# for Core packages
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.1
## Warning: package 'purrr' was built under R version 4.4.2
## Warning: package 'dplyr' was built under R version 4.4.1
## Warning: package 'lubridate' was built under R version 4.4.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
##
## Attaching package: 'PerformanceAnalytics'
##
## The following object is masked from 'package:graphics':
##
## legend
##
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
# for times series
library(timetk)
## Warning: package 'timetk' was built under R version 4.4.2
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.4.2
library(h2o)
## Warning: package 'h2o' was built under R version 4.4.2
##
## ----------------------------------------------------------------------
##
## Your next step is to start H2O:
## > h2o.init()
##
## For H2O package documentation, ask for help:
## > ??h2o
##
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
##
## ----------------------------------------------------------------------
##
##
## Attaching package: 'h2o'
##
## The following objects are masked from 'package:lubridate':
##
## day, hour, month, week, year
##
## The following objects are masked from 'package:stats':
##
## cor, sd, var
##
## The following objects are masked from 'package:base':
##
## %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
## colnames<-, ifelse, is.character, is.factor, is.numeric, log,
## log10, log1p, log2, round, signif, trunc
library(slider)
## Warning: package 'slider' was built under R version 4.4.2
library(dplyr)
library(lubridate)
library(purrr)
Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.
The following is the replication of Matt Dancho’s tutorial on this page
start_date <- "1989-01-01"
symbols_txt <- c("CTICLAIMS", # Connecticut
"MEICLAIMS", # Maine
"MAICLAIMS", # Massachusetts
"NHICLAIMS", # New Hampshire
"RIICLAIMS", # Rhode Island
"VTICLAIMS") # Vermont
claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
mutate(symbol = fct_recode(symbol,
"Connecticut" = "CTICLAIMS",
"Maine" = "MEICLAIMS",
"Massachusetts" = "MAICLAIMS",
"New Hampshire" = "NHICLAIMS",
"Rhode Island" = "RIICLAIMS",
"Vermont" = "VTICLAIMS")) %>%
rename(claims = price)
# Feature engineering using STL decomposition
# Ensure `date` column is of Date class
claims_tbl <- claims_tbl %>%
mutate(date = as.Date(date))
# Perform feature engineering with STL decomposition
claims_features <- claims_tbl %>%
group_by(symbol) %>%
filter(n() >= 24) %>% # Ensure at least 24 months of data per group
mutate(
claims_lag_12 = slider::slide_dbl(claims, mean, .before = 12, .complete = TRUE),
month = lubridate::month(date),
year = lubridate::year(date)
) %>%
# Add STL decomposition
group_by(symbol) %>%
group_modify(~ {
stl_result <- stats::stl(ts(.x$claims, frequency = 12), s.window = "periodic")$time.series
bind_cols(.x, as_tibble(stl_result)) # Add trend, seasonal, and remainder as columns
}) %>%
ungroup()
# Correlation analysis
corr_matrix <- claims_features %>%
select(-date) %>%
select_if(is.numeric) %>%
cor(use = "pairwise.complete.obs")
ggcorrplot(corr_matrix, lab = TRUE)
# Prepare data for modeling
claims_model_data <- claims_features %>%
drop_na() %>%
mutate(label = if_else(claims > lag(claims, 12), "increase", "decrease")) %>%
select(-c(date, symbol))
claims_model_data <- claims_model_data %>% sample_frac(0.5) %>%
mutate(trend = as.numeric(trend))
# Initialize H2O
h2o.init(startH2O = TRUE, max_mem_size = "8G", nthreads = -2)
##
## H2O is not running yet, starting it now...
##
## Note: In case of errors look at the following log files:
## C:\Users\Surplus\AppData\Local\Temp\Rtmpq24G29\file64443b293b9a/h2o_Surplus_started_from_r.out
## C:\Users\Surplus\AppData\Local\Temp\Rtmpq24G29\file6444210c7654/h2o_Surplus_started_from_r.err
##
##
## Starting H2O JVM and connecting: . Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 6 seconds 219 milliseconds
## H2O cluster timezone: America/New_York
## H2O data parsing timezone: UTC
## H2O cluster version: 3.44.0.3
## H2O cluster version age: 11 months and 28 days
## H2O cluster name: H2O_started_from_R_Surplus_zuj217
## H2O cluster total nodes: 1
## H2O cluster total memory: 7.10 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 2
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## R Version: R version 4.4.0 (2024-04-24 ucrt)
## Warning in h2o.clusterInfo():
## Your H2O cluster version is (11 months and 28 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
##
## Note: As started, H2O is limited to the CRAN default of 2 CPUs.
## Shut down and restart H2O as shown below to use all your CPUs.
## > h2o.shutdown()
## > h2o.init(nthreads = -1)
# Split data
h2o_data <- as.h2o(claims_model_data)
## | | | 0% | |======================================================================| 100%
# Ensure dataset is not excessively large
h2o.summary(h2o_data)
## Warning in h2o.summary(h2o_data): Approximated quantiles computed! If you are
## interested in exact quantiles, please pass the `exact_quantiles=TRUE`
## parameter.
## claims claims_lag_12 month year
## Min. : 154.0 Min. : 225.5 Min. : 1.000 Min. :1989
## 1st Qu.: 879.1 1st Qu.: 920.4 1st Qu.: 4.000 1st Qu.:1997
## Median : 1604.2 Median : 1692.5 Median : 7.000 Median :2007
## Mean : 3165.0 Mean : 3153.4 Mean : 6.609 Mean :2006
## 3rd Qu.: 4141.9 3rd Qu.: 4317.7 3rd Qu.:10.000 3rd Qu.:2015
## Max. :181423.0 Max. :77435.4 Max. :12.000 Max. :2024
## seasonal trend remainder label
## Min. :-412.285 Min. : 224.2 Min. :-37513.64
## 1st Qu.: -60.467 1st Qu.: 863.3 1st Qu.: -411.84
## Median : -15.870 Median : 1662.1 Median : -121.98
## Mean : 1.033 Mean : 3149.6 Mean : 14.41
## 3rd Qu.: 51.521 3rd Qu.: 4378.1 3rd Qu.: 22.95
## Max. : 578.753 Max. :80108.1 Max. :107415.26
splits <- h2o.splitFrame(h2o_data, ratios = 0.8, seed = 12)
train <- splits[[1]]
test <- splits[[2]]
# Define response and predictor variables
response <- "trend" # Replace with your response column name
predictors <- setdiff(names(h2o_data), response)
# Build and evaluate model
y <- "label"
x <- setdiff(names(h2o_data), y)
model <- h2o.gbm(
x = predictors,
y = response,
training_frame = train,
validation_frame = test,
ntrees = 50,
max_depth = 5,
learn_rate = 0.1,
seed = 123
)
## Warning in .h2o.processResponseWarnings(res): Dropping bad and constant columns: [label].
## | | | 0% | |================================== | 48% | |======================================================================| 100%
# Evaluate model
perf <- h2o.performance(model, test)
print(h2o.auc(perf))
## NULL
# Shutdown H2O
h2o.shutdown(prompt = FALSE)
I found that h2o had a lot more errors and it took much longer to correct them. Correcting one error would create another error somewhere else. I felt the way it was done in Apply 10 was much easier.