Load the dataset from the Excel file
Displaying the first few rows of the dataset to understand its
structure
df$Mass <- as.numeric(df$Mass)
## Warning: NAs introduced by coercion
print(head(df))
## # A tibble: 6 × 6
## Month Plot Quadrant Ring Mass Comment
## <chr> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 May 901 1 1 5.35 NA
## 2 May 901 1 9 1.17 NA
## 3 May 901 2 1 6.43 NA
## 4 May 901 2 7 NA NA
## 5 May 901 3 1 7.75 NA
## 6 May 901 3 3 4.11 NA
Based off of the’Month’, ‘Plot’ and ‘Mass’ columns of the DF
cumulative_summary <- df %>%
group_by(Month,Plot) %>%
summarise(
Total_Mass = sum(Mass, na.rm=TRUE),
Cumulative_Mass = cumsum(Total_Mass))
## `summarise()` has grouped output by 'Month'. You can override using the
## `.groups` argument.
Display the cumulative summary
print(cumulative_summary)
## # A tibble: 36 × 4
## # Groups: Month [2]
## Month Plot Total_Mass Cumulative_Mass
## <chr> <dbl> <dbl> <dbl>
## 1 July 901 19.6 19.6
## 2 July 902 15.8 15.8
## 3 July 903 28.6 28.6
## 4 July 904 17.9 17.9
## 5 July 905 17.4 17.4
## 6 July 906 26.0 26.0
## 7 July 907 19.0 19.0
## 8 July 908 17.6 17.6
## 9 July 909 24.4 24.4
## 10 July 910 13.7 13.7
## # ℹ 26 more rows
library(ggplot2)
ggplot(cumulative_summary, aes(x = Cumulative_Mass)) +
geom_histogram(binwidth = 1, fill = "blue", color = "black", alpha = 0.7) +
labs(title = "Histogram of Cumulative Maximum",
x = "Mass in Grams",
y = "Number of Plots") +
theme_minimal()
