Mengimport library ggplot2

library(ggplot2)

1.a. Hitung statistik deskriptif untuk variabel mpg

mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
summary(mtcars$mpg)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.40   15.43   19.20   20.09   22.80   33.90
sd(mtcars$mpg)
## [1] 6.026948

1.b. Membuat box plot variabel mpg berdasarkan variabel cyl

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
  geom_boxplot(fill = "skyblue", color = "black") +
  labs(
    title = "Boxplot mpg Berdasarkan cyl",
    x = "Jumlah Silinder (cyl)",
    y = "Miles per Gallon (mpg)"
  ) +
  theme_minimal()

2. Membuat histogram untuk variabel hp

hist(mtcars$hp, freq = FALSE, 
     main = "Histogram Horsepower (hp) dengan Garis Densitas",
     xlab = "Horsepower (hp)",
     col = "lightgreen", border = "black")

# Tambahkan garis densitas
lines(density(mtcars$hp), col = "red", lwd = 2)

3. Uji Anova untuk rata-rata Sepal_Length antar spesies dataset iris

anova_result <- aov(Sepal.Length ~ Species, data = iris)

summary(anova_result)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## Species       2  63.21  31.606   119.3 <2e-16 ***
## Residuals   147  38.96   0.265                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Uji t-test untuk membandingkan Petal_Length antar spesies setosa dan versicolor

setosa <- subset(iris, Species == "setosa")
versicolor <- subset(iris, Species == "versicolor")

result <- t.test(setosa$Petal.Length, versicolor$Petal.Length, 
                        alternative = "two.sided")

print(result)
## 
##  Welch Two Sample t-test
## 
## data:  setosa$Petal.Length and versicolor$Petal.Length
## t = -39.493, df = 62.14, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.939618 -2.656382
## sample estimates:
## mean of x mean of y 
##     1.462     4.260

5.A Ringkasan model regresi linear

model <- lm(mpg ~ wt, data = mtcars)

summary(model)
## 
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5432 -2.3647 -0.1252  1.4096  6.8727 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  37.2851     1.8776  19.858  < 2e-16 ***
## wt           -5.3445     0.5591  -9.559 1.29e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared:  0.7528, Adjusted R-squared:  0.7446 
## F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10

5.B Membuat Scatter plot

ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point(color = "blue", size = 3) + 
  geom_smooth(method = "lm", se = FALSE, color = "red", size = 1.5) +  
  labs(title = "Scatter Plot Berat Mobil vs MPG",
       x = "Berat Mobil (wt)",
       y = "Miles Per Gallon (mpg)") +
  theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'

5. C Interpretasi Hasil Intercept: 37.285. Saat wt = 0, prediksi mpg adalah 37.285. Koefisien wt: -5.344. Setiap kenaikan 1 unit wt (berat mobil) mengurangi rata-rata mpg sebesar 5.344. Nilai R²: 0.7528. Sekitar 75.28% variabilitas mpg dapat dijelaskan oleh wt. Signifikansi: Karena nilai p < 0.05, hubungan antara wt dan mpg signifikan secara statistik