Nama: Cindy Pramudita NIM: 2304220040 Prodi: Statistika dan Sains Data UAS Komputasi Statistika
data("airquality")
airquality
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## 9 8 19 20.1 61 5 9
## 10 NA 194 8.6 69 5 10
## 11 7 NA 6.9 74 5 11
## 12 16 256 9.7 69 5 12
## 13 11 290 9.2 66 5 13
## 14 14 274 10.9 68 5 14
## 15 18 65 13.2 58 5 15
## 16 14 334 11.5 64 5 16
## 17 34 307 12.0 66 5 17
## 18 6 78 18.4 57 5 18
## 19 30 322 11.5 68 5 19
## 20 11 44 9.7 62 5 20
## 21 1 8 9.7 59 5 21
## 22 11 320 16.6 73 5 22
## 23 4 25 9.7 61 5 23
## 24 32 92 12.0 61 5 24
## 25 NA 66 16.6 57 5 25
## 26 NA 266 14.9 58 5 26
## 27 NA NA 8.0 57 5 27
## 28 23 13 12.0 67 5 28
## 29 45 252 14.9 81 5 29
## 30 115 223 5.7 79 5 30
## 31 37 279 7.4 76 5 31
## 32 NA 286 8.6 78 6 1
## 33 NA 287 9.7 74 6 2
## 34 NA 242 16.1 67 6 3
## 35 NA 186 9.2 84 6 4
## 36 NA 220 8.6 85 6 5
## 37 NA 264 14.3 79 6 6
## 38 29 127 9.7 82 6 7
## 39 NA 273 6.9 87 6 8
## 40 71 291 13.8 90 6 9
## 41 39 323 11.5 87 6 10
## 42 NA 259 10.9 93 6 11
## 43 NA 250 9.2 92 6 12
## 44 23 148 8.0 82 6 13
## 45 NA 332 13.8 80 6 14
## 46 NA 322 11.5 79 6 15
## 47 21 191 14.9 77 6 16
## 48 37 284 20.7 72 6 17
## 49 20 37 9.2 65 6 18
## 50 12 120 11.5 73 6 19
## 51 13 137 10.3 76 6 20
## 52 NA 150 6.3 77 6 21
## 53 NA 59 1.7 76 6 22
## 54 NA 91 4.6 76 6 23
## 55 NA 250 6.3 76 6 24
## 56 NA 135 8.0 75 6 25
## 57 NA 127 8.0 78 6 26
## 58 NA 47 10.3 73 6 27
## 59 NA 98 11.5 80 6 28
## 60 NA 31 14.9 77 6 29
## 61 NA 138 8.0 83 6 30
## 62 135 269 4.1 84 7 1
## 63 49 248 9.2 85 7 2
## 64 32 236 9.2 81 7 3
## 65 NA 101 10.9 84 7 4
## 66 64 175 4.6 83 7 5
## 67 40 314 10.9 83 7 6
## 68 77 276 5.1 88 7 7
## 69 97 267 6.3 92 7 8
## 70 97 272 5.7 92 7 9
## 71 85 175 7.4 89 7 10
## 72 NA 139 8.6 82 7 11
## 73 10 264 14.3 73 7 12
## 74 27 175 14.9 81 7 13
## 75 NA 291 14.9 91 7 14
## 76 7 48 14.3 80 7 15
## 77 48 260 6.9 81 7 16
## 78 35 274 10.3 82 7 17
## 79 61 285 6.3 84 7 18
## 80 79 187 5.1 87 7 19
## 81 63 220 11.5 85 7 20
## 82 16 7 6.9 74 7 21
## 83 NA 258 9.7 81 7 22
## 84 NA 295 11.5 82 7 23
## 85 80 294 8.6 86 7 24
## 86 108 223 8.0 85 7 25
## 87 20 81 8.6 82 7 26
## 88 52 82 12.0 86 7 27
## 89 82 213 7.4 88 7 28
## 90 50 275 7.4 86 7 29
## 91 64 253 7.4 83 7 30
## 92 59 254 9.2 81 7 31
## 93 39 83 6.9 81 8 1
## 94 9 24 13.8 81 8 2
## 95 16 77 7.4 82 8 3
## 96 78 NA 6.9 86 8 4
## 97 35 NA 7.4 85 8 5
## 98 66 NA 4.6 87 8 6
## 99 122 255 4.0 89 8 7
## 100 89 229 10.3 90 8 8
## 101 110 207 8.0 90 8 9
## 102 NA 222 8.6 92 8 10
## 103 NA 137 11.5 86 8 11
## 104 44 192 11.5 86 8 12
## 105 28 273 11.5 82 8 13
## 106 65 157 9.7 80 8 14
## 107 NA 64 11.5 79 8 15
## 108 22 71 10.3 77 8 16
## 109 59 51 6.3 79 8 17
## 110 23 115 7.4 76 8 18
## 111 31 244 10.9 78 8 19
## 112 44 190 10.3 78 8 20
## 113 21 259 15.5 77 8 21
## 114 9 36 14.3 72 8 22
## 115 NA 255 12.6 75 8 23
## 116 45 212 9.7 79 8 24
## 117 168 238 3.4 81 8 25
## 118 73 215 8.0 86 8 26
## 119 NA 153 5.7 88 8 27
## 120 76 203 9.7 97 8 28
## 121 118 225 2.3 94 8 29
## 122 84 237 6.3 96 8 30
## 123 85 188 6.3 94 8 31
## 124 96 167 6.9 91 9 1
## 125 78 197 5.1 92 9 2
## 126 73 183 2.8 93 9 3
## 127 91 189 4.6 93 9 4
## 128 47 95 7.4 87 9 5
## 129 32 92 15.5 84 9 6
## 130 20 252 10.9 80 9 7
## 131 23 220 10.3 78 9 8
## 132 21 230 10.9 75 9 9
## 133 24 259 9.7 73 9 10
## 134 44 236 14.9 81 9 11
## 135 21 259 15.5 76 9 12
## 136 28 238 6.3 77 9 13
## 137 9 24 10.9 71 9 14
## 138 13 112 11.5 71 9 15
## 139 46 237 6.9 78 9 16
## 140 18 224 13.8 67 9 17
## 141 13 27 10.3 76 9 18
## 142 24 238 10.3 68 9 19
## 143 16 201 8.0 82 9 20
## 144 13 238 12.6 64 9 21
## 145 23 14 9.2 71 9 22
## 146 36 139 10.3 81 9 23
## 147 7 49 10.3 69 9 24
## 148 14 20 16.6 63 9 25
## 149 30 193 6.9 70 9 26
## 150 NA 145 13.2 77 9 27
## 151 14 191 14.3 75 9 28
## 152 18 131 8.0 76 9 29
## 153 20 223 11.5 68 9 30
summary(airquality$Ozone)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 18.00 31.50 42.13 63.25 168.00 37
sd(airquality$Ozone, na.rm = TRUE)
## [1] 32.98788
plot(airquality$Wind, airquality$Temp,
xlab = "Wind", ylab = "Temperature",
main = "Scatter Plot antara Wind dan Temperature",
pch = 19)
# Membuat bar chart untuk variabel cyl dari dataset mtcars
barplot(table(mtcars$cyl),
main = "Bar Chart Jumlah Kendaraan Berdasarkan Jumlah Silinder",
xlab = "Jumlah Silinder", ylab = "Jumlah Kendaraan",
col = "grey")
# Menambahkan label jumlah setiap kategori pada grafik
text(x = 1:3, y = table(mtcars$cyl),
labels = table(mtcars$cyl), pos = 3)
# Membuat boxplot untuk variabel Petal.Width berdasarkan Species
boxplot(Petal.Width ~ Species, data = iris,
main = "Boxplot Petal Width berdasarkan Species",
xlab = "Species", ylab = "Petal Width",
col = c("brown", "grey", "gold"))
cor(iris$Sepal.Length, iris$Petal.Length)
## [1] 0.8717538
Hasil analisis korelasi menunjukkan bahwa terdapat hubungan yang sangat kuat dan positif antara panjang sepal (Sepal.Length) dan panjang petal (Petal.Length) dengan nilai korelasi sebesar 0.87. Artinya, ketika panjang sepal meningkat, panjang petal cenderung meningkat pula secara proporsional.
Nilai korelasi yang mendekati 1 ini menunjukkan hubungan linier yang erat antara kedua variabel, sehingga keduanya memiliki keterkaitan yang signifikan. Hubungan ini dapat menjadi indikasi adanya pola alami yang konsisten dalam struktur bunga berdasarkan spesiesnya.
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, aes(color = Species)) +
labs(title = "Scatter Plot Sepal Length vs Sepal Width",
x = "Sepal Length", y = "Sepal Width") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
# Uji Chi-Square untuk hubungan antara vs dan am
chi_square_result <- chisq.test(mtcars$vs, mtcars$am)
chi_square_result
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: mtcars$vs and mtcars$am
## X-squared = 0.34754, df = 1, p-value = 0.5555
model <- lm(Temp ~ Solar.R, data = airquality)
summary(model)
##
## Call:
## lm(formula = Temp ~ Solar.R, data = airquality)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.3787 -4.9572 0.8932 5.9111 18.4013
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.863012 1.693951 43.014 < 2e-16 ***
## Solar.R 0.028255 0.008205 3.444 0.000752 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.898 on 144 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.07609, Adjusted R-squared: 0.06967
## F-statistic: 11.86 on 1 and 144 DF, p-value: 0.0007518
plot(airquality$Solar.R, airquality$Temp,
xlab = "Solar Radiation", ylab = "Temperature",
main = "Scatter Plot Solar Radiation vs Temperature")
abline(model, col = "red")
coef(model)
## (Intercept) Solar.R
## 72.86301176 0.02825463
summary(model)$r.squared
## [1] 0.07608786
Hasil analisis regresi linear menunjukkan bahwa radiasi matahari (Solar.R) memiliki hubungan positif dan signifikan secara statistik terhadap suhu (Temp), dengan nilai koefisien sebesar 0.028. Artinya, setiap peningkatan satu unit Solar.R diharapkan meningkatkan suhu sebesar 0.028 derajat. Nilai p untuk Solar.R adalah 0.00075 (p < 0.05), sehingga hubungan ini dapat dianggap signifikan.
Namun, nilai R-squared sebesar 0.076 menunjukkan bahwa model ini hanya dapat menjelaskan 7.6% variasi suhu, sedangkan 92.4% variasi lainnya dipengaruhi oleh faktor-faktor lain yang tidak dimasukkan dalam model. Meskipun hubungan ini signifikan, tingkat keterkaitan antara Solar.R dan Temp masih tergolong lemah.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.