# a menghitung statistik deskriptif
data("airquality")
airquality
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30
mean_ozone <- mean(airquality$Ozone, na.rm = TRUE)     
median_ozone <- median(airquality$Ozone, na.rm = TRUE) 
sd_ozone <- sd(airquality$Ozone, na.rm = TRUE)        
cat("Mean Ozone:", mean_ozone, "\n")
## Mean Ozone: 42.12931
cat("Median Ozone:", median_ozone, "\n")
## Median Ozone: 31.5
cat("Standar Deviasi Ozone:", sd_ozone, "\n")
## Standar Deviasi Ozone: 32.98788
# b scaatter plot antara variabel wind dan temp
plot(airquality$Wind, airquality$Temp,
     main = "Scatter Plot antara Wind dan Temp",
     xlab = "Wind (mph)", ylab = "Temperature (F)",
     pch = 19, col = "pink")

# 2 membuat bar chart untuk variabel cyl dri dataset mtcars
data("mtcars")
cyl_freq <- table(mtcars$cyl)
barplot(cyl_freq,
        main = "Bar Chart Variabel Cyl",
        xlab = "Jumlah Silinder", ylab = "Frekuensi",
        col = "maroon")
text(x = barplot(cyl_freq, plot = FALSE), 
     y = cyl_freq, 
     labels = cyl_freq, 
     pos = 3, cex = 1.2, col = "pink")

# 3 a membuat boxplot 
data("iris")
boxplot(Petal.Width ~ Species, data = iris,
        main = "Boxplot Petal.Width Berdasarkan Species",
        xlab = "Species", ylab = "Petal Width",
        col = c("pink", "magenta", "maroon"))

#3 b  Menghitung korelsi
correlation <- cor(iris$Sepal.Length, iris$Petal.Length)
cat("Korelasi antara Sepal.Length dan Petal.Length adalah:", correlation, "\n")
## Korelasi antara Sepal.Length dan Petal.Length adalah: 0.8717538
#Hasil korelasi 0.8717538 menunjukkan adanya korelasi positif yang kuat antara panjang sepal (sepal length) dan panjang petal (petal length).
# 3 c membuat sctter plot
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
  geom_point(size = 3) +
  geom_smooth(method = "lm", se = FALSE, linetype = "dashed") +
  ggtitle("Scatter Plot Sepal.Length vs Sepal.Width") +
  xlab("Sepal Length") +
  ylab("Sepal Width") +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

# 4 Uji coba chisquare
tabel_chisq <- table(mtcars$vs, mtcars$am)
hasil_chisq <- chisq.test(tabel_chisq)
print(hasil_chisq)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabel_chisq
## X-squared = 0.34754, df = 1, p-value = 0.5555
# 5a Menampilkan ringkasn model
model <- lm(Temp ~ Solar.R, data = airquality)
summary(model)
## 
## Call:
## lm(formula = Temp ~ Solar.R, data = airquality)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.3787  -4.9572   0.8932   5.9111  18.4013 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 72.863012   1.693951  43.014  < 2e-16 ***
## Solar.R      0.028255   0.008205   3.444 0.000752 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.898 on 144 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.07609,    Adjusted R-squared:  0.06967 
## F-statistic: 11.86 on 1 and 144 DF,  p-value: 0.0007518
# 5b Membuat sctter plot dengan garis regresi
plot(airquality$Solar.R, airquality$Temp,
     main = "Scatter Plot dengan Garis Regresi",
     xlab = "Solar.R", ylab = "Temperature",
     pch = 19, col = "pink")
abline(model, col = "maroon", lwd = 2)

##5c Nilai p yang sangat kecil yaitu jauh di bawah 0.05 untuk kedua koefisien menunjukkan bahwa kedua variabel ini signifikan secara statistik. Artinya, pengaruh radiasi matahari terhadap suhu bukanlah kebetulan, tetapi memiliki hubungan yang signifikan.maka Dapat disimpulkan sebagai berikut:Ada hubungan positif antara radiasi matahari dan suhu. Semakin tinggi radiasi matahari, semakin tinggi pula suhu.