing | 44331 (10.2%) |
CALCIUM_UNCORRECTED | |
Mean (SD) | 8.82 (0.601) |
Median [Min, Max] | 8.83 [0.100, 55.6] |
Missing | 26224 (6.0%) |
PHOSPHORUS | |
Mean (SD) | 4.93 (1.18) |
Median [Min, Max] | 4.82 [0.300, 126] |
Missing | 25671 (5.9%) |
HEMOSESSIONS_1year | |
0 | 424715 (97.6%) |
1 | 31 (0.0%) |
2 | 259 (0.1%) |
3 | 10172 (2.3%) |
4 | 40 (0.0%) |
5 | 38 (0.0%) |
6 | 6 (0.0%) |
HEMOSESSIONS_3year | |
0 | 422050 (97.0%) |
1 | 48 (0.0%) |
1.5 | 1 (0.0%) |
2 | 351 (0.1%) |
2.5 | 9 (0.0%) |
3 | 12689 (2.9%) |
4 | 56 (0.0%) |
5 | 50 (0.0%) |
6 | 6 (0.0%) |
7 | 1 (0.0%) |
HD_KTV | |
Mean (SD) | 1.70 (16.0) |
Median [Min, Max] | 1.52 [0, 5000] |
Missing | 31134 (7.2%) |
CLM_FROM_1year_num | |
Mean (SD) | 1.26 (2.00) |
Median [Min, Max] | 0 [0, 38.0] |
CLM_FROM_3year_num | |
Mean (SD) | 2.85 (4.06) |
Median [Min, Max] | 1.00 [0, 136] |
ICU_DAYS_1year_num | |
Mean (SD) | 0.885 (2.69) |
Median [Min, Max] | 0 [0, 149] |
ICU_DAYS_3year_num | |
Mean (SD) | 1.25 (2.89) |
Median [Min, Max] | 0 [0, 161] |
time_to_death_1year | |
Mean (SD) | 321 (98.0) |
Median [Min, Max] | 365 [1.00, 365] |
time_to_death_3year | |
Mean (SD) | 802 (388) |
Median [Min, Max] | 1100 [1.00, 1100] |
time_to_death_1year_status | |
0 | 342426 (78.7%) |
1 | 92835 (21.3%) |
time_to_death_3year_status | |
0 | 235089 (54.0%) |
1 | 200172 (46.0%) |
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
## alpha lambda
## 80 1 0.0003829714
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
## glmnet variable importance
##
## only 20 most important variables shown (out of 44)
##
## Overall
## ALBUMIN 100.00
## age 75.64
## HEMOSESSIONS_1year6 59.08
## HISPANIC2 57.54
## race_cat_4White 56.18
## HGB 41.70
## COMO_CHFY 41.60
## ICU_DAYS_1year_num 40.76
## COMO_CANCY 33.18
## COMO_COPDY 32.30
## COMO_HTNY 30.81
## HEMOSESSIONS_1year2 23.81
## IRON_SAT_PERCENT 22.92
## SEX2 22.70
## COMO_OTHCARDY 22.30
## CLM_FROM_1year_num 20.73
## HEMOSESSIONS_1year3 16.33
## COMO_TOBACY 16.10
## COMO_INSTY 14.73
## COMO_INST_NURSY 13.60
## Warning in model.frame.default(Terms, newdata, na.action = na.action, xlev =
## object$lvls): variable 'time_to_death_3year_status' is not a factor
## Warning in model.frame.default(Terms, newdata, na.action = na.action, xlev =
## object$lvls): variable 'time_to_death_3year_status' is not a factor
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
## alpha lambda
## 86 1 0.0005051342
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
## glmnet variable importance
##
## only 20 most important variables shown (out of 47)
##
## Overall
## HEMOSESSIONS_3year1.5 100.00
## HEMOSESSIONS_3year2.5 50.79
## ALBUMIN 45.21
## age 44.93
## race_cat_4White 37.84
## HISPANIC2 37.60
## ICU_DAYS_3year_num 33.66
## COMO_CHFY 23.98
## COMO_COPDY 23.13
## COMO_TOBACY 20.60
## COMO_CANCY 17.09
## HGB 16.97
## COMO_INSTY 15.40
## COMO_HTNY 14.97
## COMO_OTHCARDY 14.93
## SEX2 13.49
## COMO_CVATIAY 10.21
## IRON_SAT_PERCENT 9.50
## COMO_NEEDASSTY 8.91
## COMO_PVDY 8.19