library(readxl)
library(tseries)
library(forecast)
library(TTR)
library(TSA)
library(graphics)
library(dplyr)
library(ggplot2)
Data yang digunakan adalah data harga emas bulanan di United Kingdom (dalam USD) dari Bulan Januari tahun 1979 sampai Desember tahun 2020 yang merupakan data deret waktu.
data_emas <- read_excel("C:/Users/ASUS/Downloads/harga emas negara.xlsx")
View(data_emas)
data.emas <- data_emas %>%
select(Time, UK)
data.table::data.table(data.emas)
## Time UK
## <POSc> <num>
## 1: 1979-01-01 117.4
## 2: 1979-02-01 124.2
## 3: 1979-03-01 116.2
## 4: 1979-04-01 118.8
## 5: 1979-05-01 132.7
## ---
## 500: 2020-08-01 1461.9
## 501: 2020-09-01 1459.6
## 502: 2020-10-01 1455.4
## 503: 2020-11-01 1320.2
## 504: 2020-12-01 1380.9
emas.ts <- ts(data.emas$UK)
emas.ts.month <- ts(data.emas$UK, start = c(1979, 1), frequency = 12)
# Plot Data
data.emas$Time <- as.Date(data.emas$Time)
ggplot(data.emas, aes(x = Time, y = UK)) + geom_line()
Berdasarkan plot deret waktu diatas, terlihat bahwa data memiliki pola tidak stasioner.
Data harga emas UK di partisi menjadi dua bagian yaitu data training (Januari 1979 - Juli 2012) dan data testing (Agustus 2012 - Desember 2020).
# Partisi Data
data.emas.training <- window(emas.ts, start = 1, end = 403)
data.emas.training
## Time Series:
## Start = 1
## End = 403
## Frequency = 1
## [1] 117.4 124.2 116.2 118.8 132.7 127.3 131.9 139.9 180.4 184.0
## [11] 189.0 230.6 288.1 280.3 228.5 229.4 228.4 277.3 262.2 263.4
## [21] 279.3 258.2 262.8 246.7 214.0 221.8 228.9 225.5 231.5 220.7
## [31] 220.5 229.9 237.5 229.6 212.0 208.2 205.7 199.1 179.6 201.4
## [41] 181.7 182.1 197.3 239.7 234.3 252.4 268.6 282.5 328.6 269.6
## [51] 279.6 275.1 272.7 271.9 277.5 277.3 270.5 255.4 276.3 263.5
## [61] 266.7 264.5 269.3 268.7 277.3 275.0 261.8 266.1 278.3 273.1
## [71] 274.6 266.0 271.1 266.4 266.1 258.6 244.1 242.6 232.5 239.2
## [81] 231.2 225.6 218.5 226.1 248.1 233.7 231.8 222.9 233.1 226.3
## [91] 239.5 258.5 292.5 285.3 271.7 262.2 264.6 262.5 262.3 273.0
## [101] 276.7 277.2 290.5 277.6 282.7 272.2 269.7 257.7 258.8 240.3
## [111] 242.0 238.9 247.8 255.6 255.4 254.0 234.6 233.2 228.4 226.8
## [121] 225.1 221.8 227.0 223.5 230.1 240.8 221.0 228.7 226.9 237.8
## [131] 260.1 247.2 247.1 241.2 223.7 224.3 216.5 201.9 200.2 204.9
## [141] 218.0 195.2 198.4 200.1 186.3 189.9 204.5 207.5 212.1 227.5
## [151] 215.3 206.7 202.5 205.1 207.5 188.8 197.8 201.0 196.9 189.6
## [161] 184.5 180.4 186.4 171.5 195.9 217.1 220.8 219.9 222.2 230.2
## [171] 224.4 225.8 241.8 253.4 270.5 249.8 237.7 248.6 249.9 264.8
## [181] 252.1 256.8 262.2 248.3 256.4 251.6 249.9 251.1 250.4 235.4
## [191] 244.8 245.0 236.2 238.2 240.7 242.2 241.9 243.3 239.6 246.8
## [201] 242.6 242.5 253.6 249.3 268.4 261.7 259.7 260.8 252.1 245.9
## [211] 247.5 247.3 242.4 233.1 221.0 215.8 215.6 219.8 212.0 209.6
## [221] 211.3 201.0 199.3 200.6 205.6 185.7 176.2 176.4 186.5 180.6
## [231] 179.8 185.8 180.1 177.6 176.6 163.3 172.9 174.5 178.5 173.0
## [241] 173.7 179.2 173.1 178.0 167.5 165.6 157.8 158.5 181.6 182.3
## [251] 182.9 180.1 174.8 186.0 173.5 175.8 182.1 190.3 184.8 190.4
## [261] 185.1 182.2 189.8 183.7 181.0 184.9 181.3 183.9 188.3 192.4
## [271] 186.6 188.2 199.4 191.7 193.2 190.0 199.8 209.9 211.7 211.5
## [281] 223.2 209.0 195.0 202.2 205.8 202.6 205.0 215.7 223.6 220.6
## [291] 211.8 210.7 220.6 209.7 220.7 237.5 233.5 227.6 231.6 232.5
## [301] 219.6 213.3 230.5 219.1 214.5 218.3 215.2 226.4 229.7 232.3
## [311] 237.2 226.9 223.8 226.1 226.2 228.1 227.4 243.9 243.7 240.9
## [321] 267.5 265.9 286.4 298.8 320.0 317.5 335.5 354.3 349.0 331.7
## [331] 338.8 327.8 320.8 316.6 328.8 322.9 332.3 338.9 337.4 338.5
## [341] 333.2 324.2 327.5 333.2 364.7 380.1 381.1 418.8 464.4 488.4
## [351] 469.7 439.8 448.2 467.4 463.4 456.7 496.2 452.3 530.8 604.9
## [361] 637.8 667.9 639.4 596.1 604.9 567.5 566.4 586.3 622.6 630.9
## [371] 716.4 673.4 673.1 728.0 735.4 770.4 831.1 831.5 746.4 810.7
## [381] 829.4 842.4 888.4 897.7 828.5 867.5 897.7 920.6 933.5 937.7
## [391] 992.1 1113.8 1039.9 1066.9 1110.1 985.1 1105.2 1108.0 1040.5 1016.9
## [401] 1012.3 1019.2 1035.2
data.emas.test <- subset(emas.ts, start = 404, end = 504)
data.emas.test
## Time Series:
## Start = 404
## End = 504
## Frequency = 1
## [1] 1037.9 1099.8 1067.0 1077.0 1019.7 1050.0 1046.5 1052.6 943.9 919.8
## [11] 785.9 867.1 901.6 819.1 824.1 764.9 727.3 761.2 791.5 774.8
## [21] 763.1 745.5 769.1 761.3 774.2 750.4 727.7 755.2 773.5 839.1
## [31] 785.6 799.6 768.0 780.8 744.6 703.9 738.0 735.4 739.7 705.4
## [41] 719.2 783.8 886.1 860.6 877.6 832.8 988.0 1010.8 999.7 1018.1
## [51] 1041.9 942.9 927.4 964.0 1009.0 995.5 978.9 980.8 956.4 961.5
## [61] 1018.0 956.4 956.5 945.7 954.4 945.9 956.5 943.7 953.4 981.0
## [71] 947.1 930.8 925.1 910.4 950.9 954.3 1004.2 1005.9 991.8 994.1
## [81] 983.6 1027.9 1107.1 1165.9 1255.0 1205.3 1167.7 1128.8 1143.4 1201.8
## [91] 1260.4 1297.6 1349.9 1398.3 1431.0 1497.1 1461.9 1459.6 1455.4 1320.2
## [101] 1380.9
# Data Training
plot.ts(data.emas.training, main = "Data Training Harga Emas", xlab = "Bulan", ylab = "UK")
# Data Testing
plot.ts(data.emas.test, main = "Data Testing Harga Emas", xlab = "Bulan", ylab = "UK")
# Stasioneritas Data
acf(data.emas.training, main = "Plot ACF Data Harga Emas UK")
adf.test(data.emas.training)
## Warning in adf.test(data.emas.training): p-value greater than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: data.emas.training
## Dickey-Fuller = 1.5662, Lag order = 7, p-value = 0.99
## alternative hypothesis: stationary
Berdasarkan hasil uji ADF diperoleh p-value sebesar 0.99 > 0.05 yang berarti bahwa H0 diterima atau data tidak stasioner. Karena data tidak stasioner maka selanjutnya dilakukan differencing untuk membuat data stasioner sebelum dilakukan identifikasi model.
# Differencing Ordo 1
data.emas.diff <- diff(data.emas.training, difference = 1)
plot.ts(data.emas.diff, lty = 1, xlab = "Waktu", ylab = "Data Harga Emas UK Differencing")
points(data.emas.diff)
acf(data.emas.diff, main = "Plot ACF Data Harga Emas UK Differencing", lag.max = 10)
adf.test(data.emas.diff)
## Warning in adf.test(data.emas.diff): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: data.emas.diff
## Dickey-Fuller = -7.6743, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
Berdasarkan hasil uji ADF, diperoleh nilai p-value sebesar 0.01 < 0.05 yang berarti H0 ditolak, sehingga data harga emas telah stasioner setelah dilakukan differencing ordo 1. Karena data telah stasioner selanjutnya akan dilakukan identifikasi model.
acf(data.emas.diff, main="Plot ACF Data Harga Emas UK", lag.max = 10)
pacf(data.emas.diff, main="Plot PACF Data Harga Emas UK", lag.max = 10)
eacf(data.emas.diff, ar.max = 10, ma.max = 10)
## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10
## 0 x o x x o x x o o o x
## 1 x o o x o x x o o o x
## 2 x x o o o o o o o o x
## 3 x x o o o o o o o o x
## 4 x x x x o o o o o o x
## 5 x x x o o o o o o o o
## 6 x x o o o x o o o o o
## 7 x x x o o x o o o o o
## 8 x x o o x x o o o o o
## 9 x x x x x o o o o o o
## 10 x x x o x o x o o o o
Berdasarkan plot ACF (cut off setelah lag ke-1), PACF (cut off setelah lag ke-4), dan EACF, diperoleh kandidat model:
ARIMA (4,1,1)
ARIMA (4,1,0)
ARIMA (1,1,1)
ARIMA (1,1,0)
ARIMA (2,1,1)
# Uji Signifikansi Parameter
arima411 <- arima(data.emas.diff, order = c(4,1,1),include.mean = FALSE, method = "ML")
arima411
##
## Call:
## arima(x = data.emas.diff, order = c(4, 1, 1), include.mean = FALSE, method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1
## -0.1341 -0.1478 0.1109 -0.1694 -0.9693
## s.e. 0.0501 0.0508 0.0507 0.0500 0.0123
##
## sigma^2 estimated as 405.1: log likelihood = -1774.61, aic = 3559.22
arima410 <- arima(data.emas.diff, order = c(4,1,0),include.mean = FALSE, method = "ML")
arima410
##
## Call:
## arima(x = data.emas.diff, order = c(4, 1, 0), include.mean = FALSE, method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4
## -0.8739 -0.7659 -0.3336 -0.2471
## s.e. 0.0485 0.0636 0.0637 0.0489
##
## sigma^2 estimated as 500.2: log likelihood = -1815.7, aic = 3639.4
arima111 <- arima(data.emas.diff, order = c(1,1,1),include.mean = FALSE, method = "ML")
arima111
##
## Call:
## arima(x = data.emas.diff, order = c(1, 1, 1), include.mean = FALSE, method = "ML")
##
## Coefficients:
## ar1 ma1
## -0.1500 -0.9769
## s.e. 0.0499 0.0100
##
## sigma^2 estimated as 434.9: log likelihood = -1788.76, aic = 3581.53
arima110 <- arima(data.emas.diff, order = c(1,1,0),include.mean = FALSE, method = "ML")
arima110
##
## Call:
## arima(x = data.emas.diff, order = c(1, 1, 0), include.mean = FALSE, method = "ML")
##
## Coefficients:
## ar1
## -0.5126
## s.e. 0.0428
##
## sigma^2 estimated as 738: log likelihood = -1893.25, aic = 3788.5
arima211 <- arima(data.emas.diff, order = c(2,1,1),include.mean = FALSE, method = "ML")
arima211
##
## Call:
## arima(x = data.emas.diff, order = c(2, 1, 1), include.mean = FALSE, method = "ML")
##
## Coefficients:
## ar1 ar2 ma1
## -0.1778 -0.1500 -0.9707
## s.e. 0.0502 0.0501 0.0116
##
## sigma^2 estimated as 425.4: log likelihood = -1784.35, aic = 3574.71
# AIC
aic.arima <- data.frame(
"Model" = c("ARIMA(4,1,1)", "ARIMA(4,1,0)", "ARIMA(1,1,1)", "ARIMA(1,1,0)", "ARIMA(2,1,1)"),
"AIC" = c(arima411$aic, arima410$aic, arima111$aic, arima110$aic, arima211$aic)
)
aic.arima
## Model AIC
## 1 ARIMA(4,1,1) 3559.218
## 2 ARIMA(4,1,0) 3639.398
## 3 ARIMA(1,1,1) 3581.526
## 4 ARIMA(1,1,0) 3788.498
## 5 ARIMA(2,1,1) 3574.706
Berdasarkan hasil di atas dapat disimpulkan bahwa ARIMA (4,1,1) merupakan model terbaik karena model tersebut memiliki nilai AIC terkecil yaitu 3559.218.
# Residuals
arima.411<-arima(data.emas.training, order=c(4,1,1), include.mean = FALSE, method="ML")
residual.arima <- arima.411$residuals
# Uji Non-Autokorelasi
Box.test(residual.arima, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: residual.arima
## X-squared = 0.070551, df = 1, p-value = 0.7905
Berdasarkan hasil uji Ljung-Box di atas dapat disimpulkan bahwa H0 tidak ditolak karena p-value sebesar 0.7905 > 0.05 yang berarti tidak terdapat autokorelasi pada residuals dari model ARIMA
# Uji Normalitas
shapiro.test(residual.arima)
##
## Shapiro-Wilk normality test
##
## data: residual.arima
## W = 0.84748, p-value < 2.2e-16
hist(residual.arima, main = "Histogram Residual", xlab = "Residual", breaks = 20)
qqnorm(residual.arima)
qqline(residual.arima, col = "red")
Berdasarkan hasil uji Shapiro-Wilk di atas dapat disimpulkan bahwa H0 ditolak karena p-value = 2.2e-16 < 0.05 sehingga sisaan dari model ARIMA tidak berdistribusi Normal.
# Ukuran Keakuratan
dugaan <- fitted(arima411)
cbind(data.emas.training, dugaan)
## Time Series:
## Start = 1
## End = 403
## Frequency = 1
## data.emas.training dugaan
## 1 117.4 NA
## 2 124.2 6.79320001
## 3 116.2 1.42794490
## 4 118.8 0.37263602
## 5 132.7 3.57387873
## 6 127.3 -0.92663116
## 7 131.9 3.14208300
## 8 139.9 4.57322774
## 9 180.4 1.53569416
## 10 184.0 4.55333060
## 11 189.0 3.37951058
## 12 230.6 12.94832238
## 13 288.1 2.12992616
## 14 280.3 4.14396088
## 15 228.5 11.92110883
## 16 229.4 18.99886777
## 17 228.4 7.34380120
## 18 277.3 6.40073427
## 19 262.2 14.85475394
## 20 263.4 5.42847481
## 21 279.3 18.32743065
## 22 258.2 -1.97153792
## 23 262.8 12.53960931
## 24 246.7 12.76777912
## 25 214.0 3.57778088
## 26 221.8 16.42734491
## 27 228.9 6.46119477
## 28 225.5 2.21487855
## 29 231.5 10.77907427
## 30 220.7 3.84757417
## 31 220.5 3.09671504
## 32 229.9 6.87334634
## 33 237.5 0.69375354
## 34 229.6 3.72718420
## 35 212.0 4.81840376
## 36 208.2 5.74974374
## 37 205.7 3.55922677
## 38 199.1 2.64961519
## 39 179.6 5.77162681
## 40 201.4 5.10667723
## 41 181.7 1.29982087
## 42 182.1 -0.67955181
## 43 197.3 9.57648757
## 44 239.7 -6.66590022
## 45 234.3 -1.62268251
## 46 252.4 -1.07806783
## 47 268.6 3.99964221
## 48 282.5 -8.68566820
## 49 328.6 3.42307237
## 50 269.6 -3.45875208
## 51 279.6 4.15720502
## 52 275.1 14.55771587
## 53 272.7 -11.40784440
## 54 271.9 16.18008124
## 55 277.5 1.81825397
## 56 277.3 3.52938457
## 57 270.5 3.05363293
## 58 255.4 4.90161948
## 59 276.3 4.64493451
## 60 263.5 1.79494243
## 61 266.7 0.73319485
## 62 264.5 9.03613126
## 63 269.3 -2.78931379
## 64 268.7 4.78898248
## 65 277.3 1.00481904
## 66 275.0 2.49524019
## 67 261.8 0.65442423
## 68 266.1 5.22941107
## 69 278.3 1.70214147
## 70 273.1 -0.98076830
## 71 274.6 3.84053043
## 72 266.0 3.34697886
## 73 271.1 0.07358276
## 74 266.4 3.57331344
## 75 266.1 0.35045692
## 76 258.6 4.41552382
## 77 244.1 0.94872617
## 78 242.6 4.61999955
## 79 232.5 2.17444058
## 80 239.2 1.47170143
## 81 231.2 3.27661003
## 82 225.6 -0.74093876
## 83 218.5 4.27782830
## 84 226.1 -0.70217849
## 85 248.1 0.56517921
## 86 233.7 -3.45231578
## 87 231.8 0.84745538
## 88 222.9 3.57073510
## 89 233.1 -4.19723040
## 90 226.3 2.27196748
## 91 239.5 -1.44292043
## 92 258.5 2.14479203
## 93 292.5 -6.18731249
## 94 285.3 -2.72131053
## 95 271.7 -2.29740975
## 96 262.2 4.98193959
## 97 264.6 -2.17813215
## 98 262.5 2.03130013
## 99 262.3 2.28796042
## 100 273.0 3.24751317
## 101 276.7 -0.78105920
## 102 277.2 -0.34234732
## 103 290.5 2.03493940
## 104 277.6 -1.48646113
## 105 282.7 0.61606337
## 106 272.2 4.17325242
## 107 269.7 -1.92035306
## 108 257.7 5.72942360
## 109 258.8 0.49666028
## 110 240.3 3.69207437
## 111 242.0 1.29400346
## 112 238.9 4.55665559
## 113 247.8 -2.41321870
## 114 255.6 2.59570201
## 115 255.4 -2.82544387
## 116 254.0 0.63472726
## 117 234.6 -0.24013201
## 118 233.2 1.06215202
## 119 228.4 2.45522346
## 120 226.8 -1.76484755
## 121 225.1 3.35973883
## 122 221.8 -0.68197665
## 123 227.0 0.39813321
## 124 223.5 -0.91128555
## 125 230.1 -1.24064023
## 126 240.8 0.14525233
## 127 221.0 -3.97886780
## 128 228.7 1.61441842
## 129 226.9 1.36436334
## 130 237.8 -5.60040948
## 131 260.1 2.82468089
## 132 247.2 -5.69691026
## 133 247.1 0.13599397
## 134 241.2 2.72709499
## 135 223.7 -4.48728628
## 136 224.3 4.91014906
## 137 216.5 1.25297592
## 138 201.9 -0.87723584
## 139 200.2 4.82822335
## 140 204.9 -0.09531504
## 141 218.0 -2.04394346
## 142 195.2 -1.06904480
## 143 198.4 0.36157961
## 144 200.1 2.11501091
## 145 186.3 -6.94428361
## 146 189.9 4.11220726
## 147 204.5 -0.51768337
## 148 207.5 -5.56583380
## 149 212.1 -0.81714144
## 150 227.5 -0.87921971
## 151 215.3 -5.21521390
## 152 206.7 -1.18143956
## 153 202.5 3.11415851
## 154 205.1 -3.12333881
## 155 207.5 0.56562064
## 156 188.8 -0.47827760
## 157 197.8 1.83085493
## 158 201.0 0.28012835
## 159 196.9 -5.25281625
## 160 189.6 3.26604509
## 161 184.5 -0.88653070
## 162 180.4 -0.66478634
## 163 186.4 -0.34742162
## 164 171.5 -0.86885124
## 165 195.9 -0.25083455
## 166 217.1 -0.72554246
## 167 220.8 -9.46176819
## 168 219.9 1.66164280
## 169 222.2 -2.22729873
## 170 230.2 -3.23657726
## 171 224.4 -1.67449941
## 172 225.8 0.34153188
## 173 241.8 1.53802352
## 174 253.4 -3.53694620
## 175 270.5 -1.50376767
## 176 249.8 -0.62120263
## 177 237.7 0.05763659
## 178 248.6 5.47368846
## 179 249.9 -3.83978360
## 180 264.8 1.56441268
## 181 252.1 2.66221379
## 182 256.8 -1.07928828
## 183 262.2 3.97859903
## 184 248.3 -4.00882935
## 185 256.4 4.77890642
## 186 251.6 1.91236645
## 187 249.9 -2.07421192
## 188 251.1 5.13825357
## 189 250.4 -0.98788592
## 190 235.4 1.37665741
## 191 244.8 2.86942433
## 192 245.0 1.20888334
## 193 236.2 -2.45860559
## 194 238.2 5.04279750
## 195 240.7 -0.32326251
## 196 242.2 -1.33935958
## 197 241.9 1.53068267
## 198 243.3 0.08930973
## 199 239.6 -0.02808331
## 200 246.8 0.26179825
## 201 242.6 0.26008318
## 202 242.5 -0.81253434
## 203 253.6 2.41740913
## 204 249.3 -2.53553106
## 205 268.4 0.20656941
## 206 261.7 0.47142353
## 207 259.7 -3.35268728
## 208 260.8 5.07623433
## 209 252.1 -2.98236507
## 210 245.9 2.59105572
## 211 247.5 2.98212472
## 212 247.3 -0.08794771
## 213 242.4 0.93494974
## 214 233.1 2.09390812
## 215 221.0 1.50801436
## 216 215.8 1.90023725
## 217 215.6 1.47935556
## 218 219.8 0.17252245
## 219 212.0 0.20671409
## 220 209.6 0.30565542
## 221 211.3 0.91291323
## 222 201.0 -2.48734207
## 223 199.3 0.90854055
## 224 200.6 0.98859779
## 225 205.6 -2.70083567
## 226 185.7 -0.41721698
## 227 176.2 0.65337846
## 228 176.4 2.52951992
## 229 186.5 -3.76843252
## 230 180.6 -0.73202700
## 231 179.8 -0.89421169
## 232 185.8 0.24399039
## 233 180.1 -4.69719520
## 234 177.6 -0.88732917
## 235 176.6 0.25338198
## 236 163.3 -2.90898828
## 237 172.9 0.53749012
## 238 174.5 -0.81357137
## 239 178.5 -4.66960087
## 240 173.0 1.08068808
## 241 173.7 -2.96914186
## 242 179.2 -0.66238928
## 243 173.1 -3.49378587
## 244 178.0 -0.43021595
## 245 167.5 -0.54562023
## 246 165.6 -2.51125240
## 247 157.8 1.81569859
## 248 158.5 -2.53078931
## 249 181.6 0.86350798
## 250 182.3 -4.82637570
## 251 182.9 -3.02114813
## 252 180.1 1.45815853
## 253 174.8 -4.48146362
## 254 186.0 0.11540566
## 255 173.5 -1.74811893
## 256 175.8 -1.03933067
## 257 182.1 2.83469540
## 258 190.3 -5.20712981
## 259 184.8 0.01508233
## 260 190.4 -0.66155928
## 261 185.1 -0.40035252
## 262 182.2 -2.57081048
## 263 189.8 2.26057927
## 264 183.7 -2.42817551
## 265 181.0 -0.14235035
## 266 184.9 2.10600616
## 267 181.3 -2.52514613
## 268 183.9 0.17058424
## 269 188.3 0.67804308
## 270 192.4 -2.31565963
## 271 186.6 -0.38632542
## 272 188.2 -0.03119273
## 273 199.4 0.15135242
## 274 191.7 -2.93817041
## 275 193.2 0.52972528
## 276 190.0 1.92998605
## 277 199.8 -2.67956034
## 278 209.9 0.87706161
## 279 211.7 -2.88177774
## 280 211.5 0.56871680
## 281 223.2 -0.12932232
## 282 209.0 -2.03828958
## 283 195.0 0.48782661
## 284 202.2 5.50338326
## 285 205.8 -2.20609147
## 286 202.6 -0.26800606
## 287 205.0 3.40355845
## 288 215.7 -0.36447512
## 289 223.6 -2.11018597
## 290 220.6 -0.88118791
## 291 211.8 0.90115950
## 292 210.7 1.27559771
## 293 220.6 0.29280569
## 294 209.7 -0.82225365
## 295 220.7 1.86913549
## 296 237.5 2.20175307
## 297 233.5 -5.53590592
## 298 227.6 2.39657889
## 299 231.6 2.40380483
## 300 232.5 -1.88380908
## 301 219.6 0.46758820
## 302 213.3 3.78648750
## 303 230.5 2.61046232
## 304 219.1 -2.07444930
## 305 214.5 1.07205665
## 306 218.3 5.70135748
## 307 215.2 -3.64224050
## 308 226.4 1.65824707
## 309 229.7 0.83243811
## 310 232.3 -2.33447711
## 311 237.2 1.83342442
## 312 226.9 -1.57665507
## 313 223.8 1.11520722
## 314 226.1 2.64058053
## 315 226.2 -1.23372873
## 316 228.1 1.67808085
## 317 227.4 1.14766400
## 318 243.9 0.01470253
## 319 243.7 -0.82975815
## 320 240.9 -1.70632023
## 321 267.5 3.42521603
## 322 265.9 -4.18912521
## 323 286.4 -2.13198263
## 324 298.8 3.46743158
## 325 320.0 -6.54780518
## 326 317.5 1.54921386
## 327 335.5 -1.34015147
## 328 354.3 2.35486868
## 329 349.0 -4.39763624
## 330 331.7 4.97766996
## 331 338.8 6.08101513
## 332 327.8 1.80506148
## 333 320.8 2.98593242
## 334 316.6 9.55791027
## 335 328.8 2.02769242
## 336 322.9 3.23687075
## 337 332.3 2.59301998
## 338 338.9 4.76958809
## 339 337.4 -1.84629289
## 340 338.5 4.42811769
## 341 333.2 2.27163923
## 342 324.2 2.08948885
## 343 327.5 4.85231861
## 344 333.2 2.55170583
## 345 364.7 1.18252294
## 346 380.1 0.28867150
## 347 381.1 -2.71982793
## 348 418.8 4.15973865
## 349 464.4 -3.76236173
## 350 488.4 -7.60157808
## 351 469.7 1.60683149
## 352 439.8 4.56076973
## 353 448.2 7.58260354
## 354 467.4 3.05048893
## 355 463.4 2.42941735
## 356 456.7 9.89300388
## 357 496.2 7.88370830
## 358 452.3 -1.34653748
## 359 530.8 5.33629581
## 360 604.9 9.07297939
## 361 637.8 -23.51112915
## 362 667.9 12.10052414
## 363 639.4 -2.10968679
## 364 596.1 1.52925370
## 365 604.9 17.47022592
## 366 567.5 6.37975272
## 367 566.4 11.82023362
## 368 586.3 21.67043811
## 369 622.6 -0.51662642
## 370 630.9 7.16327944
## 371 716.4 4.70800470
## 372 673.4 -0.76850486
## 373 673.1 -2.12501865
## 374 728.0 24.50286173
## 375 735.4 -15.61117634
## 376 770.4 9.81433086
## 377 831.1 12.79315419
## 378 831.5 -7.88467723
## 379 746.4 7.76681273
## 380 810.7 23.47132367
## 381 829.4 6.28184059
## 382 842.4 -8.56894314
## 383 888.4 30.65332391
## 384 897.7 -2.83015296
## 385 828.5 4.68013391
## 386 867.5 22.99196188
## 387 897.7 10.91268474
## 388 920.6 -5.79563809
## 389 933.5 22.66520774
## 390 937.7 5.47699640
## 391 992.1 8.76380482
## 392 1113.8 4.84458202
## 393 1039.9 -7.28750164
## 394 1066.9 13.99622474
## 395 1110.1 28.73121671
## 396 985.1 -21.00770746
## 397 1105.2 40.29814806
## 398 1108.0 19.43600705
## 399 1040.5 -22.96846712
## 400 1016.9 58.11358488
## 401 1012.3 5.57250176
## 402 1019.2 8.30174214
## 403 1035.2 20.68882071
# Plot Dugaan
plot.ts(data.emas.training, xlab="Month", ylab="Data")
points(data.emas.training)
par(col="black")
lines(dugaan)
# Forecast
ramalan.arima411<- forecast::forecast(data.emas.training, model = arima.411, h = 101)
ramalan.arima411
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 404 1034.423 1008.1852 1060.661 994.2957 1074.550
## 405 1034.805 999.1098 1070.500 980.2140 1089.396
## 406 1036.957 994.8760 1079.038 972.5998 1101.314
## 407 1034.890 984.6673 1085.113 958.0809 1111.699
## 408 1035.228 979.6452 1090.811 950.2213 1120.235
## 409 1035.687 975.1851 1096.188 943.1575 1128.216
## 410 1035.009 969.4412 1100.576 934.7319 1135.285
## 411 1035.348 965.5610 1105.134 928.6181 1142.077
## 412 1035.392 961.4679 1109.316 922.3348 1148.450
## 413 1035.193 957.2679 1113.118 916.0169 1154.368
## 414 1035.349 953.7568 1116.941 910.5646 1160.133
## 415 1035.313 950.1327 1120.494 905.0409 1165.585
## 416 1035.267 946.6465 1123.888 899.7335 1170.801
## 417 1035.325 943.4264 1127.223 894.7783 1175.871
## 418 1035.297 940.2042 1130.390 889.8650 1180.729
## 419 1035.293 937.1184 1133.467 885.1481 1185.437
## 420 1035.310 934.1545 1136.466 880.6059 1190.015
## 421 1035.297 931.2358 1139.358 876.1491 1194.445
## 422 1035.300 928.4172 1142.183 871.8369 1198.763
## 423 1035.304 925.6725 1144.935 867.6371 1202.971
## 424 1035.299 922.9836 1147.615 863.5273 1207.071
## 425 1035.301 920.3666 1150.236 859.5238 1211.079
## 426 1035.302 917.8056 1152.798 855.6069 1214.997
## 427 1035.300 915.2968 1155.304 851.7707 1218.830
## 428 1035.301 912.8426 1157.760 848.0168 1222.586
## 429 1035.301 910.4350 1160.167 844.3349 1226.267
## 430 1035.301 908.0728 1162.529 840.7224 1229.879
## 431 1035.301 905.7546 1164.848 837.1768 1233.426
## 432 1035.301 903.4765 1167.126 833.6928 1236.909
## 433 1035.301 901.2372 1169.365 830.2681 1240.334
## 434 1035.301 899.0349 1171.567 826.8999 1243.702
## 435 1035.301 896.8674 1173.735 823.5850 1247.017
## 436 1035.301 894.7334 1175.869 820.3214 1250.281
## 437 1035.301 892.6314 1177.971 817.1066 1253.496
## 438 1035.301 890.5598 1180.042 813.9384 1256.664
## 439 1035.301 888.5175 1182.085 810.8150 1259.787
## 440 1035.301 886.5032 1184.099 807.7344 1262.868
## 441 1035.301 884.5158 1186.086 804.6949 1265.907
## 442 1035.301 882.5543 1188.048 801.6951 1268.907
## 443 1035.301 880.6176 1189.984 798.7332 1271.869
## 444 1035.301 878.7049 1191.897 795.8080 1274.794
## 445 1035.301 876.8153 1193.787 792.9181 1277.684
## 446 1035.301 874.9480 1195.654 790.0622 1280.540
## 447 1035.301 873.1021 1197.500 787.2392 1283.363
## 448 1035.301 871.2770 1199.325 784.4479 1286.154
## 449 1035.301 869.4720 1201.130 781.6874 1288.915
## 450 1035.301 867.6865 1202.916 778.9567 1291.645
## 451 1035.301 865.9197 1204.682 776.2546 1294.347
## 452 1035.301 864.1712 1206.431 773.5805 1297.022
## 453 1035.301 862.4404 1208.162 770.9335 1299.669
## 454 1035.301 860.7267 1209.875 768.3127 1302.289
## 455 1035.301 859.0297 1211.572 765.7173 1304.885
## 456 1035.301 857.3489 1213.253 763.1467 1307.455
## 457 1035.301 855.6838 1214.918 760.6002 1310.002
## 458 1035.301 854.0340 1216.568 758.0771 1312.525
## 459 1035.301 852.3991 1218.203 755.5767 1315.025
## 460 1035.301 850.7787 1219.823 753.0984 1317.504
## 461 1035.301 849.1724 1221.430 750.6418 1319.960
## 462 1035.301 847.5798 1223.022 748.2061 1322.396
## 463 1035.301 846.0006 1224.601 745.7910 1324.811
## 464 1035.301 844.4345 1226.168 743.3958 1327.206
## 465 1035.301 842.8811 1227.721 741.0201 1329.582
## 466 1035.301 841.3402 1229.262 738.6635 1331.939
## 467 1035.301 839.8114 1230.791 736.3254 1334.277
## 468 1035.301 838.2945 1232.308 734.0055 1336.597
## 469 1035.301 836.7891 1233.813 731.7033 1338.899
## 470 1035.301 835.2951 1235.307 729.4184 1341.184
## 471 1035.301 833.8122 1236.790 727.1505 1343.452
## 472 1035.301 832.3401 1238.262 724.8991 1345.703
## 473 1035.301 830.8787 1239.723 722.6640 1347.938
## 474 1035.301 829.4275 1241.175 720.4447 1350.157
## 475 1035.301 827.9866 1242.615 718.2409 1352.361
## 476 1035.301 826.5556 1244.047 716.0524 1354.550
## 477 1035.301 825.1343 1245.468 713.8788 1356.723
## 478 1035.301 823.7226 1246.879 711.7197 1358.882
## 479 1035.301 822.3202 1248.282 709.5750 1361.027
## 480 1035.301 820.9270 1249.675 707.4443 1363.158
## 481 1035.301 819.5429 1251.059 705.3274 1365.275
## 482 1035.301 818.1675 1252.435 703.2239 1367.378
## 483 1035.301 816.8008 1253.801 701.1337 1369.468
## 484 1035.301 815.4426 1255.160 699.0565 1371.546
## 485 1035.301 814.0927 1256.509 696.9921 1373.610
## 486 1035.301 812.7510 1257.851 694.9401 1375.662
## 487 1035.301 811.4173 1259.185 692.9005 1377.702
## 488 1035.301 810.0916 1260.510 690.8729 1379.729
## 489 1035.301 808.7736 1261.828 688.8572 1381.745
## 490 1035.301 807.4632 1263.139 686.8532 1383.749
## 491 1035.301 806.1604 1264.442 684.8606 1385.741
## 492 1035.301 804.8649 1265.737 682.8793 1387.723
## 493 1035.301 803.5766 1267.025 680.9091 1389.693
## 494 1035.301 802.2954 1268.307 678.9497 1391.652
## 495 1035.301 801.0213 1269.581 677.0011 1393.601
## 496 1035.301 799.7541 1270.848 675.0630 1395.539
## 497 1035.301 798.4936 1272.108 673.1353 1397.467
## 498 1035.301 797.2398 1273.362 671.2178 1399.384
## 499 1035.301 795.9926 1274.609 669.3104 1401.292
## 500 1035.301 794.7518 1275.850 667.4128 1403.189
## 501 1035.301 793.5175 1277.085 665.5250 1405.077
## 502 1035.301 792.2893 1278.313 663.6467 1406.955
## 503 1035.301 791.0674 1279.535 661.7779 1408.824
## 504 1035.301 789.8515 1280.751 659.9184 1410.684
plot(ramalan.arima411)
gabungan <- cbind(data.emas.test, ramalan.arima411)
df.gabungan <- as.data.frame(gabungan, digits=3)
df.gabungan %>%
rename(
"Data Aktual Harga Emas UK" = data.emas.test,
Ramalan ="ramalan.arima411.Point Forecast",
"Lo 80"="ramalan.arima411.Lo 80",
"Hi 80"="ramalan.arima411.Hi 80",
"Lo 95"="ramalan.arima411.Lo 95",
"Hi 95"="ramalan.arima411.Hi 95"
)
## Data Aktual Harga Emas UK Ramalan Lo 80 Hi 80 Lo 95 Hi 95
## 1 1037.9 1034.423 1008.1852 1060.661 994.2957 1074.550
## 2 1099.8 1034.805 999.1098 1070.500 980.2140 1089.396
## 3 1067.0 1036.957 994.8760 1079.038 972.5998 1101.314
## 4 1077.0 1034.890 984.6673 1085.113 958.0809 1111.699
## 5 1019.7 1035.228 979.6452 1090.811 950.2213 1120.235
## 6 1050.0 1035.687 975.1851 1096.188 943.1575 1128.216
## 7 1046.5 1035.009 969.4412 1100.576 934.7319 1135.285
## 8 1052.6 1035.348 965.5610 1105.134 928.6181 1142.077
## 9 943.9 1035.392 961.4679 1109.316 922.3348 1148.450
## 10 919.8 1035.193 957.2679 1113.118 916.0169 1154.368
## 11 785.9 1035.349 953.7568 1116.941 910.5646 1160.133
## 12 867.1 1035.313 950.1327 1120.494 905.0409 1165.585
## 13 901.6 1035.267 946.6465 1123.888 899.7335 1170.801
## 14 819.1 1035.325 943.4264 1127.223 894.7783 1175.871
## 15 824.1 1035.297 940.2042 1130.390 889.8650 1180.729
## 16 764.9 1035.293 937.1184 1133.467 885.1481 1185.437
## 17 727.3 1035.310 934.1545 1136.466 880.6059 1190.015
## 18 761.2 1035.297 931.2358 1139.358 876.1491 1194.445
## 19 791.5 1035.300 928.4172 1142.183 871.8369 1198.763
## 20 774.8 1035.304 925.6725 1144.935 867.6371 1202.971
## 21 763.1 1035.299 922.9836 1147.615 863.5273 1207.071
## 22 745.5 1035.301 920.3666 1150.236 859.5238 1211.079
## 23 769.1 1035.302 917.8056 1152.798 855.6069 1214.997
## 24 761.3 1035.300 915.2968 1155.304 851.7707 1218.830
## 25 774.2 1035.301 912.8426 1157.760 848.0168 1222.586
## 26 750.4 1035.301 910.4350 1160.167 844.3349 1226.267
## 27 727.7 1035.301 908.0728 1162.529 840.7224 1229.879
## 28 755.2 1035.301 905.7546 1164.848 837.1768 1233.426
## 29 773.5 1035.301 903.4765 1167.126 833.6928 1236.909
## 30 839.1 1035.301 901.2372 1169.365 830.2681 1240.334
## 31 785.6 1035.301 899.0349 1171.567 826.8999 1243.702
## 32 799.6 1035.301 896.8674 1173.735 823.5850 1247.017
## 33 768.0 1035.301 894.7334 1175.869 820.3214 1250.281
## 34 780.8 1035.301 892.6314 1177.971 817.1066 1253.496
## 35 744.6 1035.301 890.5598 1180.042 813.9384 1256.664
## 36 703.9 1035.301 888.5175 1182.085 810.8150 1259.787
## 37 738.0 1035.301 886.5032 1184.099 807.7344 1262.868
## 38 735.4 1035.301 884.5158 1186.086 804.6949 1265.907
## 39 739.7 1035.301 882.5543 1188.048 801.6951 1268.907
## 40 705.4 1035.301 880.6176 1189.984 798.7332 1271.869
## 41 719.2 1035.301 878.7049 1191.897 795.8080 1274.794
## 42 783.8 1035.301 876.8153 1193.787 792.9181 1277.684
## 43 886.1 1035.301 874.9480 1195.654 790.0622 1280.540
## 44 860.6 1035.301 873.1021 1197.500 787.2392 1283.363
## 45 877.6 1035.301 871.2770 1199.325 784.4479 1286.154
## 46 832.8 1035.301 869.4720 1201.130 781.6874 1288.915
## 47 988.0 1035.301 867.6865 1202.916 778.9567 1291.645
## 48 1010.8 1035.301 865.9197 1204.682 776.2546 1294.347
## 49 999.7 1035.301 864.1712 1206.431 773.5805 1297.022
## 50 1018.1 1035.301 862.4404 1208.162 770.9335 1299.669
## 51 1041.9 1035.301 860.7267 1209.875 768.3127 1302.289
## 52 942.9 1035.301 859.0297 1211.572 765.7173 1304.885
## 53 927.4 1035.301 857.3489 1213.253 763.1467 1307.455
## 54 964.0 1035.301 855.6838 1214.918 760.6002 1310.002
## 55 1009.0 1035.301 854.0340 1216.568 758.0771 1312.525
## 56 995.5 1035.301 852.3991 1218.203 755.5767 1315.025
## 57 978.9 1035.301 850.7787 1219.823 753.0984 1317.504
## 58 980.8 1035.301 849.1724 1221.430 750.6418 1319.960
## 59 956.4 1035.301 847.5798 1223.022 748.2061 1322.396
## 60 961.5 1035.301 846.0006 1224.601 745.7910 1324.811
## 61 1018.0 1035.301 844.4345 1226.168 743.3958 1327.206
## 62 956.4 1035.301 842.8811 1227.721 741.0201 1329.582
## 63 956.5 1035.301 841.3402 1229.262 738.6635 1331.939
## 64 945.7 1035.301 839.8114 1230.791 736.3254 1334.277
## 65 954.4 1035.301 838.2945 1232.308 734.0055 1336.597
## 66 945.9 1035.301 836.7891 1233.813 731.7033 1338.899
## 67 956.5 1035.301 835.2951 1235.307 729.4184 1341.184
## 68 943.7 1035.301 833.8122 1236.790 727.1505 1343.452
## 69 953.4 1035.301 832.3401 1238.262 724.8991 1345.703
## 70 981.0 1035.301 830.8787 1239.723 722.6640 1347.938
## 71 947.1 1035.301 829.4275 1241.175 720.4447 1350.157
## 72 930.8 1035.301 827.9866 1242.615 718.2409 1352.361
## 73 925.1 1035.301 826.5556 1244.047 716.0524 1354.550
## 74 910.4 1035.301 825.1343 1245.468 713.8788 1356.723
## 75 950.9 1035.301 823.7226 1246.879 711.7197 1358.882
## 76 954.3 1035.301 822.3202 1248.282 709.5750 1361.027
## 77 1004.2 1035.301 820.9270 1249.675 707.4443 1363.158
## 78 1005.9 1035.301 819.5429 1251.059 705.3274 1365.275
## 79 991.8 1035.301 818.1675 1252.435 703.2239 1367.378
## 80 994.1 1035.301 816.8008 1253.801 701.1337 1369.468
## 81 983.6 1035.301 815.4426 1255.160 699.0565 1371.546
## 82 1027.9 1035.301 814.0927 1256.509 696.9921 1373.610
## 83 1107.1 1035.301 812.7510 1257.851 694.9401 1375.662
## 84 1165.9 1035.301 811.4173 1259.185 692.9005 1377.702
## 85 1255.0 1035.301 810.0916 1260.510 690.8729 1379.729
## 86 1205.3 1035.301 808.7736 1261.828 688.8572 1381.745
## 87 1167.7 1035.301 807.4632 1263.139 686.8532 1383.749
## 88 1128.8 1035.301 806.1604 1264.442 684.8606 1385.741
## 89 1143.4 1035.301 804.8649 1265.737 682.8793 1387.723
## 90 1201.8 1035.301 803.5766 1267.025 680.9091 1389.693
## 91 1260.4 1035.301 802.2954 1268.307 678.9497 1391.652
## 92 1297.6 1035.301 801.0213 1269.581 677.0011 1393.601
## 93 1349.9 1035.301 799.7541 1270.848 675.0630 1395.539
## 94 1398.3 1035.301 798.4936 1272.108 673.1353 1397.467
## 95 1431.0 1035.301 797.2398 1273.362 671.2178 1399.384
## 96 1497.1 1035.301 795.9926 1274.609 669.3104 1401.292
## 97 1461.9 1035.301 794.7518 1275.850 667.4128 1403.189
## 98 1459.6 1035.301 793.5175 1277.085 665.5250 1405.077
## 99 1455.4 1035.301 792.2893 1278.313 663.6467 1406.955
## 100 1320.2 1035.301 791.0674 1279.535 661.7779 1408.824
## 101 1380.9 1035.301 789.8515 1280.751 659.9184 1410.684
# Akurasi
accuracy(ramalan.arima411, data.emas.test)
## ME RMSE MAE MPE MAPE MASE
## Training set 2.449186 20.4481 12.44926 0.4258411 3.915648 0.998604
## Test set -63.501670 204.8856 166.60784 -10.4824622 18.195143 13.364265
## ACF1 Theil's U
## Training set -0.01318205 NA
## Test set 0.94906751 4.641143
## Nilai MAPE Interpretasi
## 1 <10% Kemampuan peramalan sangat baik
## 2 10%-20% Kemampuan peramalan baik
## 3 20%-50% Kemampuan peramalan layak
## 4 >50% Kemampuan peramalan buruk
Berdasarkan hasil di atas diperoleh nilai MAPE pada data testing sebesar 18.2% yang berarti model ARIMA (4,1,1) memiliki kemampuan peramalan baik.
# Ramalan Harga Emas UK 12 Bulan ke Depan
ramalan_arima411 <- forecast::forecast(emas.ts,model = arima.411, h = 12)
plot(ramalan_arima411)