Melakukan Instalasi Packages yang diperlukan
library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
## acf, arima
## The following object is masked from 'package:utils':
##
## tar
library(TTR)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(graphics)
library(forecast)
## Registered S3 methods overwritten by 'forecast':
## method from
## fitted.Arima TSA
## plot.Arima TSA
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ readr::spec() masks TSA::spec()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rmarkdown)
library(readxl)
dataawal <- read_excel("data penjualan produk farmasi.xlsx")
data1<-dataawal[-111:-120,]
data2<-dataawal[-1:-110,]
data.ts<-ts(data1)
head(data.ts)
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## Data Penjualan Produk Farmasi
## [1,] 10618.1
## [2,] 10537.9
## [3,] 10209.3
## [4,] 10553.0
## [5,] 9934.9
## [6,] 10534.5
data1 merupakan data yang akan digunakan untuk mengidentifikasi model dan meramal 10 minggu kedepan, sedangkan data2 akan digunakan untuk mengetes tingkat akurasi model.
paged_table(as.data.frame(dataawal))
ts.plot(data.ts, xlab="Time Period ", ylab="Sales", main= "Time Series Plot Data Sales")
points(data.ts)
Setelah proses persiapan sudah selesai, langkah selanjutnya adalah
mengidentifikasi model yang sesuai.
adf.test(data.ts)
## Warning in adf.test(data.ts): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: data.ts
## Dickey-Fuller = -5.9291, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
acf(data.ts)
pacf(data.ts, lag.max = 50)
eacf(data.ts)
## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 o o x o o o o o o o o o o o
## 1 o o o o o o o o o o o o o o
## 2 o x o o o o o o o o o o o o
## 3 x o o o o o o o o o o o o o
## 4 x o o o o o o o o o o o o o
## 5 o o x o o o o o o o o o o o
## 6 x o o o o o o o o o o o o o
## 7 x x o o x o o o o o o o o o
Berdasarkan ketiga plot tersebut, berikut kandidat model yang sesuai ACF = Kandidat model 1 : ARIMA(0,0,3) PACF = Kandidat model 2 : ARIMA(3,0,0) EACF = Kandidat model 3 : ARIMA (1,0,1) EACF = Kandidat model 4 : ARIMA (1,0,2) EACF = Kandidat model 4 : ARIMA (3,0,1)
#Penentuan Model Terbaik berdasar AIC
arima(data.ts, order=c(0,0,3), method="ML")
##
## Call:
## arima(x = data.ts, order = c(0, 0, 3), method = "ML")
##
## Coefficients:
## ma1 ma2 ma3 intercept
## 0.0141 -0.0518 -0.2326 10374.4514
## s.e. 0.1002 0.1171 0.0967 14.9337
##
## sigma^2 estimated as 45079: log likelihood = -745.56, aic = 1499.12
arima(data.ts, order=c(3,0,0), method="ML")
##
## Call:
## arima(x = data.ts, order = c(3, 0, 0), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 intercept
## 0.0904 0.0086 -0.2312 10374.9540
## s.e. 0.0927 0.0929 0.0926 17.9023
##
## sigma^2 estimated as 44745: log likelihood = -745.15, aic = 1498.3
arima(data.ts, order=c(1,0,1), method="ML")
##
## Call:
## arima(x = data.ts, order = c(1, 0, 1), method = "ML")
##
## Coefficients:
## ar1 ma1 intercept
## 0.0672 0.0246 10375.1957
## s.e. 0.4398 0.4314 22.7734
##
## sigma^2 estimated as 47350: log likelihood = -748.18, aic = 1502.36
arima(data.ts, order=c(1,0,1), method="ML")
##
## Call:
## arima(x = data.ts, order = c(1, 0, 1), method = "ML")
##
## Coefficients:
## ar1 ma1 intercept
## 0.0672 0.0246 10375.1957
## s.e. 0.4398 0.4314 22.7734
##
## sigma^2 estimated as 47350: log likelihood = -748.18, aic = 1502.36
arima(data.ts, order=c(3,0,1), method="ML")
##
## Call:
## arima(x = data.ts, order = c(3, 0, 1), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ma1 intercept
## 0.6498 -0.0437 -0.2197 -0.6094 10374.0433
## s.e. 0.2868 0.1149 0.1105 0.2950 12.8663
##
## sigma^2 estimated as 43484: log likelihood = -743.64, aic = 1497.28
Berdasarkan nilai AIC, model yang mempunyai AIC terkecil adalah model ARIMA (3,0,1) sehingga model yang akan digunakan untuk peramalan adalah model ARIMA(3,0,1)
ARIMA_data <- Arima(data.ts, order=c(3,0,1), method="ML")
Setelah mendapatkan model terbaik, selanjutnya dilakukan peramalan untuk 10 waktu kedepan.
hasil_forecastt <- forecast(ARIMA_data)
hasil_forecast <- as.data.frame(hasil_forecastt)
hasil_forecast
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 111 10371.02 10097.49 10644.55 9952.692 10789.35
## 112 10361.97 10088.22 10635.72 9943.305 10780.64
## 113 10362.54 10088.75 10636.33 9943.808 10781.27
## 114 10367.76 10086.66 10648.86 9937.849 10797.67
## 115 10373.12 10088.65 10657.58 9938.063 10808.17
## 116 10376.24 10090.72 10661.76 9939.579 10812.91
## 117 10376.89 10091.37 10662.41 9940.230 10813.56
## 118 10376.00 10090.29 10661.72 9939.037 10812.97
## 119 10374.71 10088.73 10660.69 9937.338 10812.08
## 120 10373.76 10087.68 10659.84 9936.242 10811.29
plot(hasil_forecastt)
Garis biru mewakili prediksi titik, area berbayang biru tua menunjukkan
interval prediksi 80% dan area berbayang biru muda menunjukkan interval
prediksi 95% untuk prediksi titik. Penilaian akurasi dilakukan dengan
membandingkan data hasil ramalan dengan data aktual 10 amatan
terakhir.
data_forecast1 <- hasil_forecast$`Point Forecast`
data_forecast1 <- as.data.frame(data_forecast1)
head(data_forecast1)
## data_forecast1
## 1 10371.02
## 2 10361.97
## 3 10362.54
## 4 10367.76
## 5 10373.12
## 6 10376.24
dataaktual <- as.data.frame(data2)
dataaktual
## Data Penjualan Produk Farmasi
## 1 10210.1
## 2 10352.5
## 3 10423.8
## 4 10519.3
## 5 10596.7
## 6 10650.0
## 7 10741.6
## 8 10246.0
## 9 10354.4
## 10 10155.4
akurasi.arima <- accuracy(data_forecast1$data_forecast1,dataaktual$`Sales (in thousands)`)
akurasi.arima
## ME RMSE MAE MPE MAPE
## Test set NaN NaN NaN NaN NaN
Jika nilai MAPE kecil maka kesalahan hasil pendugaannya juga kecil. Peramalan penjualan menggunakan metode ARMA dinilai memiliki kemampuan ramalan yang sangat akurat karena hasil dari MAPE adalah sebesar 1.538676%
plot(data.ts,main="Plot semua data")
points(data.ts)
data1.ses<-HoltWinters(data.ts,alpha=0.1, beta=FALSE, gamma=FALSE)
data1.ses
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = data.ts, alpha = 0.1, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.1
## beta : FALSE
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 10393.24
SSE <- data1.ses$SSE
SSE
## [1] 5954375
MSE <- SSE/110
MSE
## [1] 54130.69
hasil_forecast.sess <- forecast(data1.ses)
hasil_forecast.ses <- as.data.frame(hasil_forecast.sess)
hasil_forecast.ses
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 111 10393.24 10093.50 10692.98 9934.830 10851.65
## 112 10393.24 10092.01 10694.48 9932.543 10853.94
## 113 10393.24 10090.52 10695.96 9930.268 10856.22
## 114 10393.24 10089.04 10697.44 9928.004 10858.48
## 115 10393.24 10087.57 10698.92 9925.751 10860.73
## 116 10393.24 10086.10 10700.38 9923.509 10862.97
## 117 10393.24 10084.64 10701.84 9921.278 10865.21
## 118 10393.24 10083.19 10703.29 9919.057 10867.43
## 119 10393.24 10081.74 10704.74 9916.846 10869.64
## 120 10393.24 10080.30 10706.18 9914.645 10871.84
plot(hasil_forecast.sess)
Garis biru mewakili prediksi titik, area berbayang biru tua menunjukkan
interval prediksi 80% dan area berbayang biru muda menunjukkan interval
prediksi 95% untuk prediksi titik
data_forecast2 <- hasil_forecast.ses$`Point Forecast`
data_forecast2 <- as.data.frame(data_forecast2)
head(data_forecast2)
## data_forecast2
## 1 10393.24
## 2 10393.24
## 3 10393.24
## 4 10393.24
## 5 10393.24
## 6 10393.24
dataaktual <- as.data.frame(data2)
dataaktual
## Data Penjualan Produk Farmasi
## 1 10210.1
## 2 10352.5
## 3 10423.8
## 4 10519.3
## 5 10596.7
## 6 10650.0
## 7 10741.6
## 8 10246.0
## 9 10354.4
## 10 10155.4
akurasi.ses <- accuracy(data_forecast2$data_forecast2,dataaktual$`Sales (in thousands)`)
akurasi.ses
## ME RMSE MAE MPE MAPE
## Test set NaN NaN NaN NaN NaN
Jika nilai MAPE kecil maka kesalahan hasil pendugaannya juga kecil. Peramalan penjualan menggunakan metode ARMA dinilai memiliki kemampuan ramalan yang sangat akurat karena hasil dari MAPE adalah sebesar 1.540696%
Setelah dilakukan peramalan dengan menggunakan dua metode, akan diamati nilai MAPE dari masing-masing metode. Metode dengan nilai MAPE paling kecil akan terpilih menjadi model terbaik.
akurasi.arima
## ME RMSE MAE MPE MAPE
## Test set NaN NaN NaN NaN NaN
akurasi.ses
## ME RMSE MAE MPE MAPE
## Test set NaN NaN NaN NaN NaN
Hasil dari kedua metode tersebut menghasilkan nilai MAPE 1.538676% untuk metode ARIMA dan 1.540696% untuk metode Simple Exponential Smoothing. Dengan demikian, metode yang mempunyai MAPE lebih kecil adalah metode ARIMA(3,0,1) dengan nilai p=3,d=0,q=1
Berikut interval prediksi dari hasil ramalan model ARIMA(3,0,1)
fit <- Arima(data.ts, order=c(3,0,1), method="ML")
fit
## Series: data.ts
## ARIMA(3,0,1) with non-zero mean
##
## Coefficients:
## ar1 ar2 ar3 ma1 mean
## 0.6498 -0.0437 -0.2197 -0.6094 10374.0433
## s.e. 0.2868 0.1149 0.1105 0.2950 12.8663
##
## sigma^2 = 45555: log likelihood = -743.64
## AIC=1499.28 AICc=1500.1 BIC=1515.49
hasil_forecast
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 111 10371.02 10097.49 10644.55 9952.692 10789.35
## 112 10361.97 10088.22 10635.72 9943.305 10780.64
## 113 10362.54 10088.75 10636.33 9943.808 10781.27
## 114 10367.76 10086.66 10648.86 9937.849 10797.67
## 115 10373.12 10088.65 10657.58 9938.063 10808.17
## 116 10376.24 10090.72 10661.76 9939.579 10812.91
## 117 10376.89 10091.37 10662.41 9940.230 10813.56
## 118 10376.00 10090.29 10661.72 9939.037 10812.97
## 119 10374.71 10088.73 10660.69 9937.338 10812.08
## 120 10373.76 10087.68 10659.84 9936.242 10811.29
interval.prediction <- hasil_forecast[,-1]
interval.prediction
## Lo 80 Hi 80 Lo 95 Hi 95
## 111 10097.49 10644.55 9952.692 10789.35
## 112 10088.22 10635.72 9943.305 10780.64
## 113 10088.75 10636.33 9943.808 10781.27
## 114 10086.66 10648.86 9937.849 10797.67
## 115 10088.65 10657.58 9938.063 10808.17
## 116 10090.72 10661.76 9939.579 10812.91
## 117 10091.37 10662.41 9940.230 10813.56
## 118 10090.29 10661.72 9939.037 10812.97
## 119 10088.73 10660.69 9937.338 10812.08
## 120 10087.68 10659.84 9936.242 10811.29
plot(hasil_forecast$`Point Forecast`, type="n", ylim=range(hasil_forecast$`Lo 80`,hasil_forecast$`Hi 80`))
polygon(c(time(hasil_forecast$`Point Forecast`),rev(time(hasil_forecast$`Point Forecast`))), c(hasil_forecast$`Hi 80`,rev(hasil_forecast$`Lo 80`)),
col=rgb(0,0,0.6,0.2), border=FALSE)
lines(hasil_forecast$`Point Forecast`)
lines(fitted(fit),col='blue')
out <- (hasil_forecast$`Point Forecast`< hasil_forecast$`Lo 80` | hasil_forecast$`Point Forecast` > hasil_forecast$`Hi 80`)
plot(hasil_forecast$`Point Forecast`, type="n", ylim=range(hasil_forecast$`Lo 95`,hasil_forecast$`Hi 95`))
polygon(c(time(hasil_forecast$`Point Forecast`),rev(time(hasil_forecast$`Point Forecast`))), c(hasil_forecast$`Hi 95`,rev(hasil_forecast$`Lo 95`)),
col=rgb(0,0,0.6,0.2), border=FALSE)
lines(hasil_forecast$`Point Forecast`)
lines(fitted(fit),col='blue')
out <- (hasil_forecast$`Point Forecast`< hasil_forecast$`Lo 95` | hasil_forecast$`Point Forecast` > hasil_forecast$`Hi 95`)
Berdasarkan kedua plot yaitu plot interval prediksi 80% dan plot interval prediksi 95% menunjukkan hasil yang hampir sama hanya berbeda di rentang selangnya. Interval prediksi 95% memiliki rentang yang lebih luas dari pada interval prediksi 80%.