Pacotes necessários

library(metafor)
Warning: package ‘metafor’ was built under R version 4.3.3Carregando pacotes exigidos: Matrix
Carregando pacotes exigidos: metadat
Warning: package ‘metadat’ was built under R version 4.3.3Carregando pacotes exigidos: numDeriv

Loading the 'metafor' package (version 4.6-0). For an
introduction to the package please type: help(metafor)
library(metafor)
library(dplyr)

Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

Carregar os dados

Calcular a diferença de médias (diferenca) e a variância combinada (var_diferenca)

metanálise

summary(meta_analysis)

Random-Effects Model (k = 4; tau^2 estimator: REML)

  logLik  deviance       AIC       BIC      AICc   
-18.4272   36.8544   40.8544   39.0516   52.8544   

tau^2 (estimated amount of total heterogeneity): 11822.9833 (SE = 10186.1337)
tau (square root of estimated tau^2 value):      108.7335
I^2 (total heterogeneity / total variability):   95.84%
H^2 (total variability / sampling variability):  24.02

Test for Heterogeneity:
Q(df = 3) = 52.0318, p-val < .0001

Model Results:

estimate       se    zval    pval     ci.lb     ci.ub    
 67.9421  55.8468  1.2166  0.2238  -41.5155  177.3998    

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Gráfico de floresta (forest plot)

Avaliação de heterogeneidade

Análise de sensibilidade: remover um estudo por vez

print(leave_one_out)
NA

Gráfico de funil

funnel(meta_analysis)
LS0tDQp0aXRsZTogIk1ldGEtYW5hbHlzaXMiDQphdXRob3I6ICJWYWduZXIgT3ZhbmkiDQpkYXRlOiAiMjMvMDUvMjAyNCINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZGVwdGg6IDINCiAgICB0aGVtZTogdW5pdGVkDQotLS0NCg0KIyAqUGFjb3RlcyBuZWNlc3PDoXJpb3MqDQoNCmBgYHtyfQ0KbGlicmFyeShtZXRhZm9yKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KIyAqQ2FycmVnYXIgb3MgZGFkb3MqDQoNCmBgYHtyfQ0KZGF0YSA9IHJlYWQuY3N2KCJDOi9Vc2Vycy9TYW1zdW5nL0RvY3VtZW50cy8yIC0gQXJ0aWdvcy9SZXZpZXdfU1BTX0JyYXppbC90ZXN0ZS5jc3YiKQ0KcHJpbnQoZGF0YSkNCmBgYA0KDQojICpDYWxjdWxhciBhIGRpZmVyZW7Dp2EgZGUgbcOpZGlhcyAoZGlmZXJlbmNhKSBlIGEgdmFyacOibmNpYSBjb21iaW5hZGEgKHZhcl9kaWZlcmVuY2EpKg0KDQpgYGB7cn0NCmRhdGEgPSBkYXRhICU+JQ0KICBtdXRhdGUoZGlmZXJlbmNhID0gTWVkaWFfc2lsdmlwYXN0b3JpbCAtIE1lZGlhX3Bhc3RvX2V4Y2x1c2l2bywNCiAgICAgICAgIHZhcl9kaWZlcmVuY2EgPSAoRFAxXjIgLyBuKSArIChEUDJeMiAvIG4pKQ0KcHJpbnQoZGF0YSkNCmBgYA0KDQojICptZXRhbsOhbGlzZSoNCg0KYGBge3J9DQptZXRhX2FuYWx5c2lzIDwtIHJtYSh5aSA9IGRpZmVyZW5jYSwgdmkgPSB2YXJfZGlmZXJlbmNhLCBkYXRhID0gZGF0YSwgbWV0aG9kID0gIlJFTUwiKQ0Kc3VtbWFyeShtZXRhX2FuYWx5c2lzKQ0KYGBgDQojICpHcsOhZmljbyBkZSBmbG9yZXN0YSAoZm9yZXN0IHBsb3QpKg0KDQpgYGB7cn0NCmZvcmVzdChtZXRhX2FuYWx5c2lzLA0KICAgICAgIG1haW49Ik1ldGFuw6FsaXNlIC0gQ29tcGFyYcOnw6NvIGVudHJlIFBhc3RhZ2VtIEV4Y2x1c2l2YSBlIFNpbHZpcGFzdG9yaWwiLA0KICAgICAgIHhsYWI9IkRpZmVyZW7Dp2EgZGUgTcOpZGlhcyAoUGFzdGFnZW0gU2lsdmlwYXN0b3JpbCAtIFBhc3RhZ2VtIEV4Y2x1c2l2YSkiLA0KICAgICAgIHNsYWIgPSBwYXN0ZShkYXRhJEVzdHVkbywgZGF0YSRBbm8sIHNlcD0iLCAiKSwNCiAgICAgICBpbGFiID0gZGF0YSRuLCBpbGFiLnhwb3MgPSAtMTUwLA0KICAgICAgIGlsYWIucG9zID0gNCwgY2V4ID0gMC43NSkNCmBgYA0KDQojICpBdmFsaWHDp8OjbyBkZSBoZXRlcm9nZW5laWRhZGUqDQoNCmBgYHtyfQ0KaGV0ZXJvZ2VuZWl0eSA8LSBkYXRhLmZyYW1lKA0KICBRID0gbWV0YV9hbmFseXNpcyRRRSwNCiAgZGYgPSBtZXRhX2FuYWx5c2lzJGsgLSAxLA0KICBwX3ZhbHVlID0gbWV0YV9hbmFseXNpcyRRRXAsDQogIEkyID0gbWV0YV9hbmFseXNpcyRJMg0KKQ0KDQpwcmludChoZXRlcm9nZW5laXR5KQ0KYGBgDQoNCg0KIyAqQW7DoWxpc2UgZGUgc2Vuc2liaWxpZGFkZTogcmVtb3ZlciB1bSBlc3R1ZG8gcG9yIHZleioNCg0KYGBge3J9DQpsZWF2ZV9vbmVfb3V0IDwtIGxlYXZlMW91dChtZXRhX2FuYWx5c2lzKQ0KcHJpbnQobGVhdmVfb25lX291dCkNCmBgYA0KDQojICpHcsOhZmljbyBkZSBmdW5pbCoNCg0KYGBge3J9DQpmdW5uZWwobWV0YV9hbmFseXNpcykNCmBgYA0KDQo=