library(tidyverse)
library(ggplot2)
library(readr)
library(knitr)
library(kableExtra)
raw_NYC_death <- read_csv("Desktop/Stuff & Things/School/Grad School/DUE Methods 1/part2/data/raw/New_York_City_Leading_Causes_of_Death_20241214.csv")
NYC_death <- raw_NYC_death|>
  filter(Year >= 2014,
         `Leading Cause`== "Influenza (Flu) and Pneumonia (J09-J18)",
         `Race Ethnicity` != "Not Stated/Unknown",
         `Race Ethnicity` != "Other Race/ Ethnicity")|>
  group_by(`Race Ethnicity`, Sex)|> 
  summarise(`Death Rate`)|>
  ungroup()
ggplot(data = NYC_death, aes(x=`Race Ethnicity`, y=`Death Rate`,fill = Sex))+
  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))+
  geom_bar(position='dodge', stat='identity')+
  labs(title = "Death Rate from Flu and Pneumonia in 2014",
    caption = "Source: NYC OpenData")

This graph shows that the highest rate of deaths from the flu and pneumonia happen in the White and Black communities. Something I found interesting was the wide disparity in deaths between AAPI men and women, with men dying more much more frequently than the women.

kable(NYC_death, format = "html")|>
  kable_styling(bootstrap_options = c("striped", "hover"), full_width = F)
Race Ethnicity Sex Death Rate
Asian and Pacific Islander F 12.8
Asian and Pacific Islander M 18.3
Black Non-Hispanic F 25.3
Black Non-Hispanic M 28
Hispanic F 17.2
Hispanic M 16.7
White Non-Hispanic F 39.7
White Non-Hispanic M 37.4
LS0tCnRpdGxlOiAiRmx1IGFuZCBQbmV1bW9uaWEgRGVhdGhzIE5ZQyAyMDE0IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKYGBge3IsIG1lc3NhZ2U9RkFMU0UsIHJlc3VsdHMgPSdoaWRlJ30KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZWFkcikKbGlicmFyeShrbml0cikKbGlicmFyeShrYWJsZUV4dHJhKQpgYGAKCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCByZXN1bHRzID0naGlkZSd9CnJhd19OWUNfZGVhdGggPC0gcmVhZF9jc3YoIkRlc2t0b3AvU3R1ZmYgJiBUaGluZ3MvU2Nob29sL0dyYWQgU2Nob29sL0RVRSBNZXRob2RzIDEvcGFydDIvZGF0YS9yYXcvTmV3X1lvcmtfQ2l0eV9MZWFkaW5nX0NhdXNlc19vZl9EZWF0aF8yMDI0MTIxNC5jc3YiKQpgYGAKCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCByZXN1bHRzID0naGlkZSd9Ck5ZQ19kZWF0aCA8LSByYXdfTllDX2RlYXRofD4KICBmaWx0ZXIoWWVhciA+PSAyMDE0LAogICAgICAgICBgTGVhZGluZyBDYXVzZWA9PSAiSW5mbHVlbnphIChGbHUpIGFuZCBQbmV1bW9uaWEgKEowOS1KMTgpIiwKICAgICAgICAgYFJhY2UgRXRobmljaXR5YCAhPSAiTm90IFN0YXRlZC9Vbmtub3duIiwKICAgICAgICAgYFJhY2UgRXRobmljaXR5YCAhPSAiT3RoZXIgUmFjZS8gRXRobmljaXR5Iil8PgogIGdyb3VwX2J5KGBSYWNlIEV0aG5pY2l0eWAsIFNleCl8PiAKICBzdW1tYXJpc2UoYERlYXRoIFJhdGVgKXw+CiAgdW5ncm91cCgpCmBgYAoKYGBge3J9CmdncGxvdChkYXRhID0gTllDX2RlYXRoLCBhZXMoeD1gUmFjZSBFdGhuaWNpdHlgLCB5PWBEZWF0aCBSYXRlYCxmaWxsID0gU2V4KSkrCiAgdGhlbWUoYXhpcy50ZXh0Lng9ZWxlbWVudF90ZXh0KGFuZ2xlPTkwLGhqdXN0PTEsdmp1c3Q9MC41KSkrCiAgZ2VvbV9iYXIocG9zaXRpb249J2RvZGdlJywgc3RhdD0naWRlbnRpdHknKSsKICBsYWJzKHRpdGxlID0gIkRlYXRoIFJhdGUgZnJvbSBGbHUgYW5kIFBuZXVtb25pYSBpbiAyMDE0IiwKICAgIGNhcHRpb24gPSAiU291cmNlOiBOWUMgT3BlbkRhdGEiKQpgYGAKVGhpcyBncmFwaCBzaG93cyB0aGF0IHRoZSBoaWdoZXN0IHJhdGUgb2YgZGVhdGhzIGZyb20gdGhlIGZsdSBhbmQgcG5ldW1vbmlhIGhhcHBlbiBpbiB0aGUgV2hpdGUgYW5kIEJsYWNrIGNvbW11bml0aWVzLiBTb21ldGhpbmcgSSBmb3VuZCBpbnRlcmVzdGluZyB3YXMgdGhlIHdpZGUgZGlzcGFyaXR5IGluIGRlYXRocyBiZXR3ZWVuIEFBUEkgbWVuIGFuZCB3b21lbiwgd2l0aCBtZW4gZHlpbmcgbW9yZSBtdWNoIG1vcmUgZnJlcXVlbnRseSB0aGFuIHRoZSB3b21lbi4KYGBge3J9CmthYmxlKE5ZQ19kZWF0aCwgZm9ybWF0ID0gImh0bWwiKXw+CiAga2FibGVfc3R5bGluZyhib290c3RyYXBfb3B0aW9ucyA9IGMoInN0cmlwZWQiLCAiaG92ZXIiKSwgZnVsbF93aWR0aCA9IEYpCmBgYAoK