37 değişken üzerinde 410 gözlem içeren bir data.frame:
psoda: orta boy soda fiyatı, 1. dalga
pfries: küçük patates kızartmasının fiyatı, 1. dalga
pentree: fiyat başlangıç yemeği (burger veya tavuk), 1. dalga
ücret: başlangıç ücreti, 1. dalga
nmgrs: yönetici sayısı, 1. dalga
nregs: kayıt sayısı, 1. dalga
hrsopen: çalışma saatleri, 1. dalga
emp: çalışan sayısı, 1. dalga
psoda2: orta sodalı fiyatı, 2. dalga
pfries2: küçük patates kızartmasının fiyatı, 2. dalga
pentree2: fiyat başlangıç, 2. dalga
ücretli2: başlangıç ücreti, 2. dalga
nmgrs2: yönetici sayısı, 2. dalga
nregs2: kayıt sayısı, 2. dalga
hrsopen2: çalışma saatleri, 2. dalga
emp2: çalışan sayısı, 2. dalga
compow: =1 eğer şirkete aitse
zincir: BK = 1, KFC = 2, Roy Rogers = 3, Wendy’s = 4
yoğunluk: nüfus yoğunluğu, kasaba
crmrte: suç oranı, kasaba
durum: NJ = 1, PA = 2
prpblck: siyah orantı, posta kodu
prppov: yoksulluk oranı, posta kodu
prpncar: oran araba yok, posta kodu
hseval: ortalama konut değeri, posta kodu
nstores: mağaza sayısı, posta kodu
gelir: ortalama aile geliri, posta kodu
ilçe: ilçe etiketi
lpsoda: günlük(psoda)
lpfries: log(pfries)
lhseval: log(hseval)
lincome: log(gelir)
yoğunluk: log(yoğunluk)
NJ: New Jersey için =1
BK: =1 eğer Burger King ise
KFC: =1 eğer Kentucky Fried Chicken
RR: =1 eğer Roy Rogers
library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.4.2
data("discrim")
head(discrim)
## psoda pfries pentree wagest nmgrs nregs hrsopen emp psoda2 pfries2 pentree2
## 1 1.12 1.06 1.02 4.25 3 5 16.0 27.5 1.11 1.11 1.05
## 2 1.06 0.91 0.95 4.75 3 3 16.5 21.5 1.05 0.89 0.95
## 3 1.06 0.91 0.98 4.25 3 5 18.0 30.0 1.05 0.94 0.98
## 4 1.12 1.02 1.06 5.00 4 5 16.0 27.5 1.15 1.05 1.05
## 5 1.12 NA 0.49 5.00 3 3 16.0 5.0 1.04 1.01 0.58
## 6 1.06 0.95 1.01 4.25 4 4 15.0 17.5 1.05 0.94 1.00
## wagest2 nmgrs2 nregs2 hrsopen2 emp2 compown chain density crmrte state
## 1 5.05 5 5 15.0 27.0 1 3 4030 0.0528866 1
## 2 5.05 4 3 17.5 24.5 0 1 4030 0.0528866 1
## 3 5.05 4 5 17.5 25.0 0 1 11400 0.0360003 1
## 4 5.05 4 5 16.0 NA 0 3 8345 0.0484232 1
## 5 5.05 3 3 16.0 12.0 0 1 720 0.0615890 1
## 6 5.05 3 4 15.0 28.0 0 1 4424 0.0334823 1
## prpblck prppov prpncar hseval nstores income county lpsoda
## 1 0.1711542 0.0365789 0.0788428 148300 3 44534 18 0.11332869
## 2 0.1711542 0.0365789 0.0788428 148300 3 44534 18 0.05826885
## 3 0.0473602 0.0879072 0.2694298 169200 3 41164 12 0.05826885
## 4 0.0528394 0.0591227 0.1366903 171600 3 50366 10 0.11332869
## 5 0.0344800 0.0254145 0.0738020 249100 1 72287 10 0.11332869
## 6 0.0591327 0.0835001 0.1151341 148000 2 44515 18 0.05826885
## lpfries lhseval lincome ldensity NJ BK KFC RR
## 1 0.05826885 11.90699 10.70401 8.301521 1 0 0 1
## 2 -0.09431065 11.90699 10.70401 8.301521 1 1 0 0
## 3 -0.09431065 12.03884 10.62532 9.341369 1 1 0 0
## 4 0.01980261 12.05292 10.82707 9.029418 1 0 0 1
## 5 NA 12.42561 11.18840 6.579251 1 1 0 0
## 6 -0.05129331 11.90497 10.70358 8.394799 1 1 0 0
-psoda: price of medium soda, 1st wave, orta sodanın fiyatı. -prpblck: proportion black, zipcode, restoranın bulunduğu bölgede siyahi oranı -income: median family income, zipcode, restoranın bulunduğu bölgenin medyan (ortanca) aile geliri. -prppov: proportion in poverty, zipcode, restoranın bulunduğu bölgede yoksulluk oranı
help(discrim)
## httpd yardım sunucusu başlatılıyor ... tamamlandı
mean(discrim$prpblck)
## [1] NA
sd(discrim$prpblck)
## [1] NA
mean(discrim$income)
## [1] NA
sd(discrim$income)
## [1] NA
sum(is.na(discrim$prpblck))
## [1] 1
sum(is.na(discrim$income))
## [1] 1
SİYAHİ ORANININ ORTALAMASI
mean(discrim$prpblck,na.rm = TRUE)
## [1] 0.1134864
SİYAHİ ORANININ STD SAPMASI
sd(discrim$prpblck,na.rm = TRUE)
## [1] 0.1824165
AİLE GELİRİNİN ORTALAMASI
mean(discrim$income, na.rm = TRUE)
## [1] 47053.78
AİLE GELİRİNİN STANDART SAPMASI
sd(discrim$income, na.rm = TRUE)
## [1] 13179.29
library(vtable)
## Warning: package 'vtable' was built under R version 4.4.2
## Zorunlu paket yükleniyor: kableExtra
## Warning: package 'kableExtra' was built under R version 4.4.2
sumtable(discrim, summ=c('notNA(x)', 'countNA(x)', 'mean(x)','sd(x)'),out='return')
## Variable NotNA CountNA Mean Sd
## 1 psoda 402 8 1 0.089
## 2 pfries 393 17 0.92 0.11
## 3 pentree 398 12 1.3 0.64
## 4 wagest 390 20 4.6 0.35
## 5 nmgrs 404 6 3.4 1
## 6 nregs 388 22 3.6 1.2
## 7 hrsopen 410 0 14 2.8
## 8 emp 404 6 18 9.4
## 9 psoda2 388 22 1 0.094
## 10 pfries2 382 28 0.94 0.11
## 11 pentree2 386 24 1.4 0.65
## 12 wagest2 389 21 5 0.25
## 13 nmgrs2 404 6 3.5 1.1
## 14 nregs2 388 22 3.6 1.2
## 15 hrsopen2 399 11 14 2.8
## 16 emp2 397 13 18 8.6
## 17 compown 410 0 0.34 0.48
## 18 chain 410 0 2.1 1.1
## 19 density 409 1 4562 5132
## 20 crmrte 409 1 0.053 0.047
## 21 state 410 0 1.2 0.39
## 22 prpblck 409 1 0.11 0.18
## 23 prppov 409 1 0.071 0.067
## 24 prpncar 409 1 0.11 0.12
## 25 hseval 409 1 147399 56070
## 26 nstores 410 0 3.1 1.8
## 27 income 409 1 47054 13179
## 28 county 410 0 14 8
## 29 lpsoda 402 8 0.04 0.085
## 30 lpfries 393 17 -0.088 0.12
## 31 lhseval 409 1 12 0.39
## 32 lincome 409 1 11 0.28
## 33 ldensity 409 1 8 1
## 34 NJ 410 0 0.81 0.39
## 35 BK 410 0 0.42 0.49
## 36 KFC 410 0 0.2 0.4
## 37 RR 410 0 0.24 0.43
discrimreg <- lm(psoda~prpblck+income, data = discrim)
summary(discrimreg)
##
## Call:
## lm(formula = psoda ~ prpblck + income, data = discrim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.29401 -0.05242 0.00333 0.04231 0.44322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.563e-01 1.899e-02 50.354 < 2e-16 ***
## prpblck 1.150e-01 2.600e-02 4.423 1.26e-05 ***
## income 1.603e-06 3.618e-07 4.430 1.22e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08611 on 398 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.06422, Adjusted R-squared: 0.05952
## F-statistic: 13.66 on 2 and 398 DF, p-value: 1.835e-06
basitdiscrimreg <- lm(psoda~prpblck, data = discrim)
summary(basitdiscrimreg)
##
## Call:
## lm(formula = psoda ~ prpblck, data = discrim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.30884 -0.05963 0.01135 0.03206 0.44840
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.03740 0.00519 199.87 < 2e-16 ***
## prpblck 0.06493 0.02396 2.71 0.00702 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0881 on 399 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.01808, Adjusted R-squared: 0.01561
## F-statistic: 7.345 on 1 and 399 DF, p-value: 0.007015
logdiscrimreg <- lm(log(psoda)~prpblck+log(income), data = discrim)
summary(logdiscrimreg)
##
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income), data = discrim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33563 -0.04695 0.00658 0.04334 0.35413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.79377 0.17943 -4.424 1.25e-05 ***
## prpblck 0.12158 0.02575 4.722 3.24e-06 ***
## log(income) 0.07651 0.01660 4.610 5.43e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0821 on 398 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.06809, Adjusted R-squared: 0.06341
## F-statistic: 14.54 on 2 and 398 DF, p-value: 8.039e-07
paste( (0.2*100)*0.122, "yüzdelik artış")
## [1] "2.44 yüzdelik artış"
logdiscrimregprpov <- lm(log(psoda)~prpblck+log(income)+prppov, data = discrim)
summary(logdiscrimregprpov)
##
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov, data = discrim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32218 -0.04648 0.00651 0.04272 0.35622
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.46333 0.29371 -4.982 9.4e-07 ***
## prpblck 0.07281 0.03068 2.373 0.0181 *
## log(income) 0.13696 0.02676 5.119 4.8e-07 ***
## prppov 0.38036 0.13279 2.864 0.0044 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08137 on 397 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.08696, Adjusted R-squared: 0.08006
## F-statistic: 12.6 on 3 and 397 DF, p-value: 6.917e-08
cor(log(discrim$income), discrim$prppov, use = "complete.obs")
## [1] -0.838467